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Common fitting
Problems4
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Problems4
• Understanding MINUIT output
• Instabilities and correlation coefficients



A brief description of MINUIT functionality

• MIGRAD
– Find function minimum. Calculates function gradient, follow to 

(local) minimum, recalculate gradient, iterate until minimum 
found
• To see what MIGRAD does, it is very instructive to do RooMinuit::setVerbose(1). It 

will print a line for each step through parameter space

– Number of function calls required depends greatly on number of 
floating parameters, distance from function minimum and shape 
of function

• HESSE 
– Calculation of error matrix from 2nd derivatives at minimum

– Gives symmetric error. Valid in assumption that likelihood is 
(locally parabolic)

– Requires roughly N2 likelihood evaluations (with N = number of 
floating parameters)
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A brief description of MINUIT functionality

• MINOS
– Calculate errors by explicit finding points (or contour for >1D) 

where ∆-log(L)=0.5

– Reported errors can be asymmetric

– Can be very expensive in with large number of floating 
parameters

• CONTOUR
– Find contours of equal ∆-log(L) in two parameters and draw 

corresponding shape 

– Mostly an interactive analysis tool
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Note of MIGRAD function minimization

• For all but the most trivial scenarios it is not possible to 
automatically find reasonable starting values of 
parameters
– So you need to supply ‘reasonable’ starting values for your 

parameters

Reason: There may exist 
multiple (local) minima
in the likelihood or χ2lo
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– You may also need to supply ‘reasonable’ initial step size in 
parameters. (A step size 10x the range of the above plot is clearly 
unhelpful)

– Using RooMinuit, the initial step size is the value of 
RooRealVar::getError(), so you can control this by supplying 
initial error values

in the likelihood or χ
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Minuit function MIGRAD

• Purpose: find minimum 

**********
**   13 **MIGRAD        1000           1
**********
(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD    STATUS=CONVERGED 31 CALLS          32 TOTAL

EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE

Progress information,
watch for errors here
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EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE
EXT PARAMETER                                   STEP         FIRST   
NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
1  mean         8.84225e-02 3.23862e-01 3.58344e-04  -2.24755e-02
2  sigma        3.20763e+00 2.39540e-01 2.78628e-04  -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  3.338e-04 
3.338e-04  5.739e-02 
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00430   1.000  0.004
2  0.00430   0.004  1.000

Parameter values and approximate 
errors reported by MINUIT

Error definition (in this case 0.5 for 
a likelihood fit)



Minuit function MIGRAD

• Purpose: find minimum 

**********
**   13 **MIGRAD        1000           1
**********
(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD    STATUS=CONVERGED 31 CALLS          32 TOTAL

EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE

Value of χχχχ2 or likelihood at 
minimum

(NB: χχχχ2 values are not divided 
by Nd.o.f)
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EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE
EXT PARAMETER                                   STEP         FIRST   
NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02
2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  3.338e-04 
3.338e-04  5.739e-02 
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00430   1.000  0.004
2  0.00430   0.004  1.000

Approximate 
Error matrix

And covariance matrix



Minuit function MIGRAD

• Purpose: find minimum 

**********
**   13 **MIGRAD        1000           1
**********
(some output omitted)
MIGRAD MINIMIZATION HAS CONVERGED.
MIGRAD WILL VERIFY CONVERGENCE AND ERROR MATRIX.
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM MIGRAD    STATUS=CONVERGED 31 CALLS          32 TOTAL

EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE

Status: 
Should be ‘converged’ but can be ‘failed’

Estimated Distance to Minimum
should be small O(10-6)

Error Matrix Quality
should be ‘accurate’, but can be 
‘approximate’ in case of trouble
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EDM=2.36773e-06 STRATEGY= 1      ERROR MATRIX ACCURATE
EXT PARAMETER                                   STEP         FIRST   
NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
1  mean         8.84225e-02   3.23862e-01   3.58344e-04  -2.24755e-02
2  sigma        3.20763e+00   2.39540e-01   2.78628e-04  -5.34724e-02

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  3.338e-04 
3.338e-04  5.739e-02 
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00430   1.000  0.004
2  0.00430   0.004  1.000



Minuit function HESSE

• Purpose: calculate error matrix from 
2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS          42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL  
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   

Symmetric errors 
calculated from 2nd

derivative of –ln(L) or χχχχ2
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NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000



Minuit function HESSE

• Purpose: calculate error matrix from 
2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS          42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL  
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   

Error matrix 
(Covariance Matrix) 

calculated from
1
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NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

 jidpdp



Minuit function HESSE

• Purpose: calculate error matrix from 
2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS          42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL  
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
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NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

Correlation matrix ρρρρij
calculated from

ijjiijV ρσσ=



Minuit function HESSE

• Purpose: calculate error matrix from 
2

2

dp
Ld

**********
**   18 **HESSE        1000
**********
COVARIANCE MATRIX CALCULATED SUCCESSFULLY
FCN=257.304 FROM HESSE     STATUS=OK             10 CALLS          42 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                                INTERNAL      INTERNAL  
NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
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NO.   NAME      VALUE           ERROR STEP SIZE       VALUE   
1  mean         8.84225e-02   3.23861e-01 7.16689e-05   8.84237e-03
2  sigma        3.20763e+00   2.39539e-01 5.57256e-05   3.26535e-01

ERR DEF= 0.5
EXTERNAL ERROR MATRIX.    NDIM=  25    NPAR=  2    ERR DEF=0.5
1.049e-01  2.780e-04 
2.780e-04  5.739e-02
PARAMETER  CORRELATION COEFFICIENTS  

NO.  GLOBAL      1      2
1  0.00358 1.000  0.004
2  0.00358 0.004  1.000

Global correlation vector:
correlation of each parameter 

with  all other parameters



Minuit function MINOS

• Error analysis through ∆nll contour finding

**********
**   23 **MINOS        1000
**********
FCN=257.304 FROM MINOS     STATUS=SUCCESSFUL     52 CALLS          94 TOTAL

EDM=2.36534e-06    STRATEGY= 1      ERROR MATRIX ACCURATE 
EXT PARAMETER                  PARABOLIC MINOS ERRORS
NO.   NAME      VALUE            ERROR NEGATIVE      POSITIVE
1  mean         8.84225e-02   3.23861e-01 -3.24688e-01   3.25391e-01
2  sigma        3.20763e+00   2.39539e-01 -2.23321e-01   2.58893e-01
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2  sigma        3.20763e+00   2.39539e-01 -2.23321e-01   2.58893e-01
ERR DEF= 0.5

Symmetric error

(repeated result 
from HESSE)

MINOS error
Can be asymmetric

(in this example the ‘sigma’ error 
is slightly asymmetric)



Illustration of difference between HESSE and MINOS errors

• ‘Pathological’ example likelihood with multiple minima 
and non-parabolic behavior

MINOS error

Extrapolation
of parabolic
approximation

Wouter Verkerke, NIKHEF HESSE error

approximation
at minimum



Practical estimation – Fit converge problems

• Sometimes fits don’t converge because, e.g. 
– MIGRAD unable to find minimum

– HESSE finds negative second derivatives 
(which would imply negative errors)

• Reason is usually numerical precision and stability 
problems, but
– The underlying cause of fit stability problems is usually 

Wouter Verkerke, NIKHEF 

– The underlying cause of fit stability problems is usually 
by highly correlated parameters in fit

• HESSE correlation matrix in primary investigative tool

– In limit of 100% correlation, the usual point solution becomes a line 
solution (or surface solution) in parameter space. 
Minimization problem is no longer well defined

PARAMETER  CORRELATION COEFFICIENTS  
NO.  GLOBAL      1      2
1  0.99835   1.000  0.998
2  0.99835   0.998 1.000

Signs of trouble…



Mitigating fit stability problems 

• Strategy I – More orthogonal choice of parameters
– Example: fitting sum of 2 Gaussians of similar width

),;()1(),;(),,,;( 221121 msxGfmsxfGssmfxF −+=
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PARAMETER  CORRELATION COEFFICIENTS  
NO.  GLOBAL    [ f]   [ m]   [s1]   [s2]
[ f] 0.96973   1.000 -0.135  0.918 0.915
[ m] 0.14407  -0.135  1.000 -0.144 -0.114
[s1] 0.92762   0.918 -0.144  1.000  0.786
[s2] 0.92486   0.915 -0.114  0.786  1.000

HESSE correlation matrix

Widths s1,s2
strongly correlated
fraction f



Mitigating fit stability problems 

– Different parameterization:

),;()1(),;( 2212111 mssxGfmsxfG ⋅−+

PARAMETER  CORRELATION COEFFICIENTS  
NO.  GLOBAL     [f]    [m]   [s1]   [s2]

[ f]  0.96951   1.000 -0.134  0.917 -0.681
[ m]  0.14312  -0.134  1.000 -0.143  0.127
[s1]  0.98879  0.917 -0.143  1.000 -0.895
[s2]  0.96156  -0.681 0.127 -0.895  1.000
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– Correlation of width s2 and fraction f reduced from 0.92 to 0.68

– Choice of parameterization matters!

• Strategy II – Fix all but one of the correlated parameters
– If floating parameters are highly correlated, some of them may be 

redundant and not contribute to additional degrees of freedom in your 
model



Mitigating fit stability problems -- Polynomials

• Warning: Regular parameterization of polynomials 
a0+a1x+a2x2+a3x3 nearly always results in strong 
correlations between the coefficients ai. 
– Fit stability problems, inability to find right solution common at 

higher orders

• Solution: Use existing parameterizations of 
polynomials that have (mostly) uncorrelated variables
– Example: Chebychev polynomials

Wouter Verkerke, NIKHEF 

– Example: Chebychev polynomials



Minuit CONTOUR tool also useful to examine ‘bad’ correlations

• Example of 1,2 sigma contour 
of two uncorrelated variables
– Elliptical shape. In this example 

parameters are uncorrelation

• Example of 1,2 sigma contour

Wouter Verkerke, NIKHEF 

• Example of 1,2 sigma contour
of two variables with problematic 
correlation
– Pdf = f⋅G1(x,0,3)+(1-f)⋅G2(x,0,s) 

with s=4 in data



Practical estimation – Bounding fit parameters

• Sometimes is it desirable to bound the allowed range of 
parameters in a fit
– Example: a fraction parameter is only defined in the range [0,1]

– MINUIT option ‘B’ maps finite range parameter to an internal infinite 
range using an arcsin(x) transformation:
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Multidimensional 
models5

Wouter Verkerke, NIKHEF 

models5
• Uncorrelated products of p.d.f.s 
• Using composition to p.d.f.s with correlation
• Products of conditional and plain p.d.f.s



Building realistic models

– Multiplication

* =

Wouter Verkerke, NIKHEF 

– Composition

g(x;m,s)m(y;a0,a1)

=

g(x,y;a0,a1,s)
Possible in any PDF
No explicit support in PDF code needed



RooBMixDecay

RooPolynomial

RooHistPdf

RooArgusBG

Model building – Products of uncorrelated p.d.f.s

)()(),( yGxFyxH ⋅=

Wouter Verkerke, NIKHEF 

RooGaussian

RooProdPdf*



Uncorrelated products – Mathematics and constructors

• Mathematical construction of products of uncorrelated 
p.d.f.s is straightforward

– No explicit normalization required à If input p.d.f.s are unit 

)()(),( yGxFyxH ⋅= ∏=
i

iii xFxH )()( }{}{}{

2D nD
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– No explicit normalization required à If input p.d.f.s are unit 
normalized, product is also unit normalized 
(this is true only because of the absence of correlations)

• Corresponding factory operator is PROD

w.factory(“Gaussian::gx(x[-5,5],mx[2],sx[1])”) ;
w.factory(“Gaussian::gy(y[-5,5],my[-2],sy[3])”) ;

w.factory(“PROD::gxy(gx,gy)”) ;



How it work – event generation on uncorrelated products

• If p.d.f.s are uncorrelated, each observable can be 
generated separately
– Reduced dimensionality of problem (important for e.g. 

accept/reject sampling)

– Actual event generation delegated to component p.d.f (can e.g. 
use internal generator if available)

– RooProdPdf just aggregates output in single dataset

Wouter Verkerke, NIKHEF 

Delegate Generate Merge



Fundamental multi-dimensional p.d.fs

• It also possible define multi-dimensional p.d.f.s that do not 
arise through a product construction
– For example

– But usually n-dim p.d.f.s are constructed more intuitively through 
product constructs. Also correlations can be introduced efficiently 
(more on that in a moment)

EXPR::mypdf(‘sqrt(x+y)*sqrt(x-y)’,x,y) ;

Wouter Verkerke, NIKHEF 

(more on that in a moment)

• Example of fundamental 2-D 
B-physics p.d.f. RooBMixDecay

– Two observables: 
decay time (t, continuous)  
mixingState (m, discrete [-1,+1]) 



Plotting multi-dimensional PDFs

RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
prod->plotOn(xframe) ;
xframe->Draw() ;

c->cd(2) ;
RooPlot* yframe = y.frame() ;
data->plotOn(yframe) ;
prod->plotOn(yframe) ;
yframe->Draw() ;

∫= dyyxpdfxf ),()(

∫= dxyxpdfyf ),()(
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yframe->Draw() ;
∫= dxyxpdfyf ),()(

-Plotting a dataset D(x,y) versus x 
represents a projection over y

-To overlay PDF(x,y), 
you must plot Int(dy)PDF(x,y)

-RooFit automatically takes care of this!
•RooPlot remembers dimensions of plotted datasets



Introduction to slicing

• With multidimensional p.d.f.s it is also often useful to be able 
to plot a slice of a p.d.f

• In RooFit
– A slice is thin 

– A range is thick

• Slices mostly useful
in discrete observables

Slice in x

Wouter Verkerke, NIKHEF 

in discrete observables
– A slice in a continuous observable

has no width and usually no data
with the corresponding cut 
(e.g. “x=5.234”)

• Ranges work for both
continuous and discrete 
observables
– Range of discrete observable

can be list of >=1 state

x = x.getVal()

Range in y



Plotting a slice of a dataset

• Use the optional cut string expression

// Mixing dataset defines dt,mixState
RooDataSet* data ;

// Plot the entire dataset
RooPlot* frame = dt.frame() ;
data->plotOn(frame) ;

// Plot the mixed part of the data

Wouter Verkerke, NIKHEF 

– Works the same for binned data sets

// Plot the mixed part of the data
RooPlot* frame_mix = dt.frame() ;
data->plotOn(frame,

Cut(”mixState==mixState::mixed”)) ;



Plotting a slice of a p.d.f

RooPlot* dtframe = dt.frame() ;
data->plotOn(dtframe,Cut(“mixState==mixState::mixed“)) ; 

bmix.plotOn(dtframe,Slice(mixState,”mixed”)) ; 
dtframe->Draw() ;

Wouter Verkerke, NIKHEF 

For slices both data and p.d.f 
normalize with respect to full 
dataset. If fraction ‘mixed’ in 
above example disagrees between 
data and p.d.f prediction, this 
discrepancy will show in plot



Plotting a range of a p.d.f and a dataset

RooPlot* xframe = x.frame() ;
data->plotOn(xframe) ;
model.plotOn(xframe) ; 

y.setRange(“sig”,-1,1) ;
RooPlot* xframe2 = x.frame() ;
data->plotOn(xframe2,CutRange("sig")) ;
model.plotOn(xframe2,ProjectionRange("sig")) ; 

model(x,y) = gauss(x)*gauss(y) + poly(x)*poly(y)

Wouter Verkerke, NIKHEF 

à Works also with >2D projections (just specify projection range on all projected observables)

à Works also with multidimensional p.d.fs that have correlations



Physics example of combined range and slice plotting

// Plot projection on mB
RooPlot* mbframe = mb.frame(40) ;
data->plotOn(mbframe) ;
model.plotOn(mbframe) ;

// Plot mixed slice projection on deltat
RooPlot* dtframe = dt.frame(40) ;

Example setup:
Argus(mB)*Decay(dt) +   
Gauss(mB)*BMixDecay(dt)

(background)
(signal)

mB

dt (mixed slice)

Wouter Verkerke, NIKHEF 

RooPlot* dtframe = dt.frame(40) ;
data>plotOn(dtframe,

Cut(”mixState==mixState::mixed”)) ;
model.plotOn(dtframe,Slice(mixState,”mixed”)) ;



Plotting slices with finite width - Example
Example setup:
Argus(mB)*Decay(dt) +   
Gauss(mB)*BMixDecay(dt)

(background)
(signal)

mB

dt (mixed slice)

“signal”

Wouter Verkerke, NIKHEF 

mb.setRange(“signal”,5.27,5.30) ;

mbSliceData->plotOn(dtframe2,
Cut("mixState==mixState::mixed“),
CutRange(“signal”))

model.plotOn(dtframe2,Slice(mixState,”mixed”), 
ProjectionRange(“signal”)) 

dt (mixed slice &&
“signal” range)



Plotting slices with finite width - Example

• We can also plot the finite width slice with a different 
technique à toy MC integration

// Generate 80K toy MC events from p.d.f to be projected
RooDataSet *toyMC =

model.generate(RooArgSet(dt,mixState,tagFlav,mB),80000);

// Apply desired cut on toy MC data
RooDataSet* mbSliceToyMC = toyMC->reduce(“mb>5.27”);

Wouter Verkerke, UCSB

// Plot data requesting data averaging over selected toy MC data
model.plotOn(dtframe2,Slice(mixState),ProjWData(mb,mbSliceToyMC)) 
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Plotting non-rectangular PDF regions

• Why is this interesting? Because with this technique we 
can trivially implement projection over arbitrarily 
shaped regions.
– Any cut prescription that you can think of to apply to data works

• Example: Likelihood ratio projection plot

4)3()5( 22 <−+− yx ‘donut’
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– Common technique in rare decay analyses

– PDF typically consist of N-dimensional event selection PDF,
where N is large (e.g. 6.)

– Projection of data & PDF in any of the N dimensions doesn’t show 
a significant excess of signal events

– To demonstrate purity of selected signal, 
plot data distribution (with overlaid PDF) in one dimension, 
while selecting events with a cut on the likelihood ratio of signal 
and background  in the remaining N-1 dimensions



Likelihood ratio plots

• Idea: use information on S/(S+B) ratio in projected 
observables to define a cut

• Example: generalize previous toy model 
to 3 dimensions

• Express information on S/(S+B) ratio of model in terms 
of integrals over model components

Wouter Verkerke, NIKHEF
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•Integrate over x

•Plot LR vs (y,z)



Likelihood ratio plots

• Decide on s/(s+b) purity
contour of LR(y,z)
– Example s/(s+b) > 50%

• Plot both data and model 
with corresponding cut.
– For data: calculate LR(y,z) for each event, plot only event with LR>0.5

– For model: using Monte Carlo integration technique:

Wouter Verkerke, NIKHEF
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•All events •Only LR(y,z)>0.5



Likelihood ratio plot on model with correlations



Likelihood ratio plots – Coded example

// Construct likelihood ratio in projection on (y,z)
w.factory("expr::LR('fsig*psig/ptot',fsig,

PROJ::psig(sig,x),PROJ::ptot(model,x))") ;

// Generate toy dataset for MC integration over region with LR>68%

[ ]∫
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// Generate toy dataset for MC integration over region with LR>68%
RooDataSet* tmpdata = model.generate(RooArgSet(x,y,z),10000) ;
tmpdata->addColumn(*w.function(“LR”)) ;
RooDataSet* projdata = (RooDataSet*) tmpdata->reduce(Cut("LR>0.68")) ;

// Add LR to observed data so we can cut on it
data->addColumn(*w.function(“LR”)) ;
RooDataSet* seldata = (RooDataSet*) data->reduce(Cut("LR>0.68")) ;

// Make plot for data and pdf
RooPlot* frame3 = x.frame(Title("Projection with LR(y,z)>68%")) ;
seldata->plotOn(frame3) ;
model.plotOn(frame3,ProjWData(*projdata)) ;



Plotting in more than 2,3 dimensions

• No equivalent of RooPlot for >1 dimensions
– Usually >1D plots are not overlaid anyway

• Easy to use createHistogram() methods provided in both 
RooAbsData and RooAbsPdf to fill ROOT 2D,3D histograms

TH2D* ph2 = pdf.createHistogram(“ph2”,x,YVar(y)) ;

TH2* dh2 = data.createHistogram(“dg2",x,Binning(10),
YVar(y,Binning(10)));

ph2->Draw("SURF") ;
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ph2->Draw("SURF") ;
dh2->Draw("LEGO") ;



Building models – Introducing correlations

• Easiest way to do this is 
– start with 1-dim p.d.f. and change on of its parameters into a 

function that depends on another observable

– Natural way to think about it

• Example problem

);,()),(,();( qyxfqypxfpxf =⇒
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– Observable is reconstructed mass M of some object. 

– Fitting Gaussian g(M,mean,sigma) some background to dataset 
D(M)

– But reconstructed mass has bias depending on some other 
observable X

– Rewrite fit functions as g(M,meanCorr(mtrue,X,alpha),sigma)
where meanCorr is an (emperical) function that corrects for the 
bias depending on X



Introducing correlations through composition

• RooFit pdf building blocks do not require variables as 
input, just real-valued functions
– Can substitute any variable with a function expression in 

parameters and/or observables

– Example: Gaussian with shifting mean

);,()),(,();( qyxfqypxfpxf =⇒
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– Example: Gaussian with shifting mean

– No assumption made in function on a,b,x,y being observables or 
parameters, any combination will work

w.factory(“expr::mean(‘a*y+b’,y[-10,10],a[0.7],b[0.3])”) ;
w.factory(“Gaussian::g(x[-10,10],mean,sigma[3])”) ;



What does the example p.d.f look like?

• Use example model with x,y as observables

Projection on Y
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• Note flat distribution in y. Unlikely to describe data, solutions:
1. Use as conditional p.d.f g(x|y,a,b)

2. Use in conditional form multiplied by another pdf in y: g(x|y)*h(y)

Projection on X



Conditional p.d.f.s – Formulation and construction

• Mathematical formulation of a conditional p.d.f
– A conditional p.d.f is not normalized w.r.t its conditional 

observables

– Note that denominator in above expression depends on y and is 

∫
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rrr
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– Note that denominator in above expression depends on y and is 
thus in general different for each event

• Constructing a conditional p.d.f in RooFit
– Any RooFit p.d.f can be used as a conditional p.d.f as objects have 

no internal notion of distinction between parameters, observables 
and conditional observables

– Observables that should be used as conditional observables have 
to be specified in use context (generation, plotting, fitting etc…)



Method 1 – Using a conditional p.d.f – fitting and plotting

• For fitting, indicate in fitTo() call what the conditional 
observables are

– You may notice a performance penalty if the normalization 
integral of the p.d.f needs to be calculated numerically. 
For a conditional p.d.f it must evaluated again for each event

pdf.fitTo(data,ConditionalObservables(y))
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• Plotting: You cannot project a conditional F(x|y) on x
without external information on the distribution of y
– Substitute integration with averaging over y values in data
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Sum over all yi in dataset DIntegrate over y



How it works – event generation with conditional p.d.f.s

• Just like plotting, event generation of conditional p.d.f.s 
requires external input on the conditional observables
– Given an external input dataset P(dt)

– For each event in P, 
set the value of dt in F(d|dt) to dti
generate one event for observable t from F(t|dti)

– Store both ti and dti in the output dataset
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Physics example with conditional p.d.f.s

• Want to fit decay time distribution of B0 mesons 
(exponential) convoluted with Gaussian resolution

• However, resolution on decay time varies from event by 
event (e.g. more or less tracks available). 
– We have in the data an error estimate dt for each measurement from 

the decay vertex fitter (“per-event error”)

),,();()( στ mtRtDtF ⊗=
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the decay vertex fitter (“per-event error”)

– Incorporate this information into this physics model

– Resolution in physics model is adjusted for each event to expected 
error. 

– Overall scale factor σ can account for incorrect vertex error estimates 
(i.e. if fitted σ>1 then dt was underestimate of true error)

– Physics p.d.f must used conditional conditional p.d.f because it give no 
sensible prediction on the distribution of the per-event errors

),,();()|( tmtRtDttF δστδ ⋅⊗=



Physics example with conditional p.d.f.s

• Some illustrations of decay model with per-event errors
– Shape of F(t|δt) for several values of δt

• Plot of D(t) and F(t|dt) projected over dt

),,();()|( tmtRtDttF δστδ ⋅⊗=

Small dt

Large dt
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• Plot of D(t) and F(t|dt) projected over dt

// Plotting of decay(t|dterr)
RooPlot* frame = dt.frame() ;
data->plotOn(frame2) ;
decay_gm1.plotOn(frame2,ProjWData(*data)) ;
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Note that projecting over large
datasets can be slow. You can speed
this up by projecting with a binned
copy of the projection data



Method 2 – Building products with conditional pdfs

• Use of conditional pdf in fitting, plotting, event 
generation has some practical drawbacks
– Need external dataset with distribution in conditional observable 

in all operations

• But there is also a fundamental issue
– If your model has both a signal and a background component, the 

model assumes that the distribution of the conditional observable 
(e.g. the per-event error) is the same for signal and background(e.g. the per-event error) is the same for signal and background

– This may not be a valid assumption (‘Punzi effect’)

– Way out: Construct a product F(x|y)*G(y) separately for signal 
and background



Example with product of conditional and plain p.d.f.

gx(x|y) gy(y)* model(x,y)=
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// I - Use g as conditional pdf g(x|y)
w::g.fitTo(data,ConditionalObservables(w::y)) ;

// II - Construct product with another pdf in y
w.factory(“Gaussian::h(y,0,2)”) ;
w.factory(“PROD::gxy(g|y,h)”) ;

∫ dyygyxgx )()|(



Example with product of conditional and plain p.d.f.

• Following the ‘conditional product’ formalism you can 
now choose different distributions for the conditional 
observable for signal and background e.g.

• At this point F(t,dt) is a plain pdf: fitting plotting and 
event generation works ‘as usual’ without external input

)()|()()|(),( dtbdttBdtsdttSdttF +=

event generation works ‘as usual’ without external input

• You may want to use an empirical pdf for s(dt) or b(dt) 
if these distributions are difficult to model
– Histogram based pdf (RooHistPdf)

– Kernel estimatin pdf (RooKeysPdf) à Set next slide



Special pdfs – Kernel estimation model

• Kernel estimation model
– Construct smooth pdf from unbinned data, 

using kernel estimation technique

Sample of events
Gaussian pdf
for each event

Summed pdf
for all events

Adaptive Kernel:
width of Gaussian depends 
on local event density
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• Example

• Also available for n-D data

w.import(myData,Rename(“myData”)) ;
w.factory(“KeysPdf::k(x,myData)”) ;



Fit validation,
Toy MC studies6
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Toy MC studies6
• Goodness-of-fit, c2
• Toy Monte Carlo studies for fit validation



How do you know if your fit was ‘good’

• Goodness-of-fit broad issue in statistics in general, will 
just focus on a few specific tools implemented in RooFit
here

• For one-dimensional fits, a χ2 is usually the right thing 
to do
– Some tools implemented in RooPlot to be able to calculate χ2/ndf

of curve w.r.t data 

double chi2 = frame->chisquare(nFloatParam) ;
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double chi2 = frame->chisquare(nFloatParam) ;

– Also tools exists to plot residual and pull distributions from curve 
and histogram in a RooPlot

frame->makePullHist() ;
frame->makeResidHist() ;



GOF in >1D, other aspects of fit validity

• No special tools for >1 dimensional goodness-of-fit 
– A χ2 usually doesn’t work because empty bins proliferate with 

dimensions

– But if you have ideas you’d like to try, there exists generic base 
classes for implementation that provide the same level of 
computational optimization and parallelization as is done for 
likelihoods (RooAbsOptTestStatistic)

• But you can study many other aspect of your fit validity • But you can study many other aspect of your fit validity 
– Is your fit unbiased?

– Does it (often) have convergence problems?

• You can answer these with a toy Monte Carlo study
– I.e. generate 10000 samples from your p.d.f., fit them all and 

collect and analyze the statistics of these 10000 fits.

– The RooMCStudy class helps out with the logistics
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Advanced features – Task automation

• Support for routine task automation, e.g. goodness-of-fit study

Input model Generate toy MC Fit model 

Accumulate
fit statistics
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Repeat 
N times

Distribution of
- parameter values
- parameter errors
- parameter pulls

// Instantiate MC study manager
RooMCStudy mgr(inputModel) ;

// Generate and fit 100 samples of 1000 events
mgr.generateAndFit(100,1000) ;

// Plot distribution of sigma parameter
mgr.plotParam(sigma)->Draw()



How to efficiently generate multiple sets of ToyMC?

• Use RooMCStudy class to manage generation and fitting

• Generating features
– Generator overhead only incurred once

→ Efficient for large number of small samples

– Optional Poisson distribution for #events of generated experiments

– Optional automatic creation of ASCII data files

• Fitting
– Fit with generator PDF or different PDF
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– Fit with generator PDF or different PDF

– Fit results (floating parameters & NLL) 
automatically collected in summary dataset

• Plotting
– Automated plotting for distribution of parameters, 

parameter errors, pulls and NLL 

• Add-in modules for optional modifications of procedure
– Concrete tools for variation of generation parameters, calculation of 

likelihood ratios for each experiment

– Easy to write your own. You can intervene at any stage and offer 
proprietary data to be aggregated with fit results



A RooMCStudy example

• Generating and fitting a simple PDF

// Setup PDF
RooRealVar x("x","x",-5,15) ;
RooRealVar mean("mean","mean of gaussian",-1) ;
RooRealVar sigma("sigma","width of gaussian",4) ;
RooGaussian gauss("gauss","gaussian PDF",x,mean,sigma) ;  

// Create manager
RooMCStudy mgr(gauss,gauss,x,””,”mhv”) ;

Generator OptionsGenerator PDF
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RooMCStudy mgr(gauss,gauss,x,””,”mhv”) ;

// Generate and fit 1000 experiments of 100 events each
mgr.generateAndFit(1000,100) ; 
RooMCStudy::run: Generating and fitting sample 999
RooMCStudy::run: Generating and fitting sample 998
RooMCStudy::run: Generating and fitting sample 997
…

Fitting Options

Observables

Fitting PDF



A RooMCStudy example

• Plot the distribution of the value, error and pull of mean

// Plot the distrution of the value
RooPlot* mframe = mean.frame(-2,0) ;
mgr.plotParamOn(mframe) ;
mframe->Draw() ;

// Plot the distrution of the error
RooPlot* meframe = mgr.plotError(mean,0.,0.1) ;
meframe->Draw() ;

Add Gaussian fit
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// Plot the distrution of the pull
RooPlot* mpframe = mgr.plotPull(mean,-3,3,40,kTRUE) ;
mpframe->Draw() ;

Add Gaussian fit



A RooMCStudy example

• Plot the distribution of –log(L)

// Plot the distribution of the NLL
mgr.plotNLL(mframe) ;
mframe->Draw() ;
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• NB: likelihood distributions cannot be used to deduce 
goodness-of-fit information!



A RooMCStudy example

• For other uses, use summarized 
fit results in RooDataSet form

mgr.fitParDataSet().get(10)->Print(“v”) ;
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mgr.fitParDataSet().get(10)->Print(“v”) ;
RooArgSet:::
1) RooRealVar::mean      :  0.14814 +/- 0.191 L(-10 - 10)
2) RooRealVar::sigma     :  4.0619 +/- 0.143 L(0 - 20)
3) RooRealVar::NLL       :  2585.1 C
4) RooRealVar::meanerr   :  0.19064 C
5) RooRealVar::meanpull  :  0.77704 C
6) RooRealVar::sigmaerr  :  0.14338 C
7) RooRealVar::sigmapull :  0.43199 C 

TH2* h = mean.createHistogram("mean vs sigma",sigma) ;
mgr.fitParDataSet().fillHistogram(h,RooArgList(mean,sigma)) ;
h->Draw("BOX") ;

Pulls and errors
have separate
entries for
easy access
and plotting



Fit Validation Study – Practical example

• Example fit model in 1-D (B mass)
– Signal component is Gaussian 

centered at B mass

– Background component is 
Argus function (models phase 
space near kinematic limit)

);();(),,,;( bkgsigbkgsig BSBS pmANpmGNppNNmF ⋅+⋅=
rr
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• Fit parameter under study: Nsig

– Results of simulation study: 
1000 experiments 
with NSIG(gen)=100, NBKG(gen)=200

– Distribution of Nsig(fit) 

– This particular fit looks unbiased…

Nsig(fit)

Nsig(generated)



Fit Validation Study – The pull distribution

• What about the validity of the error?
– Distribution of error from simulated 

experiments is difficult to interpret…

– We don’t have equivalent of 
Nsig(generated) for the error

• Solution: look at the pull distribution
σσσσ(Nsig)
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– Definition:

– Properties of pull:

• Mean is 0 if there is no bias

• Width is 1 if error is correct

– In this example: no bias, correct error
within statistical precision of study

σσσσ(Nsig)

fit
N

true
sig

fit
sig NN

σ
−

=)pull(Nsig

pull(Nsig)



Fit Validation Study – Low statistics example

• Special care should be taken when fitting small data 
samples
– Also if fitting for small signal component in large sample

• Possible causes of trouble 
– χ2 estimators may become approximate as Gaussian 

approximation of Poisson statistics becomes inaccurate

– ML estimators may no longer be efficient
à error estimate from 2nd derivative may become inaccurate
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à error estimate from 2nd derivative may become inaccurate

– Bias term proportional to 1/N of ML and χ2 estimators may 
no longer be small compared to 1/sqrt(N)

• In general, absence of bias, correctness of error can not 
be assumed. How to proceed?
– Use unbinned ML fits only – most robust at low statistics

– Explicitly verify the validity of your fit



Demonstration of fit bias at low N – pull distributions

• Low statistics example:
– Scenario as before but now with 

200 bkg events and 
only 20 signal events (instead of 100)

• Results of simulation study
NBKG(gen)=200

NSIG(gen)=20

Distributions become
asymmetric at low statistics

Pull mean ~2σσσσ away from 0 
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• Absence of bias, correct error at low statistics not obvious

asymmetric at low statistics

NSIG(fit) σσσσ(NSIG) pull(NSIG)

NSIG(gen)

Pull mean ~2σσσσ away from 0 
àààà Fit is positively biased!



New developments for automated studies

• A new alternative framework is being put in place to 
replace class RooMCStudy.
– Class RooStudyManager manages logistics of repeated studies, 

but does not implement content of study.

– Abstract concept of study interfaced through class RooAbsStudy

– Class RooGenFitStudy manages implementation of ‘generate-and-
fit’ style studies (functionality of RooMCStudy)

• Greater flexibility in choice of study (you can put in • Greater flexibility in choice of study (you can put in 
anything you want)

• Support for multiple backend implementations
– Inline calculation (as done in RooMCStudy)

– Parallelized execution through PROOF (lite)

– Almost complete automation of support for batch submission

– Just need to change one line of your macro to change back-end



Demo of parallelization with PROOF-lite

• Example – Factor 8 speed up on a dual-quad core box.
– Works with out-of-the box ROOT distribution

– Also: Graceful early termination when users presses ‘Stop’

RooStudyManager mcs(*w,gfs) ;
mcs.run(1000) ; // inline running
mcs.runProof(1000,"") ; // empty string is PROOF-lite
mcs.prepareBatchInput("default",1000,kTRUE) ;

• Much larger gains can be made with ‘real’ PROOF farms
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Exercises* Exercises*



Exercise 3

• Take input file ex3.C, look at it and run it.
– This file defines a signal pdf and a background pdf summed in a 

combined pdf. 

– The signal pdf is a B decay distribution with mixing in observable t and 
a Gaussian in observable mES. 

– The background pdf is a plain decay distribution in observable t and an 
Argus shape in observable mES

– Both signal and background decay distributions are convoluted with a 
Gaussian resolution of fixed width.

– The macro generates 1000 events, fits the model to this data and – The macro generates 1000 events, fits the model to this data and 
makes plots of the distributions for mES, t(mixed events) and 
t(unmixed events)

• Step 1 – Introduce per-event errors
– Now we modify the pdf to included per-event errors. Class 

RooGaussModel has multiple constructors (look at the code in 
$ROOTSYS/include). We will now use the ‘second’ constructor which 
takes an extra argument in the constructor, which multiplies both the 
width and mean of the Gaussian. Create a new observable dt with 
range[0.1,5] and supply it as 4th argument to the factory string that 
makes the resolution model



Exercise 3

– We have now modified the resolution model so that the width is 
scaled with the per-event error, which is different for each event. 
The total pdf ‘model’ is now ready to me used as conditional pdf
F(t,mes|dt)

– To proceed generation/fitting/plotting part of the macro we also 
need to generate a dummy dataset with per-event errors to be 
used later for event generation, fitting and plotting operations. 
Add the following pdf to the workspace

Landau::sig_dt(dt,1,0.5)Landau::sig_dt(dt,1,0.5)

using the factory and generate a RooDataSet named dtdata from 
it with 1000 events. 
• Put a ‘return’ statement in the macro and verify that the code runs OK up to here.

– Modify the generation call to make the ‘main’ dataset to take 
*dtdata as argument instead of 1000. This will instruct the 
generator to take the dt values from dtdata as input in the 
generation step (It is no longer necessary to specify the number 
of events to generate as this is implicit from the size of dtdata)
• Put a ‘return’ statement in the macro and verify that the code runs OK up to here.



Exercise 3

– Modify the call to fitTo() by adding argument 
ConditionalObservables(*w.var(“dt”)), which will change the 
normalization of the pdf used in the fit: instread of normalizing w.r.t. 
(t,dt), the normalization is only performed over t, but recalculated for 
each value of dt.
• Put a ‘return’ statement in the macro and verify that the code runs OK up to here.

– Modify the plotting code. Add to each plotOn() call for the pdf an 
argument ‘ProjWData(*dtdata)’ which will instruct the plotting 
operation to perform the projection over dt by averaging over the 
values in the provided dataset instead of integrating the pdf over dt. 
Verify that all plots look OK.

– In the step before the projections over dt are performed using the 
unbinned dataset and take relatively long. Replace each 
ProjWData(*dtdata) with ProjWData(*dtdata,kTRUE) to request 
averaging over a binned dataset in dt (default = 100 bins) which will 
speed up the projections by a factor 10.
• The solution of step 1 is available in ~verkerke/solutions/ex3step1.C

• Step 2 – Add plots for the signal region
– Define the signal region in mES as follows

w.var(“mes”)->setRange(“signal”,5.27,5.29) ;



Exercise 3

– Replicate the code that makes plots frame1 and frame2 (dt
distribution for mixed and unmixed) and modify the replica to 
make plots frame3 and frame4. Change the canvas layout from a 
(3,1) to a (3,2) layout (change the size of the canvas accordingly) 
and plot frame3 and frame4 on pads 5 and 6 respectively (pad 4 
will remain empty)

– Now modify the code that makes plots frame3 and frame4 as 
follows: to the data->plotOn() calls add an argument 
CutRange(“signal”), to the pdf->plotOn() calls add an argument 
ProjectionRange(“signal”).
• The solution of step 2 is available in ~verkerke/solutions/ex3step2.C• The solution of step 2 is available in ~verkerke/solutions/ex3step2.C

• Step 3 – Add a pdf for dt to the model
– In this step we will introduce an explicit model for the distribution 

of dt in the pdf so that we construct a plain pdf F(t,dt,mes) = 
F(t|dt)*G(dt)*H(mes) for both signal and background

– Move the factory line that makes sig_dt above the line that 
constructs the signal product pdf. Modify the product construction 
such that it says ‘PROD::sig(sig_m,sig_t|dt,sig_dt)’. Replicate the 
line that makes ‘sig_dt’ to make an identical pdf named ‘bkg_dt’. 
Then modify the background product pdf similar to what as done 
for the signal pdf.



Exercise 3

– Now the pdf has been modified to a regular pdf we can revert the code 
that uses the pdf to its original state: 1) In the event generation step 
replace *dtdata with 1000. 2) In fitTo() remove the 
ConditionalObservables() argument. 3) In all of the plotOn() calls 
remove the ProjWData() arguments. Now run again.
• The solution of step 3 is available in ~verkerke/solutions/ex3step3.C

• Step 4 – Add observable deltaE to the model.
– Add Gaussian signal model for observable deltaE to the workspace

Gaussian::sig_de(de[-1,1],demean[0,-1,1],
dewidth[0.1,0.01,1])dewidth[0.1,0.01,1])

– Add a flat background model for observable deltaE to the workspace

Polynomial::bkg_de(de)

– Add pdfs sig_de and bkg_de to the products sig and bkg respectively

– Add observable de to the list of observables defined by RooArgSet obs

– Define a signal range in de (just below the def. of that range in mes)

w.var(“de”)->setRange(“signal”,-0.2,0.2)

– Increase the number of events generated to 10000 and run the macro 
again. 
• The solution of step 4 is available in ~verkerke/solutions/ex3step4.C


