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Theory / Hour-1



INTRODUCTION



The goals of a (experimental) Particle Physicist - I

MEASUREMENTS

1

DISCOVERIES

HIGGS BOSON𝑚" = 173.49 ± 1.07



The goals of a (experimental) Particle Physicist - II

2

In modern particle physics experiments, event data are recorded by a - usually complex - system of detectors.

Measurements of particle position, particle momentum/energy, time, decay angles etc… are recorded in the event data
and are characterized by fluctuations (due to randomness & dilution effects).

Event data are all different from each other because of:
- Intrinsic randomness of the physics process(es) (Quantum Mechanics: P ∝ |A|2)
- Detector response is somewhat random (fluctuations, resolutions, efficiencies, ….)

Tipically, a large number of events are collected by an experiment, each event usually containing large amounts of data à
what we study are distributions of physical observables (e.g. the mass of a particle, the lifetime, etc.)



The goals of a (experimental) Particle Physicist - III

3

Distributions of measured quantities in data:
are predicted by a theory model,
depend on some theory parameters,
e.g.: particle mass, cross section, etc.

Given our data sample, we want to:
measure theory parameters,

e.g.: mt= 173.49 ± 1.07 GeV, mH =125.38 GeV
answer questions about the nature of data

Is there a Higgs boson? è Yes!  (strong evidence? Quantify!)
Is there a Dark Matter?  è No evidence, so far…
If not, what is the range of theory parameters compatible with the 
observed data? What parameter range can we exclude?

We should use probability theory on our data and our theory model in order to extract 
information that will address our questions à i.e.: we use statistics for data analysis



Relation between Probability & Inference - I

THEORETICAL MODEL DATA (pseudo-data[**])PROBABILITY[*]

Data fluctuate according to the randomness
of the physical process governed by a 
(underlying) physical law 
(that the Theory Model should represent)

4a

Known (or assumed correct) the physical process of generation of data (probabilistic model)
… we are able to evaluate the probability of the different outcomes of an experiment

[**] when we generate Data according to a model (Monte Carlo generators) we speak about pseudo-data
[*] because of the randomness of the process/law ... the calculation of probabilites is involved



Relation between Probability & Inference - I

THEORETICAL MODEL DATAPROBABILITY

Data fluctuate according to the randomness
of the physical process governed by a 
(underlying) physical law 
(that the Theory Model should represent)

4b

THEORETICAL MODEL DATAINFERENCE

Model parameters in the Theory Model can 
be estimated with an uncertainty due to 
fluctuations in the finite data sample

In the statistical inference the approach is somehow reverted w.r.t. the theory of probability:
the physical process or law is under investigation and the statistical methods & techiques try to
induce the characteristics of the process on the basis of the (finite) experimental observations



Concept of Probability - I

5

Many processes in nature have uncertain outcomes (their result cannot be predicted in advance).

Note: often in physics : an event is meant as an elementary event, i.e. it represents a single outcome;
on the countrary, in statistics : an event can represent - in general - a subset of possible outcomes.

It is useful to introduce the concept of random variable: it represents the outcome of a repeatable experiment whose result 
is uncertain. Then an event consists of the occurrence of a certain particular condition about the value of the random variable 
resulting from an experiment (in simple words: it is a possible outcome of an experiment). 

Classical probability : if 𝑁 is the total number of possible outcomes (“cases”) of a random variable,
if 𝑛 is the number of favourable cases for which an event 𝐴 is realized,
the probability of an event 𝑨 is: 𝐏(𝑨) = 𝒏

𝑵

(P.S.Laplace, 1749-1827)



Concept of Probability - II
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Most experiments in Physics can be repeated under the same - or at least very similar - conditions.
Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed. 
The result of an experiment may be used to address questions about natural phenomena, … 
... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability. 
Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:



Concept of Probability - II
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Most experiments in Physics can be repeated under the same - or at least very similar - conditions.
Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed. 
The result of an experiment may be used to address questions about natural phenomena, … 
... for instance about the knowledge of an unknown physical quantity, or the existence or not of some new phenomena.
Statements that answer those questions can be assessed by assigning them a probability. 
Different definitions of probability apply to cases in which statements refer to repeatable experiments or not:

Frequentist probability only applies to processes that can be repeated over a reasonably long period of time:

𝐏 𝑬𝒊 = 𝒍𝒊𝒎
𝑵𝒊
𝑵

Frequentist probability : is the fraction of the number (𝑁:) of possible occurrences of an event 𝐸:
over the total number of events (𝑁) in a repeatable experiment, 
in the limit of a very large number of experiments:

(R.Von Mises, 1883-1953)

𝑵 → ∞

Note: - this limit must be intended in an experimental (non mathematical!) sense
- the true value of the probability would be found only repeating ∞ times the (repeatable) experiment
- in many cases, experience shows that the frequentist probability tends to the classical one

(thanks to the Law of large numbers) [ex.: roll a not-loaded dice & execute a large number of rolls]



Concept of Probability - II

6

Most experiments in Physics can be repeated under the same - or at least very similar - conditions.
Such experiments are examples of random processes in the sense that, at every repetition, a different outcome is observed. 
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over the total number of events (𝑁) in a repeatable experiment, 
in the limit of a very large number of experiments:

(R.Von Mises, 1883-1953)

Bayesian probability applies also to an hypothesis or statement that can be true (or false): the probability of a certain 
hypothesis (or theory) is represented by the degree-of-belief (subjective) that the hypothesis is true (or false).

𝑵 → ∞

Note: - this limit must be intended in an experimental (non mathematical!) sense
- the true value of the probability would be found only repeating ∞ times the (repeatable) experiment
- in many cases, experience shows that the frequentist probability tends to the classical one

(thanks to the Law of large numbers) [ex.: roll a not-loaded dice & execute a large number of rolls]



Interpretation of Probability
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We have just introduced two different interpretations of the probability: Frequentist & Bayesian probabilities;
note that both are consistent with Kolmogorov axioms.

Frequentist probability refers to a relative frequency that can be evaluated for repeatable experiments
(for instance when we measure particle scatterings or radioactive decays).
In this course we will assume/use/refer-to … this concept of probability.

Bayesian probability refers to a subjective probability where instead of outcomes we have hypotheses 
(statements that can be true or false).

In particle physics the frequency interpretation is often most useful, but subjective probability can provide 
more natural treatment of non-repeatable phenomena (for instance the probability that Higgs boson exists,
or in handling systematic uncertainties).

In most cases the two approaches give (asymptotically) similar results.



Axiomatic approach to Probability

8

To formalize - in a correct mathematical way - the concept probability, A.N.Kolmogorov (1903-1987) 
proposed (1933) an axiomatic approach (the set theory can help intuitively to handle axioms and theorems):  

Axiom-1

Axiom-2

Axiom-3: property of additivity :

- being… Ω the set of possible outcomes, 𝐸 ∈ Ω a certain possible outcome/result/event) 

: 𝑃 Ω = 1 (i.e. the experiment must have a result) [it’s the normalization condition !] 

: 𝑃 𝐸 ∈ Ω ≥ 0

𝑃 C
:
𝐸: =D

:

𝑃 𝐸: for ALL 𝐸: being DISJOINT

union



Axiomatic approach to Probability
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To formalize - in a correct mathematical way - the concept probability, A.N.Kolmogorov (1903-1987) 
proposed (1933) an axiomatic approach (the set theory can help intuitively to handle axioms and theorems):  

Axiom-1

Axiom-2

Axiom-3: property of additivity :

- being… Ω the set of possible outcomes, 𝐸 ∈ Ω a certain possible outcome/result/event) 

: 𝑃 Ω = 1 (i.e. the experiment must have a result) [it’s the normalization condition !] 

: 𝑃 𝐸 ∈ Ω ≥ 0

Every concept/definition of probability is required to be compatible with the axiomatic probabiity and with the derived …

… properties:

… & theorems:  Additivity theorem :

𝑃 𝐸 = 1 − 𝑃 𝐸∗ , 𝑃 𝐸 ∈ Ω ≤ 1, 𝑃 ∅ = 0

𝑃 𝐸J ∪ 𝐸L = 𝑃 𝐸J + 𝑃 𝐸L − 𝑃 𝐸J ∩ 𝐸L

𝑃 C
:
𝐸: =D

:

𝑃 𝐸: for ALL 𝐸: being DISJOINT

with 𝐸J , 𝐸L ∈ Ω GENERIC
(→ NOT NECESSARILY DISJOINT)

includes Axiom-3 if 𝐸J , 𝐸L are disjoint : 𝑃 𝐸J ∩ 𝐸L = 0 ⇒ 𝑃 𝐸J ∪ 𝐸L = 𝑃 𝐸J + 𝑃 𝐸L

union

intersection

relative 
complement

(it can be easily demonstrated)



Joint Probability
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Joint probability :                         : probability that two events (𝐴 & 𝐵) happen concurrently𝑃 𝐴 ∩ 𝐵

= 0 IF 𝐴 & 𝐵 DISJOINT (𝐴 ∩ 𝐵 = ∅) 

= 𝑃 𝐴 ] 𝑃 𝐵

= 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∪ 𝐵 IF 𝐴 & 𝐵 GENERIC from the Additivity Theorem! 

IF 𝐴 & 𝐵 INDEPENDENT

To deal with non independent events we have to introduce the concept of conditional probability (next slide)



Conditional Probability
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Suppose to restrict the possible outcomes of an experiment to the subset 𝐴 ⊂ Ω and introduce the …  

Conditional probability :                    : probability of event 𝐸 given the restriction 𝐴 ⊂ Ω𝑃 𝐸|𝐴

Note: if 𝐴∗ ≠ ∅ it holds 𝑃 𝐸|𝐴 > 𝑃 𝐸 ; this introduces the need to “renormalize” the conditional probability: 𝑃 𝐴|𝐴 ≡ 1

𝐴∗

𝛀

𝐴

The following properties hold:

𝛀𝐴J

𝐴L
𝐴J ∩ 𝐴L

2) ratios of probabilities should not change 
with the applied restriction:

1) 𝑃 𝐴L|𝐴J = 𝑃 𝐴J ∩ 𝐴L|𝐴J [see figure]

𝑃 𝐴J ∩ 𝐴L
𝑃 𝐴J

=
𝑃 𝐴J ∩ 𝐴L|𝐴J
𝑃 𝐴J|𝐴J

Putting together (1) & (2) :

1
𝑃 𝐴J ∩ 𝐴L
𝑃 𝐴J

= 𝑃 𝐴L|𝐴J

For completeness (and coherence) we define : 𝑃 𝐴L 𝐴J = 0 𝐼𝐹 𝑃 𝐴J =0

We can now formally define the conditional probability: 𝑃 𝐵|𝐴 =
𝑃(𝐵 ∩ 𝐴)
𝑃(𝐴) : probability of event 𝐵 given

the event A already happened
For independent events: 𝑃 𝐵|𝐴 =

𝑃(𝐵 ∩ 𝐴)
𝑃 𝐴

=
𝑃 𝐵 ] 𝑃(𝐴)

𝑃 𝐴
= 𝑃 𝐵 (just another way to express independence)

Note: it can be demonstrated that is satisfies the axioms of Kolmogorov



Application of previous concepts - I
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particle beam

𝐷J 𝐷L𝑫

detector under study

Detection efficiencies are probabilities !

To measure the detection efficiency of the detector under test 
we need to select all and only the particles that cross the system 
and are detected by both “telescope” detectors 𝐷J & 𝐷L (that 
are read in time coincidence). 
The intersection expresses the time coincidence in the sense that
the probability to have a particle of the beam detected by both of 
them is given by 𝑃 𝐷J ∩ 𝐷L [reminder: intersection is a logical-AND]!

Of course, 𝑃 𝐷J ∩ 𝐷L is a joint probability but note that the two “telescope” detectors work independently, thus:

As seen in previous slide, 𝑃 𝐷J ∩ 𝐷L can also be expressed in terms of conditional probability as follows:

and since the detectors work independently it holds 𝑃 𝐷L|𝐷J = 𝑃 𝐷L .

𝑃 𝐷J ∩ 𝐷L = 𝑃 𝐷J ] 𝑃 𝐷L

𝑃 𝐷J ∩ 𝐷L = 𝑃 𝐷L|𝐷J ] 𝑃 𝐷J



Application of previous concepts - II
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particle beam

𝐷J 𝐷L𝑫

detector under study

Adding a third detector as in the figure implies …
to have detector  𝐷J in coincidence with any of one between 𝐷L & 𝐷h ! 

The involved joint probability is now: 𝑃 𝐷J ∩ (𝐷L ∪ 𝐷h )

Since also the detectors 𝐷L & 𝐷h work independently it holds: 𝑃 𝐷L ∩ 𝐷h = 𝑃 𝐷L ] 𝑃 𝐷h

𝐷h

Now we get : 𝑃 𝐷J ∩ (𝐷L ∪ 𝐷h ) = 𝑃 𝐷J ] 𝑃 𝐷L ∪ 𝐷h = 𝑃 𝐷J ] [𝑃 𝐷L + 𝑃 𝐷h − 𝑃 𝐷L ∩ 𝐷h ]

[ reminder : intersection is a logical-AND, union is a logical-OR ]

additivity theorem

Overall : 𝑃 𝐷J ∩ (𝐷L ∪ 𝐷h ) = 𝑃 𝐷J ] [𝑃 𝐷L + 𝑃 𝐷h − 𝑃 𝐷L ∩ 𝐷h ] = 𝑃 𝐷J ] [𝑃 𝐷L + 𝑃 𝐷h − 𝑃 𝐷L ] 𝑃 𝐷h ]

In this way the total efficiency of the telescope can be calculated to know the useful particle flux to study the detector 
under test. It can be easily calculated that … passing from a telescope with 2 similar detectors to one with 4 similar ones 
increases the total efficiency by a multiplicative factor 2 − 𝜀m 2 where 𝜀m is the detection efficiency of a single detector.



Bayes’ theorem - I
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This famous theorem by T.Bayes relates the two conditional probabilities 𝑃 𝐵|𝐴 with 𝑃 𝐴|𝐵 where 𝐴, 𝐵 ∈ Ω

𝑃 𝐵|𝐴 =
𝑃(𝐵 ∩ 𝐴)
𝑃(𝐴)

(T.Bayes, 1702-1761) 

We’ve already written                                    but we can equally write (𝐴, 𝐵 are exchangeable): 𝑃 𝐴|𝐵 =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

Putting together: 𝑃 𝐴|𝐵 ] 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵|𝐴 ] 𝑃 𝐴 . Thus : 𝑃 𝐴|𝐵 = 𝑃 𝐵|𝐴 ]
𝑃 𝐴
𝑃 𝐵

A generalization/extension of the theorem can be obtained by introducing the Law of the total probability as follows:

if we have sets of events 𝐴: 𝑖 that are disjoint and fully cover 𝛀 (namely Ω = ⋃: 𝐴: ) and 𝑩 ∈ 𝛀 is a generic event, 

we can calculate 𝑃 𝐵 exploiting the fact that 𝐵 = 𝐵 ∩ 𝛺 = 𝐵 ∩ ⋃: 𝐴: = ⋃:(𝐵 ∩ 𝐴:) and (𝐵 ∩ 𝐴:) are disjoint, thus 

the total probability can be obtained by the following sum:

𝑷 𝑩 = 𝑃(C
:

(𝐵 ∩ 𝐴:) (𝐵 ∩ 𝐴:)C
:

) =D
:

𝑃(𝐵 ∩ 𝐴:) = representing the so called 
Law of total probability

and Bayes’ theorem can be rewritten: 𝑃 𝐴|𝐵 =
𝑃 𝐵|𝐴 ] 𝑃 𝐴

∑𝒊𝑷(𝑩|𝑨𝒊) ] 𝑷(𝑨𝒊)
(nothing forbids A to be one of the 𝐴:)



Bayes’ theorem - II
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This theorem can be discussed in a frequentist context (in which a probability cannot be associated to an hypothesis!),
[and it can be helpful when designing an experiment ] in the following way:

(the so called a-priori probability)

subset of events of interest

𝑃 𝐴|𝐵 = 𝑃 𝐵|𝐴 ]
𝑃 𝐴
𝑃(𝐵) (tipically estimated in previous experiment(s) or …

suggested by a model used in generating simulated events, etc…

detection/reconstruction/selection

general detection/reconstruction/selection efficiency

production probability of the events of interest

(performs the task to ensure normalization)

probability to detect/reconstruct/select the specific kind of events of interest
(it includes the acceptance and the efficiency effects in relation to the 
characteristics of the particular events of interest)

probability to detect/reconstruct/select 
the specific kind of events of interest 
given a positive response by our 
detector/reconstruction algorithm/selector
(the so called a-posteriori probability,
i.e. after having carried- out the experiment)



Theory / Hour-2



CHARACTERISTICS of MEASUREMENTS



STATISTICAL & SYSTEMATICS UNCERTAINTIES - I

14

When we carry out an experimental measurement we must separate the purely statistical component from those
“non statistical” (called systematics components):

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 “𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑣𝑎𝑙𝑢𝑒” ± 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ± 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 ∶ 𝑚 �� ��
�� ��

A good measurement requires to be able to reduce as much as possible both uncertainties. 

IF we have accumulated not much data (low statistics)… we can afford a conservative evaluation of the sources 
of systematics uncertainties (approximated by excess)

IF we have accumulated a lot of data (high statistics)… the statistical uncertrainty will be relatively small and… 
…we cannot afford a conservative evaluation of systematics uncertainties:

we must evaluate the systematics effect with good accuracy with
the aim to bring the systematic uncertainties to the  same level of
the statistical uncertainty !



STATISTICAL & SYSTEMATICS UNCERTAINTIES - II
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Recap: @ “low” statistics :

@ “high” statistics :

we can afford

we must work so that systematic uncertainty≈ statistical uncertainty (relatively small)

systematic uncertainty≤ statistical uncertainty (relatively large)

If the problem is particular difficult to require the execution - on a computing machine - of the simulation (MC) of your 

physical system under exam, in order to compare real and simulated data, … 

… it can happen to identify a systematic error (“bias”) in the real data and to correct the measurement (central value)

according to a correction (“shift”) derived from the data-MC comparison.

In this circumstance the statistical uncertainty on the measurement carried out on the simulated data must be considered 

a systematic uncertainty for the (corrected) measurement in real data. 

This implies the need to have enough statistics for your simulated data samples.

Example: https://arxiv.org/pdf/hep-ex/9902011.pdf (CLEO experiment’s charmed mesons lifetime measurement)[see next slide]

https://arxiv.org/pdf/hep-ex/9902011.pdf


STATISTICAL & SYSTEMATICS UNCERTAINTIES - III
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STATISTICAL & SYSTEMATICS UNCERTAINTIES - IV
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PRECISION & ACCURACY

18

Precision of a measurement:  term that expresses that the result of a measurement can be obtained with great detail
(many significative cyphers).

Numerically, it is represented by the random (or “statistical”) uncertainty !

Accuracy of a measurement: term that expresses the maximum possible deviation of the result of a measurement from 
the result of an ideal measurement; thus it is associated to the maximum systematic error
that the experimental instrumentation can introduce in the measurement.

Numerically, it’s represented by the maximum “systematic” uncertainty that the used instrumentation/method can introduce!

Wrapping up: A precise measurement is a measurement affected by a very small statistical uncertainty;
The systematic uncertainties cannot be eliminated but enough (hopefully strongly) reduceable.

An accurate measurement is a measurement affected by a minimized systematic uncertainty
(or anyway, lower than the statistical uncertainty;
The systematic uncertainties cannot be eliminated but hopefully can be minimized.



PROBABILITY DENSITY FUNCTIONS



Probability Density Function (p.d.f.) - I

19

Probability distribution function (aka p.d.f.): distribution of the probability for a RV to assume a certain value among those allowed

In other words: the p.d.f. of a RV is the law which rules the assumption of a certain value by the RV in one measurement/experiment

We will see during this course that: the link between experiment and theoretical model indeed happens through the p.d.f.,
that is predicted by the model to describe (the result of) an experiment

Consider a discrete random variable 𝑥 having more than one possible elementary result, that is (𝑥J, … , 𝑥�) each occurring with a probability 
𝑃(𝑥:), where 𝑖 = 1,… ,𝑁, thus associated to each of the possible results. 
The function that associates the probability 𝑃(𝑥:) to each possible value 𝑥: is called probability distribution.
Note : the result of an event is not predictable but - instead - the probability distribution of the results can be known.



Probability Density Function (p.d.f.) - I
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Probability distribution function (aka p.d.f.): distribution of the probability for a RV to assume a certain value among those allowed

In other words: the p.d.f. of a RV is the law which rules the assumption of a certain value by the RV in one measurement/experiment

We will see during this course that: the link between experiment and theoretical model indeed happens through the p.d.f.,
that is predicted by the model to describe (the result of) an experiment

Consider a discrete random variable 𝑥 having more than one possible elementary result, that is (𝑥J, … , 𝑥�) each occurring with a probability 
𝑃(𝑥:), where 𝑖 = 1,… ,𝑁, thus associated to each of the possible results. 
The function that associates the probability 𝑃(𝑥:) to each possible value 𝑥: is called probability distribution.
Note : the result of an event is not predictable but - instead - the probability distribution of the results can be known.

The probability of a random event 𝑬 corresponding to a set of distinct possible elementary results (𝑥��, … , 𝑥��) 
where 𝑥�� ∈ Ω = (𝑥J, … , 𝑥�) for all 𝑗 = 1,… , 𝐾, is, according to the 3rd Kolmogorov’s axiom, given by:

(normalization 
condition)  

𝑃 C
��J

�

𝑥�� = 𝑃 𝑥��, … , 𝑥�� = 𝑃 𝐸 =D
��J

�

𝑃(𝑥��)

From the 2nd Kolmogorov’s axiom, the probability of the event Ω corresponding to the set of all possible values must be: D
:�J

�

𝑃 𝑥: = 1

From the 1st Kolmogorov’s axiom: 𝑃 𝑥�� ≥ 0 ∀𝑗 ⟹ 𝑃 𝐸 ⊂ Ω ≥ 0



Probability Density Function (p.d.f.) - II

20

Most quantities of interest to us are continuous, thus we will treat mainly the continuous case. 
The discrete probability introduced in  the previous slide can be generalized to the continuous case with the replacement …

In the discrete case we deal with a genuine probability function; in the continuous case we must introduce a probability density function!

D
�

⇒�
�

Let us consider a sample space Ω ⊆ ℝ�. Each random experiment will lead to a measurement corresponding to one point �⃗� ∈ Ω.
We can associate a probability density 𝑓 �⃗� = 𝑓 𝑥J,… , 𝑥� to any point �⃗� ∈ Ω. Of course, 𝑓 �⃗� ≥ 0 (1𝑠𝑡 𝑎𝑥𝑖𝑜𝑚).

The probability of an event A with A ⊆ Ω, namely the probability that �⃗� ∈ 𝐴 is given by : 𝑃 𝐴 = ∫� 𝑓 𝑥J,… , 𝑥� 𝑑�𝑥

The function 𝑓 �⃗� is called probability density function p.d.f. ! The function 𝑓 𝑥J,… , 𝑥� 𝑑�𝑥 can be interpreted as differential probability.

The normalization condition can be expressed as:�
�
𝑓 𝑥J, … , 𝑥� 𝑑�𝑥 = 1



Probability Density Function (p.d.f.) - II
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Most quantities of interest to us are continuous, thus we will treat mainly the continuous case. 
The discrete probability introduced in  the previous slide can be generalized to the continuous case with the replacement …

In the discrete case we deal with a genuine probability function; in the continuous case we must introduce a probability density function!

Probability of the outcome X to be within the continuous interval of possible values                      is                 P(x ≤ X ≤ x + dx) = f (x) ⋅dxx, x + dx[ ]

The p.d.f. 𝒇 𝒙 is of course normalized by the condition :

It can be verified that :  
the p.d.f. corresponds to an histogram of the RV 𝒙 normalized to the unity area in the limit for which …   - the bin width à 0

- the total # of entries à∞
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Let us consider a sample space Ω ⊆ ℝ�. Each random experiment will lead to a measurement corresponding to one point �⃗� ∈ Ω.
We can associate a probability density 𝑓 �⃗� = 𝑓 𝑥J,… , 𝑥� to any point �⃗� ∈ Ω. Of course, 𝑓 �⃗� ≥ 0 (1𝑠𝑡 𝑎𝑥𝑖𝑜𝑚).

The probability of an event A with A ⊆ Ω, namely the probability that �⃗� ∈ 𝐴 is given by : 𝑃 𝐴 = ∫� 𝑓 𝑥J,… , 𝑥� 𝑑�𝑥

The function 𝑓 �⃗� is called probability density function p.d.f. ! The function 𝑓 𝑥J,… , 𝑥� 𝑑�𝑥 can be interpreted as differential probability.

The normalization condition can be expressed as:�
�
𝑓 𝑥J, … , 𝑥� 𝑑�𝑥 = 1

In 1 dim:
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𝑓 𝑥 𝑑𝑥 = 1



Cumulative Distribution Function (c.d.f.)
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Library of  p.d.f.s in ROOT/RooFit
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Attributes of a p.d.f. : mode & median
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Mode of a p.d.f. : the location of a maximum of f(x)
(value of x that in an infinite sampling would 
appear the highest number of times) 

Median of a p.d.f. : value of x for which 
(it divides the distribution in 2 parts with the same area)

Note : the median is not always well defined
since there can be more than one such value of x 

Note : a p.d.f. can be multimodal !

F(x) =1 2

Note : in this example … mode and median coincide



Attribute of a p.d.f. : expectation value
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Expectation value of a p.d.f. (sometimes called “Mean” which is very misleading actually! Better population mean): 
represents the central value of a p.d.f. and it is defined as:

µ ≡ E[x]= x  f (x)dx
−∞

+∞

∫

it can even happen that it is 
a value never taken by the x !

a = cost⇒ E[a]= a E[ax]= a ⋅E[x]

Note: 𝐸 𝑥 is not a function of x (there is an integral on x !) but depends on the distribution 
of the values taken by x (that is on the shape of the p.d.f.) 

Properties:                                             &

if u is a function of x:                                                 where

E is a linear operator:   

E[au(x)]= a ⋅E[u(x)] E[u(x)]= u(x) f (x)dx
−∞

+∞

∫

E[a1u(x)+ a2υ(x)]= a1E[u(x)]+ a2E[υ(x)]



Attributes of a p.d.f. : example
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Mode

1
2

For this distribution: 
the expectation value (“Mean”) > Median

Median > Mode

.

.
(note: this is the effect of the large tail on the right)



Attribute of a c.d.f. : quantile of order 𝜶
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x1 2

α =
F(xα ) =α

xα = F
−1(α)

α=1 2! →!!

�
�£

¦©
𝑓 𝑥 𝑑𝑥 = 𝛼 = 1 − �

¦©

�£
𝑓 𝑥 𝑑𝑥



Attribute of a p.d.f. : central moments
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The moments are particular expectation values. The moments of order m are defined as: 𝐸 𝑥« = ∫�£
�£𝑥«𝑓 𝑥 𝑑𝑥 .

Therefore:        moment of order 1 ≡ expectation value

It is possible to introduce also the central moments of order m, defined as: 𝐸 (𝑥 − 𝜇)« = ∫�£
�£(𝑥 − 𝜇)«𝑓 𝑥 𝑑𝑥 .

Note: if 𝜇 is finite … the central moment of order 1 is null for any 𝜇 : 

𝐸 (𝑥 − 𝜇)«�J = �
�£

�£
(𝑥 − 𝜇)𝑓 𝑥 𝑑𝑥 = �

�£

�£
𝑥𝑓 𝑥 𝑑𝑥 − 𝜇�

�£

�£
𝑓 𝑥 𝑑𝑥 = �

�£

�£
𝑥𝑓 𝑥 𝑑𝑥 − 𝜇 = 𝐸[𝑥] − 𝜇 = 𝜇 − 𝜇 = 0

=1 (normalization)

Note also: if 𝑓(𝑥) is symmetric … the central moments of odd orders (𝒎 = 𝟏, 𝟑, 𝟓, …) are null !

The central moment of order 2 is called variance and represents the spread of the 𝒇 𝒙 around the expectation value.

See details next slide!  



Attribute of a p.d.f. : variance
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Variance of a p.d.f. is defined as: 𝜎¦L = V 𝑥 = 𝐸 𝑥 − 𝜇 2 = �
�£

�£
𝑥 − 𝜇 2𝑓 𝑥 𝑑𝑥

= �
�£

�£
𝑥L𝑓 𝑥 𝑑𝑥 − 2𝜇�

�£

�£
𝑥𝑓 𝑥 𝑑𝑥 + 𝜇L �

�£

�£
𝑓 𝑥 𝑑𝑥

= 𝐸 𝑥L − 2𝜇L + 𝜇L = 𝐸 𝑥L − 𝜇L = 𝐸 𝑥L − 𝐸[𝑥] L

=1 (norm.)= 𝜇

The squared root of the variance is called standard deviation of 𝒙 and denoted by        .

It is often useful because it has the same dimentional units of 𝒙 and thus …

… it represents the spread of the p.d.f. around its expectation value.

𝝈𝒙

Property: 𝑉 𝑎𝑥 = 𝑎𝟐 ] 𝑉 𝑥 , with 𝑎 = 𝑐𝑜𝑠𝑡.

Indeed:        V 𝑎𝑥 = 𝐸 𝑎L𝑥L − 𝐸 𝑎𝑥 L = 𝑎L 𝐸 𝑥L − 𝑎𝐸 𝑥 L = 𝑎L ] 𝐸 𝑥L − 𝐸 𝑥 L = 𝑎L ] 𝑉[𝑥]


