
Introduction to RooFit

1. Introduction and overview

2. Creation and basic use of models

3. Addition and Convolution

4. Common Fitting problems

W. Verkerke (NIKHEF)

4. Common Fitting problems

5. Multidimensional and Conditional models

6. Fit validation and toy MC studies

7. Constructing joint model

8. Working with the Likelihood, including systematic errors

9. Interval and Limits

Common fitting
Problems4

Wouter Verkerke, NIKHEF

Problems4
• Understanding MINUIT output
• Instabilities and correlation coefficients

A brief description of MINUIT functionality

• MIGRAD
– Find function minimum. Calculates function gradient, follow to

(local) minimum, recalculate gradient, iterate until minimum
found
• To see what MIGRAD does, it is very instructive to do RooMinuit::setVerbose(1). It

will print a line for each step through parameter space

– Number of function calls required depends greatly on number of
floating parameters, distance from function minimum and shape
of function

• HESSE
– Calculation of error matrix from 2nd derivatives at minimum

– Gives symmetric error. Valid in assumption that likelihood is
(locally parabolic)

– Requires roughly N2 likelihood evaluations (with N = number of
floating parameters)

Wouter Verkerke, NIKHEF

1

2

2
2 ln

)(ˆ)(ˆ
−









==

pd
Ld

pVpσ

A brief description of MINUIT functionality

• MINOS
– Calculate errors by explicit finding points (or contour for >1D)

where ∆-log(L)=0.5

– Reported errors can be asymmetric

– Can be very expensive in with large number of floating
parameters

• CONTOUR
– Find contours of equal ∆-log(L) in two parameters and draw

corresponding shape

– Mostly an interactive analysis tool

Wouter Verkerke, NIKHEF

Note of MIGRAD function minimization

• For all but the most trivial scenarios it is not possible to
automatically find reasonable starting values of
parameters
– So you need to supply ‘reasonable’ starting values for your

parameters

Reason: There may exist
multiple (local) minima
in the likelihood or χ2lo

g
(L

)

Wouter Verkerke, NIKHEF

– You may also need to supply ‘reasonable’ initial step size in
parameters. (A step size 10x the range of the above plot is clearly
unhelpful)

– Using RooMinuit, the initial step size is the value of
RooRealVar::getError(), so you can control this by supplying
initial error values

in the likelihood or χ

p

-l
o

g
(L

)

Local
minimum

True minimum

Minuit function MIGRAD

• Purpose: find minimum

** 13 **MIGRAD 1000 1

(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL

EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

Progress information,
watch for errors here

Wouter Verkerke, NIKHEF

EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 mean 8.84225e-02 3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2.39540e-01 2.78628e-04 -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 3.338e-04
3.338e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00430 1.000 0.004
2 0.00430 0.004 1.000

Parameter values and approximate
errors reported by MINUIT

Error definition (in this case 0.5 for
a likelihood fit)

Minuit function MIGRAD

• Purpose: find minimum

** 13 **MIGRAD 1000 1

(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL

EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

Value of χχχχ2 or likelihood at
minimum

(NB: χχχχ2 values are not divided
by Nd.o.f)

Wouter Verkerke, NIKHEF

EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 mean 8.84225e-02 3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2.39540e-01 2.78628e-04 -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 3.338e-04
3.338e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00430 1.000 0.004
2 0.00430 0.004 1.000

Approximate
Error matrix

And covariance matrix

Minuit function MIGRAD

• Purpose: find minimum

** 13 **MIGRAD 1000 1

(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD STATUS=CONVERGED 31 CALLS 32 TOTAL

EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE

Status:
Should be ‘converged’ but can be ‘failed’

Estimated Distance to Minimum
should be small O(10-6)

Error Matrix Quality
should be ‘accurate’, but can be
‘approximate’ in case of trouble

Wouter Verkerke, NIKHEF

EDM=2.36773e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER STEP FIRST
NO. NAME VALUE ERROR SIZE DERIVATIVE
1 mean 8.84225e-02 3.23862e-01 3.58344e-04 -2.24755e-02
2 sigma 3.20763e+00 2.39540e-01 2.78628e-04 -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 3.338e-04
3.338e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00430 1.000 0.004
2 0.00430 0.004 1.000

Minuit function HESSE

• Purpose: calculate error matrix from
2

2

dp
Ld

** 18 **HESSE 1000

COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=OK 10 CALLS 42 TOTAL

EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE

Symmetric errors
calculated from 2nd

derivative of –ln(L) or χχχχ2

Wouter Verkerke, NIKHEF

NO. NAME VALUE ERROR STEP SIZE VALUE
1 mean 8.84225e-02 3.23861e-01 7.16689e-05 8.84237e-03
2 sigma 3.20763e+00 2.39539e-01 5.57256e-05 3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 2.780e-04
2.780e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

Minuit function HESSE

• Purpose: calculate error matrix from
2

2

dp
Ld

** 18 **HESSE 1000

COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=OK 10 CALLS 42 TOTAL

EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE

Error matrix
(Covariance Matrix)

calculated from
1

2)ln(
−










 −
=

ji
ij dpdp

Ld
V

Wouter Verkerke, NIKHEF

NO. NAME VALUE ERROR STEP SIZE VALUE
1 mean 8.84225e-02 3.23861e-01 7.16689e-05 8.84237e-03
2 sigma 3.20763e+00 2.39539e-01 5.57256e-05 3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 2.780e-04
2.780e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

 jidpdp

Minuit function HESSE

• Purpose: calculate error matrix from
2

2

dp
Ld

** 18 **HESSE 1000

COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=OK 10 CALLS 42 TOTAL

EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE

Wouter Verkerke, NIKHEF

NO. NAME VALUE ERROR STEP SIZE VALUE
1 mean 8.84225e-02 3.23861e-01 7.16689e-05 8.84237e-03
2 sigma 3.20763e+00 2.39539e-01 5.57256e-05 3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 2.780e-04
2.780e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

Correlation matrix ρρρρij
calculated from

ijjiijV ρσσ=

Minuit function HESSE

• Purpose: calculate error matrix from
2

2

dp
Ld

** 18 **HESSE 1000

COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE STATUS=OK 10 CALLS 42 TOTAL

EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER INTERNAL INTERNAL
NO. NAME VALUE ERROR STEP SIZE VALUE

Wouter Verkerke, NIKHEF

NO. NAME VALUE ERROR STEP SIZE VALUE
1 mean 8.84225e-02 3.23861e-01 7.16689e-05 8.84237e-03
2 sigma 3.20763e+00 2.39539e-01 5.57256e-05 3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 2 ERR DEF=0.5
1.049e-01 2.780e-04
2.780e-04 5.739e-02
PARAMETER CORRELATION COEFFICIENTS

NO. GLOBAL 1 2
1 0.00358 1.000 0.004
2 0.00358 0.004 1.000

Global correlation vector:
correlation of each parameter

with all other parameters

Minuit function MINOS

• Error analysis through ∆nll contour finding

** 23 **MINOS 1000

FCN=257.304 FROM MINOS STATUS=SUCCESSFUL 52 CALLS 94 TOTAL

EDM=2.36534e-06 STRATEGY= 1 ERROR MATRIX ACCURATE
EXT PARAMETER PARABOLIC MINOS ERRORS
NO. NAME VALUE ERROR NEGATIVE POSITIVE
1 mean 8.84225e-02 3.23861e-01 -3.24688e-01 3.25391e-01
2 sigma 3.20763e+00 2.39539e-01 -2.23321e-01 2.58893e-01

Wouter Verkerke, NIKHEF

2 sigma 3.20763e+00 2.39539e-01 -2.23321e-01 2.58893e-01
ERR DEF= 0.5

Symmetric error

(repeated result
from HESSE)

MINOS error
Can be asymmetric

(in this example the ‘sigma’ error
is slightly asymmetric)

Illustration of difference between HESSE and MINOS errors

• ‘Pathological’ example likelihood with multiple minima
and non-parabolic behavior

MINOS error

Extrapolation
of parabolic
approximation

Wouter Verkerke, NIKHEF HESSE error

approximation
at minimum

Practical estimation – Fit converge problems

• Sometimes fits don’t converge because, e.g.
– MIGRAD unable to find minimum

– HESSE finds negative second derivatives
(which would imply negative errors)

• Reason is usually numerical precision and stability
problems, but
– The underlying cause of fit stability problems is usually

Wouter Verkerke, NIKHEF

– The underlying cause of fit stability problems is usually
by highly correlated parameters in fit

• HESSE correlation matrix in primary investigative tool

– In limit of 100% correlation, the usual point solution becomes a line
solution (or surface solution) in parameter space.
Minimization problem is no longer well defined

PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL 1 2
1 0.99835 1.000 0.998
2 0.99835 0.998 1.000

Signs of trouble…

Mitigating fit stability problems

• Strategy I – More orthogonal choice of parameters
– Example: fitting sum of 2 Gaussians of similar width

),;()1(),;(),,,;(221121 msxGfmsxfGssmfxF −+=

Wouter Verkerke, NIKHEF

PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL [f] [m] [s1] [s2]
[f] 0.96973 1.000 -0.135 0.918 0.915
[m] 0.14407 -0.135 1.000 -0.144 -0.114
[s1] 0.92762 0.918 -0.144 1.000 0.786
[s2] 0.92486 0.915 -0.114 0.786 1.000

HESSE correlation matrix

Widths s1,s2
strongly correlated
fraction f

Mitigating fit stability problems

– Different parameterization:

),;()1(),;(2212111 mssxGfmsxfG ⋅−+

PARAMETER CORRELATION COEFFICIENTS
NO. GLOBAL [f] [m] [s1] [s2]

[f] 0.96951 1.000 -0.134 0.917 -0.681
[m] 0.14312 -0.134 1.000 -0.143 0.127
[s1] 0.98879 0.917 -0.143 1.000 -0.895
[s2] 0.96156 -0.681 0.127 -0.895 1.000

Wouter Verkerke, NIKHEF

– Correlation of width s2 and fraction f reduced from 0.92 to 0.68

– Choice of parameterization matters!

• Strategy II – Fix all but one of the correlated parameters
– If floating parameters are highly correlated, some of them may be

redundant and not contribute to additional degrees of freedom in your
model

Mitigating fit stability problems -- Polynomials

• Warning: Regular parameterization of polynomials
a0+a1x+a2x2+a3x3 nearly always results in strong
correlations between the coefficients ai.
– Fit stability problems, inability to find right solution common at

higher orders

• Solution: Use existing parameterizations of
polynomials that have (mostly) uncorrelated variables
– Example: Chebychev polynomials

Wouter Verkerke, NIKHEF

– Example: Chebychev polynomials

Minuit CONTOUR tool also useful to examine ‘bad’ correlations

• Example of 1,2 sigma contour
of two uncorrelated variables
– Elliptical shape. In this example

parameters are uncorrelation

• Example of 1,2 sigma contour

Wouter Verkerke, NIKHEF

• Example of 1,2 sigma contour
of two variables with problematic
correlation
– Pdf = f⋅G1(x,0,3)+(1-f)⋅G2(x,0,s)

with s=4 in data

Practical estimation – Bounding fit parameters

• Sometimes is it desirable to bound the allowed range of
parameters in a fit
– Example: a fraction parameter is only defined in the range [0,1]

– MINUIT option ‘B’ maps finite range parameter to an internal infinite
range using an arcsin(x) transformation:

B
o

u
n

d
e
d

 P
a
ra

m
e
te

r
sp

a
ce

Wouter Verkerke, NIKHEF

B
o

u
n

d
e
d

 P
a
ra

m
e
te

r
sp

a
ce

MINUIT internal parameter space (-∞,+∞)

Internal Error

E
x
te

rn
a
l
E
rr

o
r

Multidimensional
models5

Wouter Verkerke, NIKHEF

models5
• Uncorrelated products of p.d.f.s
• Using composition to p.d.f.s with correlation
• Products of conditional and plain p.d.f.s

Building realistic models

– Multiplication

* =

Wouter Verkerke, NIKHEF

– Composition

g(x;m,s)m(y;a0,a1)

=

g(x,y;a0,a1,s)
Possible in any PDF
No explicit support in PDF code needed

RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – Products of uncorrelated p.d.f.s

)()(),(yGxFyxH ⋅=

Wouter Verkerke, NIKHEF

RooGaussian

RooProdPdf*

Uncorrelated products – Mathematics and constructors

• Mathematical construction of products of uncorrelated
p.d.f.s is straightforward

– No explicit normalization required à If input p.d.f.s are unit

)()(),(yGxFyxH ⋅= ∏=
i

iii xFxH)()(}{}{}{

2D nD

Wouter Verkerke, NIKHEF

– No explicit normalization required à If input p.d.f.s are unit
normalized, product is also unit normalized
(this is true only because of the absence of correlations)

• Corresponding factory operator is PROD

w.factory(“Gaussian::gx(x[-5,5],mx[2],sx[1])”) ;
w.factory(“Gaussian::gy(y[-5,5],my[-2],sy[3])”) ;

w.factory(“PROD::gxy(gx,gy)”) ;

How it work – event generation on uncorrelated products

• If p.d.f.s are uncorrelated, each observable can be
generated separately
– Reduced dimensionality of problem (important for e.g.

accept/reject sampling)

– Actual event generation delegated to component p.d.f (can e.g.
use internal generator if available)

– RooProdPdf just aggregates output in single dataset

Wouter Verkerke, NIKHEF

Delegate Generate Merge

Fundamental multi-dimensional p.d.fs

• It also possible define multi-dimensional p.d.f.s that do not
arise through a product construction
– For example

– But usually n-dim p.d.f.s are constructed more intuitively through
product constructs. Also correlations can be introduced efficiently
(more on that in a moment)

EXPR::mypdf(‘sqrt(x+y)*sqrt(x-y)’,x,y) ;

Wouter Verkerke, NIKHEF

(more on that in a moment)

• Example of fundamental 2-D
B-physics p.d.f. RooBMixDecay

– Two observables:
decay time (t, continuous)
mixingState (m, discrete [-1,+1])

Plotting multi-dimensional PDFs

RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
prod->plotOn(xframe) ;
xframe->Draw() ;

c->cd(2) ;
RooPlot* yframe = y.frame() ;
data->plotOn(yframe) ;
prod->plotOn(yframe) ;
yframe->Draw() ;

∫= dyyxpdfxf),()(

∫= dxyxpdfyf),()(

Wouter Verkerke, NIKHEF

yframe->Draw() ;
∫= dxyxpdfyf),()(

-Plotting a dataset D(x,y) versus x
represents a projection over y

-To overlay PDF(x,y),
you must plot Int(dy)PDF(x,y)

-RooFit automatically takes care of this!
•RooPlot remembers dimensions of plotted datasets

Introduction to slicing

• With multidimensional p.d.f.s it is also often useful to be able
to plot a slice of a p.d.f

• In RooFit
– A slice is thin

– A range is thick

• Slices mostly useful
in discrete observables

Slice in x

Wouter Verkerke, NIKHEF

in discrete observables
– A slice in a continuous observable

has no width and usually no data
with the corresponding cut
(e.g. “x=5.234”)

• Ranges work for both
continuous and discrete
observables
– Range of discrete observable

can be list of >=1 state

x = x.getVal()

Range in y

Plotting a slice of a dataset

• Use the optional cut string expression

// Mixing dataset defines dt,mixState
RooDataSet* data ;

// Plot the entire dataset
RooPlot* frame = dt.frame() ;
data->plotOn(frame) ;

// Plot the mixed part of the data

Wouter Verkerke, NIKHEF

– Works the same for binned data sets

// Plot the mixed part of the data
RooPlot* frame_mix = dt.frame() ;
data->plotOn(frame,

Cut(”mixState==mixState::mixed”)) ;

Plotting a slice of a p.d.f

RooPlot* dtframe = dt.frame() ;
data->plotOn(dtframe,Cut(“mixState==mixState::mixed“)) ;

bmix.plotOn(dtframe,Slice(mixState,”mixed”)) ;
dtframe->Draw() ;

Wouter Verkerke, NIKHEF

For slices both data and p.d.f
normalize with respect to full
dataset. If fraction ‘mixed’ in
above example disagrees between
data and p.d.f prediction, this
discrepancy will show in plot

Plotting a range of a p.d.f and a dataset

RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
model.plotOn(xframe) ;

y.setRange(“sig”,-1,1) ;
RooPlot* xframe2 = x.frame() ;
data->plotOn(xframe2,CutRange("sig")) ;
model.plotOn(xframe2,ProjectionRange("sig")) ;

model(x,y) = gauss(x)*gauss(y) + poly(x)*poly(y)

Wouter Verkerke, NIKHEF

à Works also with >2D projections (just specify projection range on all projected observables)

à Works also with multidimensional p.d.fs that have correlations

Physics example of combined range and slice plotting

// Plot projection on mB
RooPlot* mbframe = mb.frame(40) ;
data->plotOn(mbframe) ;
model.plotOn(mbframe) ;

// Plot mixed slice projection on deltat
RooPlot* dtframe = dt.frame(40) ;

Example setup:
Argus(mB)*Decay(dt) +
Gauss(mB)*BMixDecay(dt)

(background)
(signal)

mB

dt (mixed slice)

Wouter Verkerke, NIKHEF

RooPlot* dtframe = dt.frame(40) ;
data>plotOn(dtframe,

Cut(”mixState==mixState::mixed”)) ;
model.plotOn(dtframe,Slice(mixState,”mixed”)) ;

Plotting slices with finite width - Example
Example setup:
Argus(mB)*Decay(dt) +
Gauss(mB)*BMixDecay(dt)

(background)
(signal)

mB

dt (mixed slice)

“signal”

Wouter Verkerke, NIKHEF

mb.setRange(“signal”,5.27,5.30) ;

mbSliceData->plotOn(dtframe2,
Cut("mixState==mixState::mixed“),
CutRange(“signal”))

model.plotOn(dtframe2,Slice(mixState,”mixed”),
ProjectionRange(“signal”))

dt (mixed slice &&
“signal” range)

Plotting slices with finite width - Example

• We can also plot the finite width slice with a different
technique à toy MC integration

// Generate 80K toy MC events from p.d.f to be projected
RooDataSet *toyMC =

model.generate(RooArgSet(dt,mixState,tagFlav,mB),80000);

// Apply desired cut on toy MC data
RooDataSet* mbSliceToyMC = toyMC->reduce(“mb>5.27”);

Wouter Verkerke, UCSB

// Plot data requesting data averaging over selected toy MC data
model.plotOn(dtframe2,Slice(mixState),ProjWData(mb,mbSliceToyMC))

∑∫ ≈
),(

),,(
1

),,(
zyD

ii zyxM
N

dydzzyxM

Plotting non-rectangular PDF regions

• Why is this interesting? Because with this technique we
can trivially implement projection over arbitrarily
shaped regions.
– Any cut prescription that you can think of to apply to data works

• Example: Likelihood ratio projection plot

4)3()5(22 <−+− yx ‘donut’

Wouter Verkerke, NIKHEF

– Common technique in rare decay analyses

– PDF typically consist of N-dimensional event selection PDF,
where N is large (e.g. 6.)

– Projection of data & PDF in any of the N dimensions doesn’t show
a significant excess of signal events

– To demonstrate purity of selected signal,
plot data distribution (with overlaid PDF) in one dimension,
while selecting events with a cut on the likelihood ratio of signal
and background in the remaining N-1 dimensions

Likelihood ratio plots

• Idea: use information on S/(S+B) ratio in projected
observables to define a cut

• Example: generalize previous toy model
to 3 dimensions

• Express information on S/(S+B) ratio of model in terms
of integrals over model components

Wouter Verkerke, NIKHEF

[]∫
∫

−+⋅

⋅
=

dxzyxBfzyxSf

dxzyxSf
zyLR

),,()1(),,(

),,(
),(

[]),,()1(),,(
),,(

),,(
zyxBfzyxSf

zyxSf
zyxLR

−+⋅
⋅

=

•Integrate over x

•Plot LR vs (y,z)

Likelihood ratio plots

• Decide on s/(s+b) purity
contour of LR(y,z)
– Example s/(s+b) > 50%

• Plot both data and model
with corresponding cut.
– For data: calculate LR(y,z) for each event, plot only event with LR>0.5

– For model: using Monte Carlo integration technique:

Wouter Verkerke, NIKHEF

∑∫ ≈
>),(5.0),(

),,(
1

),,(
zyD

ii
zyLR

zyxM
N

dydzzyxM
•Dataset with values of (y,z)
sampled from p.d.f and
filtered for events that meet
LR(y,z)>0.5

•All events •Only LR(y,z)>0.5

Likelihood ratio plot on model with correlations

Likelihood ratio plots – Coded example

// Construct likelihood ratio in projection on (y,z)
w.factory("expr::LR('fsig*psig/ptot',fsig,

PROJ::psig(sig,x),PROJ::ptot(model,x))") ;

// Generate toy dataset for MC integration over region with LR>68%

[]∫
∫

−+⋅

⋅
=

dxzyxBfzyxSf

dxzyxSf
zyLR

),,()1(),,(

),,(
),(

// Generate toy dataset for MC integration over region with LR>68%
RooDataSet* tmpdata = model.generate(RooArgSet(x,y,z),10000) ;
tmpdata->addColumn(*w.function(“LR”)) ;
RooDataSet* projdata = (RooDataSet*) tmpdata->reduce(Cut("LR>0.68")) ;

// Add LR to observed data so we can cut on it
data->addColumn(*w.function(“LR”)) ;
RooDataSet* seldata = (RooDataSet*) data->reduce(Cut("LR>0.68")) ;

// Make plot for data and pdf
RooPlot* frame3 = x.frame(Title("Projection with LR(y,z)>68%")) ;
seldata->plotOn(frame3) ;
model.plotOn(frame3,ProjWData(*projdata)) ;

Plotting in more than 2,3 dimensions

• No equivalent of RooPlot for >1 dimensions
– Usually >1D plots are not overlaid anyway

• Easy to use createHistogram() methods provided in both
RooAbsData and RooAbsPdf to fill ROOT 2D,3D histograms

TH2D* ph2 = pdf.createHistogram(“ph2”,x,YVar(y)) ;

TH2* dh2 = data.createHistogram(“dg2",x,Binning(10),
YVar(y,Binning(10)));

ph2->Draw("SURF") ;

Wouter Verkerke, NIKHEF

ph2->Draw("SURF") ;
dh2->Draw("LEGO") ;

Building models – Introducing correlations

• Easiest way to do this is
– start with 1-dim p.d.f. and change on of its parameters into a

function that depends on another observable

– Natural way to think about it

• Example problem

);,()),(,();(qyxfqypxfpxf =⇒

Wouter Verkerke, NIKHEF

– Observable is reconstructed mass M of some object.

– Fitting Gaussian g(M,mean,sigma) some background to dataset
D(M)

– But reconstructed mass has bias depending on some other
observable X

– Rewrite fit functions as g(M,meanCorr(mtrue,X,alpha),sigma)
where meanCorr is an (emperical) function that corrects for the
bias depending on X

Introducing correlations through composition

• RooFit pdf building blocks do not require variables as
input, just real-valued functions
– Can substitute any variable with a function expression in

parameters and/or observables

– Example: Gaussian with shifting mean

);,()),(,();(qyxfqypxfpxf =⇒

35

– Example: Gaussian with shifting mean

– No assumption made in function on a,b,x,y being observables or
parameters, any combination will work

w.factory(“expr::mean(‘a*y+b’,y[-10,10],a[0.7],b[0.3])”) ;
w.factory(“Gaussian::g(x[-10,10],mean,sigma[3])”) ;

What does the example p.d.f look like?

• Use example model with x,y as observables

Projection on Y

36

• Note flat distribution in y. Unlikely to describe data, solutions:
1. Use as conditional p.d.f g(x|y,a,b)

2. Use in conditional form multiplied by another pdf in y: g(x|y)*h(y)

Projection on X

Conditional p.d.f.s – Formulation and construction

• Mathematical formulation of a conditional p.d.f
– A conditional p.d.f is not normalized w.r.t its conditional

observables

– Note that denominator in above expression depends on y and is

∫
=

xdpyxf

pyxf
pyxF rrrr

rrr
rrr

),,(

),,(
);|(

Wouter Verkerke, NIKHEF

– Note that denominator in above expression depends on y and is
thus in general different for each event

• Constructing a conditional p.d.f in RooFit
– Any RooFit p.d.f can be used as a conditional p.d.f as objects have

no internal notion of distinction between parameters, observables
and conditional observables

– Observables that should be used as conditional observables have
to be specified in use context (generation, plotting, fitting etc…)

Method 1 – Using a conditional p.d.f – fitting and plotting

• For fitting, indicate in fitTo() call what the conditional
observables are

– You may notice a performance penalty if the normalization
integral of the p.d.f needs to be calculated numerically.
For a conditional p.d.f it must evaluated again for each event

pdf.fitTo(data,ConditionalObservables(y))

∫
=

xdyxf

yxf
yxF r

),(

),(
)|(

Wouter Verkerke, NIKHEF

• Plotting: You cannot project a conditional F(x|y) on x
without external information on the distribution of y
– Substitute integration with averaging over y values in data

∑
∫

=

=
Ni

D i

i
p

dxyxp

yxp
N

xP
,1

),(

),(1
)(

∫
∫=

dxdyyxp

dyyxp
xPp

),(

),(
)(

Sum over all yi in dataset DIntegrate over y

How it works – event generation with conditional p.d.f.s

• Just like plotting, event generation of conditional p.d.f.s
requires external input on the conditional observables
– Given an external input dataset P(dt)

– For each event in P,
set the value of dt in F(d|dt) to dti
generate one event for observable t from F(t|dti)

– Store both ti and dti in the output dataset

Wouter Verkerke, NIKHEF

Physics example with conditional p.d.f.s

• Want to fit decay time distribution of B0 mesons
(exponential) convoluted with Gaussian resolution

• However, resolution on decay time varies from event by
event (e.g. more or less tracks available).
– We have in the data an error estimate dt for each measurement from

the decay vertex fitter (“per-event error”)

),,();()(στ mtRtDtF ⊗=

Wouter Verkerke, NIKHEF

the decay vertex fitter (“per-event error”)

– Incorporate this information into this physics model

– Resolution in physics model is adjusted for each event to expected
error.

– Overall scale factor σ can account for incorrect vertex error estimates
(i.e. if fitted σ>1 then dt was underestimate of true error)

– Physics p.d.f must used conditional conditional p.d.f because it give no
sensible prediction on the distribution of the per-event errors

),,();()|(tmtRtDttF δστδ ⋅⊗=

Physics example with conditional p.d.f.s

• Some illustrations of decay model with per-event errors
– Shape of F(t|δt) for several values of δt

• Plot of D(t) and F(t|dt) projected over dt

),,();()|(tmtRtDttF δστδ ⋅⊗=

Small dt

Large dt

Wouter Verkerke, NIKHEF

• Plot of D(t) and F(t|dt) projected over dt

// Plotting of decay(t|dterr)
RooPlot* frame = dt.frame() ;
data->plotOn(frame2) ;
decay_gm1.plotOn(frame2,ProjWData(*data)) ;

∑
∫

=

=
Ni

D i

i
p

dxyxp

yxp
N

xP
,1

),(

),(1
)(

Note that projecting over large
datasets can be slow. You can speed
this up by projecting with a binned
copy of the projection data

Method 2 – Building products with conditional pdfs

• Use of conditional pdf in fitting, plotting, event
generation has some practical drawbacks
– Need external dataset with distribution in conditional observable

in all operations

• But there is also a fundamental issue
– If your model has both a signal and a background component, the

model assumes that the distribution of the conditional observable
(e.g. the per-event error) is the same for signal and background(e.g. the per-event error) is the same for signal and background

– This may not be a valid assumption (‘Punzi effect’)

– Way out: Construct a product F(x|y)*G(y) separately for signal
and background

Example with product of conditional and plain p.d.f.

gx(x|y) gy(y)* model(x,y)=

37

// I - Use g as conditional pdf g(x|y)
w::g.fitTo(data,ConditionalObservables(w::y)) ;

// II - Construct product with another pdf in y
w.factory(“Gaussian::h(y,0,2)”) ;
w.factory(“PROD::gxy(g|y,h)”) ;

∫ dyygyxgx)()|(

Example with product of conditional and plain p.d.f.

• Following the ‘conditional product’ formalism you can
now choose different distributions for the conditional
observable for signal and background e.g.

• At this point F(t,dt) is a plain pdf: fitting plotting and
event generation works ‘as usual’ without external input

)()|()()|(),(dtbdttBdtsdttSdttF +=

event generation works ‘as usual’ without external input

• You may want to use an empirical pdf for s(dt) or b(dt)
if these distributions are difficult to model
– Histogram based pdf (RooHistPdf)

– Kernel estimatin pdf (RooKeysPdf) à Set next slide

Special pdfs – Kernel estimation model

• Kernel estimation model
– Construct smooth pdf from unbinned data,

using kernel estimation technique

Sample of events
Gaussian pdf
for each event

Summed pdf
for all events

Adaptive Kernel:
width of Gaussian depends
on local event density

38

• Example

• Also available for n-D data

w.import(myData,Rename(“myData”)) ;
w.factory(“KeysPdf::k(x,myData)”) ;

Fit validation,
Toy MC studies6

Wouter Verkerke, NIKHEF

Toy MC studies6
• Goodness-of-fit, c2
• Toy Monte Carlo studies for fit validation

How do you know if your fit was ‘good’

• Goodness-of-fit broad issue in statistics in general, will
just focus on a few specific tools implemented in RooFit
here

• For one-dimensional fits, a χ2 is usually the right thing
to do
– Some tools implemented in RooPlot to be able to calculate χ2/ndf

of curve w.r.t data

double chi2 = frame->chisquare(nFloatParam) ;

Wouter Verkerke, NIKHEF

double chi2 = frame->chisquare(nFloatParam) ;

– Also tools exists to plot residual and pull distributions from curve
and histogram in a RooPlot

frame->makePullHist() ;
frame->makeResidHist() ;

GOF in >1D, other aspects of fit validity

• No special tools for >1 dimensional goodness-of-fit
– A χ2 usually doesn’t work because empty bins proliferate with

dimensions

– But if you have ideas you’d like to try, there exists generic base
classes for implementation that provide the same level of
computational optimization and parallelization as is done for
likelihoods (RooAbsOptTestStatistic)

• But you can study many other aspect of your fit validity • But you can study many other aspect of your fit validity
– Is your fit unbiased?

– Does it (often) have convergence problems?

• You can answer these with a toy Monte Carlo study
– I.e. generate 10000 samples from your p.d.f., fit them all and

collect and analyze the statistics of these 10000 fits.

– The RooMCStudy class helps out with the logistics

Wouter Verkerke, NIKHEF

Advanced features – Task automation

• Support for routine task automation, e.g. goodness-of-fit study

Input model Generate toy MC Fit model

Accumulate
fit statistics

Wouter Verkerke, NIKHEF

Repeat
N times

Distribution of
- parameter values
- parameter errors
- parameter pulls

// Instantiate MC study manager
RooMCStudy mgr(inputModel) ;

// Generate and fit 100 samples of 1000 events
mgr.generateAndFit(100,1000) ;

// Plot distribution of sigma parameter
mgr.plotParam(sigma)->Draw()

How to efficiently generate multiple sets of ToyMC?

• Use RooMCStudy class to manage generation and fitting

• Generating features
– Generator overhead only incurred once

→ Efficient for large number of small samples

– Optional Poisson distribution for #events of generated experiments

– Optional automatic creation of ASCII data files

• Fitting
– Fit with generator PDF or different PDF

Wouter Verkerke, NIKHEF

– Fit with generator PDF or different PDF

– Fit results (floating parameters & NLL)
automatically collected in summary dataset

• Plotting
– Automated plotting for distribution of parameters,

parameter errors, pulls and NLL

• Add-in modules for optional modifications of procedure
– Concrete tools for variation of generation parameters, calculation of

likelihood ratios for each experiment

– Easy to write your own. You can intervene at any stage and offer
proprietary data to be aggregated with fit results

A RooMCStudy example

• Generating and fitting a simple PDF

// Setup PDF
RooRealVar x("x","x",-5,15) ;
RooRealVar mean("mean","mean of gaussian",-1) ;
RooRealVar sigma("sigma","width of gaussian",4) ;
RooGaussian gauss("gauss","gaussian PDF",x,mean,sigma) ;

// Create manager
RooMCStudy mgr(gauss,gauss,x,””,”mhv”) ;

Generator OptionsGenerator PDF

Wouter Verkerke, NIKHEF

RooMCStudy mgr(gauss,gauss,x,””,”mhv”) ;

// Generate and fit 1000 experiments of 100 events each
mgr.generateAndFit(1000,100) ;
RooMCStudy::run: Generating and fitting sample 999
RooMCStudy::run: Generating and fitting sample 998
RooMCStudy::run: Generating and fitting sample 997
…

Fitting Options

Observables

Fitting PDF

A RooMCStudy example

• Plot the distribution of the value, error and pull of mean

// Plot the distrution of the value
RooPlot* mframe = mean.frame(-2,0) ;
mgr.plotParamOn(mframe) ;
mframe->Draw() ;

// Plot the distrution of the error
RooPlot* meframe = mgr.plotError(mean,0.,0.1) ;
meframe->Draw() ;

Add Gaussian fit

Wouter Verkerke, NIKHEF

// Plot the distrution of the pull
RooPlot* mpframe = mgr.plotPull(mean,-3,3,40,kTRUE) ;
mpframe->Draw() ;

Add Gaussian fit

A RooMCStudy example

• Plot the distribution of –log(L)

// Plot the distribution of the NLL
mgr.plotNLL(mframe) ;
mframe->Draw() ;

Wouter Verkerke, NIKHEF

• NB: likelihood distributions cannot be used to deduce
goodness-of-fit information!

A RooMCStudy example

• For other uses, use summarized
fit results in RooDataSet form

mgr.fitParDataSet().get(10)->Print(“v”) ;

Wouter Verkerke, NIKHEF

mgr.fitParDataSet().get(10)->Print(“v”) ;
RooArgSet:::
1) RooRealVar::mean : 0.14814 +/- 0.191 L(-10 - 10)
2) RooRealVar::sigma : 4.0619 +/- 0.143 L(0 - 20)
3) RooRealVar::NLL : 2585.1 C
4) RooRealVar::meanerr : 0.19064 C
5) RooRealVar::meanpull : 0.77704 C
6) RooRealVar::sigmaerr : 0.14338 C
7) RooRealVar::sigmapull : 0.43199 C

TH2* h = mean.createHistogram("mean vs sigma",sigma) ;
mgr.fitParDataSet().fillHistogram(h,RooArgList(mean,sigma)) ;
h->Draw("BOX") ;

Pulls and errors
have separate
entries for
easy access
and plotting

Fit Validation Study – Practical example

• Example fit model in 1-D (B mass)
– Signal component is Gaussian

centered at B mass

– Background component is
Argus function (models phase
space near kinematic limit)

);();(),,,;(bkgsigbkgsig BSBS pmANpmGNppNNmF ⋅+⋅=
rr

Wouter Verkerke, NIKHEF

• Fit parameter under study: Nsig

– Results of simulation study:
1000 experiments
with NSIG(gen)=100, NBKG(gen)=200

– Distribution of Nsig(fit)

– This particular fit looks unbiased…

Nsig(fit)

Nsig(generated)

Fit Validation Study – The pull distribution

• What about the validity of the error?
– Distribution of error from simulated

experiments is difficult to interpret…

– We don’t have equivalent of
Nsig(generated) for the error

• Solution: look at the pull distribution
σσσσ(Nsig)

Wouter Verkerke, NIKHEF

– Definition:

– Properties of pull:

• Mean is 0 if there is no bias

• Width is 1 if error is correct

– In this example: no bias, correct error
within statistical precision of study

σσσσ(Nsig)

fit
N

true
sig

fit
sig NN

σ
−

=)pull(Nsig

pull(Nsig)

Fit Validation Study – Low statistics example

• Special care should be taken when fitting small data
samples
– Also if fitting for small signal component in large sample

• Possible causes of trouble
– χ2 estimators may become approximate as Gaussian

approximation of Poisson statistics becomes inaccurate

– ML estimators may no longer be efficient
à error estimate from 2nd derivative may become inaccurate

Wouter Verkerke, NIKHEF

à error estimate from 2nd derivative may become inaccurate

– Bias term proportional to 1/N of ML and χ2 estimators may
no longer be small compared to 1/sqrt(N)

• In general, absence of bias, correctness of error can not
be assumed. How to proceed?
– Use unbinned ML fits only – most robust at low statistics

– Explicitly verify the validity of your fit

Demonstration of fit bias at low N – pull distributions

• Low statistics example:
– Scenario as before but now with

200 bkg events and
only 20 signal events (instead of 100)

• Results of simulation study
NBKG(gen)=200

NSIG(gen)=20

Distributions become
asymmetric at low statistics

Pull mean ~2σσσσ away from 0

Wouter Verkerke, NIKHEF

• Absence of bias, correct error at low statistics not obvious

asymmetric at low statistics

NSIG(fit) σσσσ(NSIG) pull(NSIG)

NSIG(gen)

Pull mean ~2σσσσ away from 0
àààà Fit is positively biased!

New developments for automated studies

• A new alternative framework is being put in place to
replace class RooMCStudy.
– Class RooStudyManager manages logistics of repeated studies,

but does not implement content of study.

– Abstract concept of study interfaced through class RooAbsStudy

– Class RooGenFitStudy manages implementation of ‘generate-and-
fit’ style studies (functionality of RooMCStudy)

• Greater flexibility in choice of study (you can put in • Greater flexibility in choice of study (you can put in
anything you want)

• Support for multiple backend implementations
– Inline calculation (as done in RooMCStudy)

– Parallelized execution through PROOF (lite)

– Almost complete automation of support for batch submission

– Just need to change one line of your macro to change back-end

Demo of parallelization with PROOF-lite

• Example – Factor 8 speed up on a dual-quad core box.
– Works with out-of-the box ROOT distribution

– Also: Graceful early termination when users presses ‘Stop’

RooStudyManager mcs(*w,gfs) ;
mcs.run(1000) ; // inline running
mcs.runProof(1000,"") ; // empty string is PROOF-lite
mcs.prepareBatchInput("default",1000,kTRUE) ;

• Much larger gains can be made with ‘real’ PROOF farms

Wouter Verkerke, NIKHEF

Exercises* Exercises*

Exercise 3

• Take input file ex3.C, look at it and run it.
– This file defines a signal pdf and a background pdf summed in a

combined pdf.

– The signal pdf is a B decay distribution with mixing in observable t and
a Gaussian in observable mES.

– The background pdf is a plain decay distribution in observable t and an
Argus shape in observable mES

– Both signal and background decay distributions are convoluted with a
Gaussian resolution of fixed width.

– The macro generates 1000 events, fits the model to this data and – The macro generates 1000 events, fits the model to this data and
makes plots of the distributions for mES, t(mixed events) and
t(unmixed events)

• Step 1 – Introduce per-event errors
– Now we modify the pdf to included per-event errors. Class

RooGaussModel has multiple constructors (look at the code in
$ROOTSYS/include). We will now use the ‘second’ constructor which
takes an extra argument in the constructor, which multiplies both the
width and mean of the Gaussian. Create a new observable dt with
range[0.1,5] and supply it as 4th argument to the factory string that
makes the resolution model

Exercise 3

– We have now modified the resolution model so that the width is
scaled with the per-event error, which is different for each event.
The total pdf ‘model’ is now ready to me used as conditional pdf
F(t,mes|dt)

– To proceed generation/fitting/plotting part of the macro we also
need to generate a dummy dataset with per-event errors to be
used later for event generation, fitting and plotting operations.
Add the following pdf to the workspace

Landau::sig_dt(dt,1,0.5)Landau::sig_dt(dt,1,0.5)

using the factory and generate a RooDataSet named dtdata from
it with 1000 events.
• Put a ‘return’ statement in the macro and verify that the code runs OK up to here.

– Modify the generation call to make the ‘main’ dataset to take
*dtdata as argument instead of 1000. This will instruct the
generator to take the dt values from dtdata as input in the
generation step (It is no longer necessary to specify the number
of events to generate as this is implicit from the size of dtdata)
• Put a ‘return’ statement in the macro and verify that the code runs OK up to here.

Exercise 3

– Modify the call to fitTo() by adding argument
ConditionalObservables(*w.var(“dt”)), which will change the
normalization of the pdf used in the fit: instread of normalizing w.r.t.
(t,dt), the normalization is only performed over t, but recalculated for
each value of dt.
• Put a ‘return’ statement in the macro and verify that the code runs OK up to here.

– Modify the plotting code. Add to each plotOn() call for the pdf an
argument ‘ProjWData(*dtdata)’ which will instruct the plotting
operation to perform the projection over dt by averaging over the
values in the provided dataset instead of integrating the pdf over dt.
Verify that all plots look OK.

– In the step before the projections over dt are performed using the
unbinned dataset and take relatively long. Replace each
ProjWData(*dtdata) with ProjWData(*dtdata,kTRUE) to request
averaging over a binned dataset in dt (default = 100 bins) which will
speed up the projections by a factor 10.
• The solution of step 1 is available in ~verkerke/solutions/ex3step1.C

• Step 2 – Add plots for the signal region
– Define the signal region in mES as follows

w.var(“mes”)->setRange(“signal”,5.27,5.29) ;

Exercise 3

– Replicate the code that makes plots frame1 and frame2 (dt
distribution for mixed and unmixed) and modify the replica to
make plots frame3 and frame4. Change the canvas layout from a
(3,1) to a (3,2) layout (change the size of the canvas accordingly)
and plot frame3 and frame4 on pads 5 and 6 respectively (pad 4
will remain empty)

– Now modify the code that makes plots frame3 and frame4 as
follows: to the data->plotOn() calls add an argument
CutRange(“signal”), to the pdf->plotOn() calls add an argument
ProjectionRange(“signal”).
• The solution of step 2 is available in ~verkerke/solutions/ex3step2.C• The solution of step 2 is available in ~verkerke/solutions/ex3step2.C

• Step 3 – Add a pdf for dt to the model
– In this step we will introduce an explicit model for the distribution

of dt in the pdf so that we construct a plain pdf F(t,dt,mes) =
F(t|dt)*G(dt)*H(mes) for both signal and background

– Move the factory line that makes sig_dt above the line that
constructs the signal product pdf. Modify the product construction
such that it says ‘PROD::sig(sig_m,sig_t|dt,sig_dt)’. Replicate the
line that makes ‘sig_dt’ to make an identical pdf named ‘bkg_dt’.
Then modify the background product pdf similar to what as done
for the signal pdf.

Exercise 3

– Now the pdf has been modified to a regular pdf we can revert the code
that uses the pdf to its original state: 1) In the event generation step
replace *dtdata with 1000. 2) In fitTo() remove the
ConditionalObservables() argument. 3) In all of the plotOn() calls
remove the ProjWData() arguments. Now run again.
• The solution of step 3 is available in ~verkerke/solutions/ex3step3.C

• Step 4 – Add observable deltaE to the model.
– Add Gaussian signal model for observable deltaE to the workspace

Gaussian::sig_de(de[-1,1],demean[0,-1,1],
dewidth[0.1,0.01,1])dewidth[0.1,0.01,1])

– Add a flat background model for observable deltaE to the workspace

Polynomial::bkg_de(de)

– Add pdfs sig_de and bkg_de to the products sig and bkg respectively

– Add observable de to the list of observables defined by RooArgSet obs

– Define a signal range in de (just below the def. of that range in mes)

w.var(“de”)->setRange(“signal”,-0.2,0.2)

– Increase the number of events generated to 10000 and run the macro
again.
• The solution of step 4 is available in ~verkerke/solutions/ex3step4.C

