Attività di Bari 
Coordinatore: Antonio Marrone 
Theoretical physicsThe theoretical group in Bari gathers about 30 people (including staff researchers and PhD/postdoc fellows), and carries out a vibrant research program in diverse disciplines, ranging from the study of fundamental interactions (electroweak, strong, gravitational) to the evolution of quantum systems and to the statistical mechanics of complex systems, with some spinoffs in applied research. The quality of all the research lines is testified by a number of publications in international journals and by the organization of biannual workshops in the main fields of activity, as well as by the participation and contributions to major conferences worldwide. The research is carried out and financed in the framework of two strictly connected institutions, the University and the Istituto Nazionale di Fisica Nucleare (INFN). Each of the six main INFN local activities (called NPQCD, QFTHEP, QUANTUM, TAsP, FieldTurb, BioPhys) is actually a node of a larger international network.
NPQCD – Nonperturbative Quantum ChromoDynamics Quantum ChromoDynamics (QCD) is widely accepted as the theory of strong interactions. Lattice QCD is the most reliable firstprinciple tool to address QCD in its nonperturbative regime and allows in many cases a quantitative comparison to experimental observables. We study QCD at high temperature and density which is relevant both for the physics of relativistic heavyion collisions and for the physics of the early universe. To this purpose we also investigate the dynamics of color confinementdeconfinement in QCD. Our investigations are performed using stateoftheart supercomputing resources and computational techniques.
QFTHEP – Phenomenology of the Standard Model and Beyond Physics beyond the Standard Model, consequences in the flavor sector There are fundamental questions that the Standard Model (SM) of fundamental interactions leaves unanswered, namely, the number of generations of elementary fermions, the matterantimatter asymmetry in the Universe, the nature of the dark matter, the hierarchy among the fermion masses, the vast difference between the electroweak and the Planck scale. A possible answer is that the SM is an effective field theory needing to be extended at high energies. Physics beyond the Standard Model affects rare phenomena in kaon, charm and beauty hadron physics. The group is working on the impact on flavor observables of theories with extradimensions and extended gauge groups. The experimental counterparts are the collaborations at LHC and at the flavor factories (BESBeijing and BelleTsukuba). The phenomenology of rare Higgs decays is also currently investigated. Heavy and light hadron spectroscopy Bound states of quarks and gluons are the prime effect of strong interactions. The experimental observations of resonances with unexpected properties, made recently at various colliders, challenge the present theoretical description, and require detailed analyses of the mass spectra and decay features. The group is providing classification schemes for the observed hadrons, as well as predictions for new states. Gauge/gravity duality and applications to the strong interactions A breakthrough in the theory of fundamental interaction is the discovery of the socalled gauge/gravity duality, which allows us to establish a correspondence between certain 4D gauge theories and higher dimensional gravity theories.The group is studying the possible application of the correspondence to strong interactions. The aim is to access hadronic quantities like masses and strong couplings, the QCD phase diagram, the temperature and baryon density dependence of the hadron properties, the evolution from farfromequilibrium conditions of strongly interacting systems.
QUANTUM – Finite and infinite quantum systems The advent of quantum information and the developments that ensued have changed the status of quantum mechanics. Its most puzzling aspects have been brought to the forefront of theoretical investigation, for instance in the emerging field of quantum technologies and applications. At the same time, the astounding experimental success in controlling single atoms, or in freezing and manipulating atom arrays, have made concrete the possibility of quantum based revolutionary technological steps. Furthermore, the increasing accuracy in interferometric techniques has made feasible the investigation of quantum coherence effects in a wide variety of physical systems. The major objective of the QUANTUM group is the investigation of typical quantum effects and phenomena. The research activity pursues the foregoing objective via four major, interrelated avenues: entanglement and other quantum correlations, quantum dissipative systems, quantum control, and quantum gases. The topics investigated have a foundational character, but are of interest also in view of possible applications. We mention the links of entanglement with complexity, its key role in quantum phase transitions, the dissipative dynamics due to quantum fluctuations in manybody systems, the quantumtoclassical transition, the phasespace (Wigner function) formulation, the dynamical evolutions of cold gases and BoseEinstein condensates, the emerging fields of quantumstate and quantumprocess tomography, quantum channels, subshotnoise imaging, and quantum metrology.
TAsP – Theoretical Astroparticle Physics Neutrino Physics In the last two decades, the discovery of neutrino flavor oscillations (awarded with 2015 Nobel Prize) has provided us with important evidence of new physics beyond the standard electroweak model. Although several features of the neutrino massmixing phenomenology can be described in a simple threegeneration framework, several unknowns remain to be settled, including the absolute scale and the ordering of neutrino masses, the Dirac or Majorana nature of the neutrino fields, the precise value of the largest mixing angle, the hints of leptonic CP violation, and possible the existence of new (sterile) neutrino states and of new (flavor changing or conserving) neutrino interactions. All these issues have profound implications in particle physics, astrophysics and cosmology. Our group is actively engaged in the theoretical and phenomenological analysis of both oscillatory and nonoscillatory aspects of neutrino physics, including: 1) Investigation of the neutrino CP violating phase from global data analyses of oscillation data; 2) Statistical analysis of current limits and prospective observations of neutrinoless double decay; 3) Study of neutrino mass hierarchy discrimination with atmospheric and reactor neutrinos; 4) Study of Earth models in the context of geoneutrinos; 5) Neutrino selfinteraction and turbulence effects in Supernova neutrinos; 6) Neutrinos and axions as candidates for dark matter. Cosmology The local scientific activity in the field of cosmology is mainly devoted to the analysis of cosmological models beyond the reference one [the socalled Lambda Cold Dark matter (LCDM) model], especially to account for possible largescale inhomogeneity and anisotropy. Recent research topics are: 1) Phenomenological discussion and a quantitative estimate of the possible relevance of the cosmological inhomogeneities of primordial origin for the precise determination of the basic parameters of the LCDM concordance model; 2) Exact, nonperturbative calculation of the redshiftluminosity distance relation, obtained in a new gauge introduced on purpose and adapted to the past lightcone of the given observer; 3) Computation (up to the third order) of the gravitational light deflection effect in perturbed cosmological backgrounds; 4) Inhomogeneous models of the Universe: Calculation of the luminosity distance of a source for offcentre observer in the LTB (LemaitreTolmanBondi) model; exact luminosity distance and apparent magnitude formulas applied to a sample data of Union2 supernovae for different profiles. Studies of electrodynamics in curved spacetime, in LTB model. Effects on photon propagation in this model due to inhomogeneities.
BioPhys – Biological applications of theoretical physics methods The local research activity is mainly focussed on the applications of complex networks modelling in neuroscience, on the development on novel analysis tools for the analysis of complex signals in neurodegenerative diseases, on the application of Machine Learning tools to Melanoma and other biomedical data, on the study and simulations of large molecules of biological interest. Recent activities include: 1) Application of equilibrium and nonequilibrium simulations to the investigation of systems of biomedical and technological relevance. In particular, we studied the aggregation propensity of the human aquaporin 4 (hAQP4) and the permeation properties of drugs through the cell membrane as well as on the related problem of modelling the membrane/water interface. On the more applicative we investigated the application of conjugated polymers in the fabrication of organic thin film transistors. 2) Study of the brain functional connectivity, by network theory, in neurodegenerative diseases. 3) Study of the structurefunction relation in the healthy human brain, and corresponding parcellation of the brain. 4) Diagnostic and prediction of the outcome of treatment in the melanoma cancer, using Big Data analysis on complex biomedical data. 5) Study of the heartbrain interaction by information theory tools.
FIELDTURB – Fields and particles in turbulence and complex fluids
