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MAXIMUM LIKELIHOOD Method
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In HEP practise the most frequently adopted parameter estimation method is based on the construction of the combined

probability distribution of all measurements in our data sample, called likelihood function. 

The estimate of the parameters we want to determine is obtained by finding the parameter set that corresponds to the 

maximum value of the likelihood function. This approach takes the name of maximum likelihood method.

The procedure is also called best fitting because it determines (estimates) the parameters for which the theoretical pdf 

model best fits the experimental data sample.

Maximum likelihood fits are every day used - in HEP data analysis - because of the very good statistical properties

characterizing the maximum likelihood estimators. It is better than the chi-squared method that has the limitation to deal

only with binned data (not unbinned as the ML method can also do (*)) and does not behave well when in some bins

there are few entries. The chi-squared method was used in ROOT before the development of RooFit .

(*) Remember that - in RooFit - the ML method can work on both two classes of data: 
RooDataHist (histograms i.e. binned data) & RooDataSet (unbinned data).



LIKELIHOOD Function - I
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The likelihood function is the function that, for given values of the unknown parameters, returns the value of the pdf 

evaluated at the observed data sample.

If the measured values of 𝑛 r.v.s are                           

and our pdf model depends on m unknown parameters

... the likelihood function is: 𝐿 𝑥%, … , 𝑥(; 𝜃%, … , 𝜃+ = 𝑓 (𝑥%, … , 𝑥(; 𝜃%, … , 𝜃+)

(𝑥%, … , 𝑥()

(𝜃%, … , 𝜃+)

JOINT pdf of the r.v.s (𝑥%, … , 𝑥()

The maximum likelihood estimator of the unknown parameters is the function that returns the values of the 

parameters (called ML best estimates)                        for which the likelihood function, evaluated at the measured sample

is maximum!

(𝜃%, … , 𝜃+)

( 0𝜃%, … , 0𝜃+)



LIKELIHOOD Function - II
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If we have 𝑁 repeated measurements, each consisting of the 𝑛 values of the random variables ,

the likelihood function is the probability density corresponding to the total sample                                                                          .

If the observations are independent of each other (*), the likelihood function of the total sample consisting of the N events

recorded by our experiment can be written as the product of the pdfs corresponding to the measurement of each single 

event:

(𝑥%, … , 𝑥()

�⃗� = { 𝑥%56%, … , 𝑥(56% , … , 𝑥%5, … , 𝑥(5 }

𝐿 �⃗�; �⃗� =8
96%

5

𝑓 (𝑥%9 , … , 𝑥(9 ; 𝜃%, … , 𝜃+)

(*) In physics often the word event is used with a different meaning w.r.t. statistics and it refers to a collection of measure-

ments of observable quantitie s corresponding to a physical phenomenon, like a collision of particles at an   

accelerator, or the interaction of a particle, or a shower of particles from cosmic rays, in a detector.

Measurements performed at different events are tipically uncorrelated and each sequence of variables taken from 𝑁

different events can be considered a sampling of independent and identically distributed random variables.

(𝑥%, … , 𝑥()



LIKELIHOOD Function - III
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Often the logarithm of the likelihood function is computed so that the product of many terms can be transformed into

a sum of the logarithm. Moreover, instead of maximizing the likelihood function, it is often more convenient to minimize

the Negative Log-Likelihood:

𝑁𝐿𝐿 ≡ −𝑙𝑛𝐿 �⃗�; �⃗� = −=
96%

5

𝑙𝑛𝑓(𝑥%9 , … , 𝑥(9 ; 𝜃%, … , 𝜃+)

Its minimization can be performed analitically only in the simplest cases. 

In most of the realistic cases the NLL minimization requires numerical methods implemented as computer algorithms. 

The software MINUIT (F. James et al.) [*] is one of the most widely used minimization tool in the HEP field since the 1970s.

The minimization is based on the steepest descent direction in the parameter space, which is determined based on a 

numerical evalution of the gradient of (logarithm of) the likelihood function.

MINUIT has been re-implemented from the original Fortran version into C++ and is available in the ROOT software tookit.

[ sometimes ]𝑁𝐿𝐿 ≡ −2𝑙𝑛𝐿 �⃗�; �⃗�

[*]



Example: Gaussian Likelihood Function
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For 𝑁 repeated measurements of a r.v. x distributed according to a Gaussian function with mean and standard deviation ,

twice the NLL function can be written as:

µ s

2𝑁𝐿𝐿 ≡ −2𝑙𝑛𝐿 �⃗� ≡ (𝑥%, … , 𝑥9, … 𝑥5; �⃗� ≡ (𝜇, 𝜎B) ==
96%

5
𝑥9 − 𝜇 B

𝜎B + 𝑁[ln 2𝜋 + 2 ln 𝜎 ]

Its minimization can be performed analitically by finding the zeros of the first partial derivatives of -2lnL	w.r.t.	the	2	parameters (*)!

The following maximum likelihood estimates for µ and s can be thus obtained:                                   &�̂� =
1
𝑁=

96%

5

𝑥9 Y𝜎B =
1
𝑁=

96%

5

(𝑥9−�̂�)B

The maximum likelihood estimate is affected by a bias, in the sense that its mean deviates from the true s2 .                              

It can be calculated that the bias is thus vanishes in the limit (asymptotically unbiased estimator).

A fully unbiased estimator can be then obtained by introducing the suitable correction factor: 

Y𝜎B

𝑁 → ∞𝑁 − 1
𝑁

Y𝜎B =
1

𝑁 − 1=
96%

5

(𝑥9−�̂�)B

(*)																								&
𝜕𝑁𝐿𝐿
𝜕𝜇

= 0
𝜕𝑁𝐿𝐿
𝜕𝜎B = 0



EXTENDED Likelihood Function - I
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The extended likelihood function exploits the number of recorded events as information in order to determine the 

parameters’ estimate, in addition to the data sample. By expliciting the poissonian function (with exp. value µ) we can write:

If the number of recorded events 𝑁 is also a random variable that tipically follows a poissonian distribution (stocastic

phenomenon) whose exp. value µ may also depend on the 𝑚 unknown parameters, the extended likelihood function

can be defined as:

𝜇 = 𝜇(�⃗�)

𝐿 �⃗�, 𝑁; �⃗� = 𝑷(𝑵; 𝜽) c8
96%

5

𝑓 (𝑥%9 , … , 𝑥(9 ; 𝜃%, … , 𝜃+)

𝐿 �⃗�, 𝑁; �⃗� =
𝑒ef c 𝜇5

𝑁! c8
96%

5

𝑓 (𝑥%9 , … , 𝑥(9 ; 𝜃%, … , 𝜃+) where



EXTENDED Likelihood Function - II
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where the fractions of the signal & background are:                             &

Let us consider the typical case where the pdf is a linear combination of two pdfs, one for the «signal», , 
and one for the «background», :

𝐿 �⃗�, 𝑁; 𝑠, 𝑏, 𝜃 =
𝑒e(ijk) c (𝑠 + 𝑏)5

𝑁! c8
96%

5

𝑤m𝑓m 𝑥9; 𝜃 + 𝑤n𝑓n(𝑥9; 𝜃)

𝑤m =
𝑠

𝑠 + 𝑏
𝑤n =

𝑏
𝑠 + 𝑏

Note that , hence is normalized, assuming that &      are normalized.

More compactly:

𝑤m + 𝑤n = 1 𝑓 = 𝑤m𝑓m + 𝑤n𝑓n 𝑓m 𝑓n

𝑓n
𝑓m

𝐿 �⃗�, 𝑁; 𝑠, 𝑏, 𝜃 =
𝑒e(ijk)

𝑁! c8
96%

5

𝒔𝑓m 𝑥9; 𝜃 + 𝒃𝑓n(𝑥9; 𝜃)

The logarithm of the likelihod functioon provides a more convenient expression: 

−𝑙𝑛𝐿 �⃗�, 𝑁; 𝑠, 𝑏, 𝜃 = 𝒔 + 𝒃 +=
96%

𝑵

𝒍𝒏 𝑠𝑓m 𝑥9; 𝜃 + 𝑏𝑓n(𝑥9; 𝜃) − 𝑙𝑛(𝑁!)

can be omitted in the minimization
(since it is constant w.r.t. the parameters)

Note the difference with the non-extended case for which : 𝐿 �⃗�, ; 𝑤m, 𝜃 = 8
96%

5

𝑤m𝑓m 𝑥9; 𝜃 + (1 − 𝑤m)𝑓n(𝑥9; 𝜃)

…where 𝑠 & 𝑏 are yields!

…where 𝑤m is the signal fraction!



Example of application of an EXTENDED Likelihood Function - I
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by L.Lista



Example of application of an EXTENDED Likelihood Function - II
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by L.Lista [see details in the
hands-on sessions]



Variance of ML Estimators : the RCF bound (lowest variance) - I
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by G.Cowan



Variance of ML Estimators : the RCF bound (lowest variance) - II
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Uncertainties with the ML Method - I
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Once the estimate     of a parameter is determined using the ML method, a confidence interval needs to be determined.

Two approximate methods to determine the parameters’ uncertainties are presented (for both cases the coverage is only

approximately ensured; the required coverage is, in most cases, equal to 68.27%, correspoding to 1s).

0𝜃 𝜃

1. Second Derivatives Matrix

this Covariance Matrix gives an n-dimensional
elliptic confidence contour (having the correct
coverage only if the pdf model is exactly Gaussian)



Uncertainties with the ML Method - II
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2. Likelihood Scan Another often used method is to consider a scan of -2lnL around the minimum value -2lnLmax
(that is corresponding to the parameter set that maximizes 𝐿 :                                ).𝐿tuv= 𝐿 �⃗�, 0⃗𝜃

An interval corresponding to an increase of -2lnL by 1 unit w.r.t. its minimum value can be determined
as graphically shown for a single parameter:

by L.Lista

This method leads to identical errors

as those in the covariance matrix only

in the Gaussian case, in which -2lnL

has an	exact parabolic shape !



Uncertainties with the ML Method - III
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For more than one parameter, the error contour corresponds to the set of parameter values such that:

−2𝑙𝑛𝐿 �⃗� = −2𝑙𝑛𝐿tuv + 1

�⃗�

2D error contour plot showing
the 1s uncertainty ellipse for s & b:

−2𝑙𝑛𝐿tuv + 1

−2𝑙𝑛𝐿tuv

−2𝑙𝑛𝐿 �⃗� = −2𝑙𝑛𝐿tuv + 𝑍B (for 𝑍𝜎)

In case of very large number of measurements, computing the likelihood can be numerically unpractical: use binning !


