Latest Results from the PAMELA Space Experiment

Emiliano Mocchiutti
INFN Trieste, Italy

On behalf of the PAMELA collaboration

Neutrino Oscillation Workshop
Conca Specchiulla - Otranto
September 9, 2010

Presentation outline

\square Introduction
\square PAMELA scientific goals and apparatus

- Latest PAMELA results on:
- antiparticles (antiprotons and positrons)
> galactic H and He spectra
$>B / C$
> electrons (e-) spectrum
- sub-cutoff spectra
- Summary

PAMELA Collaboration

Scientific goals

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter):
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

PAMELA apparatus

PAMELA detectors

Time-Of-Flight

plastic scintillators + PMT:

- Trigger
- Albedo rejection;
- Mass identification up to 1 GeV ;
- Charge identification from dE/dX

Electromagnetic calorimeter
W/Si sampling (16.3 $\mathrm{X}_{0}, 0.6 \lambda_{1}$)

- Discrimination $\mathrm{e}^{+} / \mathrm{p}, \mathrm{p}-\mathrm{bar} / \mathrm{e}^{-}$ (shower topology)
- Direct E measurement for e^{-}

Neutron detector

${ }^{3}$ He tubes + polyethylene moderator:

- High-energy e/h discrimination

GF: $21.5 \mathrm{~cm}^{2} \mathrm{sr}$ Mass: 470 kg
Size: $130 \times 70 \times 70 \mathrm{~cm}^{3}$
Power Budget: 360W

Spectrometer

microstrip silicon tracking system + permanent magnet
It provides:

- Magnetic rigidity $\rightarrow \mathrm{R}=\mathrm{pc} / \mathrm{Ze}$
- Charge sign
- Charge value from dE/dx

Design Performance

energy range

- Antiprotons
- Positrons
- Electrons
- Protons
- Electrons+positrons
- Light Nuclei (He/Be/C)
- Anti-Nuclei search

80 MeV - 190 GeV

50 MeV - 300 GeV

up to 500 GeV

up to 700 GeV
up to 2 TeV (calorimeter)
up to $200 \mathrm{GeV} / \mathbf{n}$
\rightarrow Simultaneous measurement of many cosmic-ray species
\rightarrow New energy range
sensitivity of 3×10^{-8} in $\overline{\mathrm{He}} / \mathrm{He}$

Resurs-DK1 satellite and orbit

- Resurs-DK1: multi-spectral imaging of earth's surface
- PAMELA mounted inside a pressurized container
- Launch 15/06/2006 - lifetime >3 years (assisted), extended till end 2011
- Data transmitted to NTsOMZ, Moscow via high-speed radio downlink. ~16 GB per day
- Quasi-polar and elliptical orbit (70.0${ }^{\circ}, 350$ km - 600 km)
- Traverses the South Atlantic Anomaly
- Crosses the outer (electron) Van Allen belt
 at south pole

Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

Latest PAMELA results

Antiproton identification

- Analyzed data July 2006 - January 2010 (~1200 days)
- Collected triggers ~109
- Identified ~ 10^{8} protons and ~ 10^{3} antiprotons between 1.5 and 100 GeV - more than 100 p-bar above 20GeV
- Antiproton/proton identification:
- rigidity (R) \rightarrow SPE
- $|\mathrm{Z}|=1$ (dE/dx vs R) \rightarrow SPE\&ToF
- β vs R consistent with $\mathrm{M}_{\mathrm{p}} \rightarrow$ ToF
- p-bar/p separation (charge sion) \rightarrow SPE
- p-bar/e- (and p/e+) separation \rightarrow CALO
- Dominant background \rightarrow spillover protons:
- finite deflection resolution of the SPE
\Rightarrow wrong assignment of charge-sign @ high energy
\rightarrow Strong SPE selection required

[^0]

Tracker Identification

Protons (spillover)
Antiprotons
f the Universe - September 9, 2010

PAMELA antiproton to proton ratio

Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

PAMELA antiproton spectrum

Ptuskin et al.
ApJ 642 (2006)
902

Adriani et al., accepted for publication in PRLkinetic energy [GeV]

Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

Positron identification

- Analyzed data July 2006 - January 2010 (~1200 days)
- Collected triggers ~108
- Identified ~ 10^{4} electrons and positrons between 1.5 and 100 GeV - more than 180 positrons above 20GeV

Electron/positron identification:

- rigidity $(\mathrm{R}) \rightarrow \mathrm{SPE}$
- $|\mathrm{Z}|=1(\mathrm{dE} / \mathrm{dx}=\mathrm{MIP}) \rightarrow$ SPE\&ToF
- $\beta=1 \rightarrow$ ToF
- e-/e+ separation (charge sign) \rightarrow SPE
- e+/p (and e-/p-bar) separation \rightarrow CALO
- Dominant background \rightarrow interacting protons: proton spectrum harder than positron \Rightarrow p/e+ increase for increasing energy (103 @1GV 10^{4} @100GV)

\rightarrow Strong CALO selection reguired

Positron selection

Fraction of energy released along the track (left, hit, right) in the calorimeter
Pre-selections:

- Energy-momentum match
- Starting point of shower

Rigidity: 20-30 GV

Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

Background estimation from data

Fraction of energy released along the track (left, hit, right) in the calorimeter
Pre-selections:

- Energy-momentum match - Starting point of shower

Rigidity: 28-42 GV

pre-sampler
positron selection

Positron to Electron Fraction

Adriani et al., Astropart. Phys. 34 (2010) 1 - arXiv:1001.3522

Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

Extending the positron fraction measurement

Background suppression method, full calorimeter:

- No proton sample from flight data
- Simulations \& Test beam data needed
- Strong selections to reject protons using TMVA
(Toolkit for MultiVariate data Analysis)
"TMVA host large variety of multivariate classification algorithms - cut optimization with genetic algorithm, linear and non-linear discriminant and neural networks, support vector machine, boosted decision trees, ..."

Positron to Electron Fraction

During first week after PAMELA results posted on arXiv (October 28, 2008)

Reasons for the positron fraction to rise

(slide adapted from I. Moskalenko talk, PAMELA Workshop, Rome, May 2009)
\square Main reason - primary positrons are perhaps unavoidable
\square There is no deficit in papers explaining the PAMELA positron excess (>200 papers since Oct 2008!):

- Various species of the dark matter (~170)
- Pulsars
- SNRs
- Microquasar
- ...
\square Perhaps we have to discuss a deficit of positrons, not their excess!

Unfortunately, they could be all wrong!
Reason - we do not know precisely the background and thus can't get an idea of the spectrum of the primary positron component

PAMELA Positron Fraction

Adriani et al., Astropart. Phys. 34 (2010) 1 - arXiv:1001.3522

Antiproton to proton ratio

Galactic H and He spectra

Galactic H and He spectra

Galactic H and He spectra

PAMELA Positron Fraction

Adriani et al., Astropart. Phys. 34 (2010) 1 - arXiv:1001.3522

PAMELA secondary nuclei

LBM

- B nuclei of secondary origin:

CNO + ISM \rightarrow B + ...

- Local secondary/primary ratio sensitive to average amount of traversed matter ($\lambda_{\text {esc }}$) from the source to the solar system
Local secondary abundance:
\Rightarrow study of galactic CR propagation
(B / C used for tuning of propagation models)

PAMELA Positron Fraction

Adriani et al., Astropart. Phys. 34 (2010) 1 - arXiv:1001.3522

Theoretical uncertainties on "standard" positron fraction

T. Delahaye et al. (2008)

T. Delahaye et al. (2008)

T. Delahaye et al., arXiv: 0809.5268v3

Average of pre-PAMELA experiments: $\gamma \sim 3.3$
Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

PAMELA electron (e ${ }^{-}$) spectrum

Comments on electrons and positrons background

\square Background is not known precisely but the positron fraction is expected to decrease with increasing energy.
\square PAMELA is providing useful set of data needed to better understand the positron measurement, for the first time a single experiment is measuring (with same systematic errors) a wide set of data.

Comparing pulsars with DM

L. Bergström

Pulsars

Known to exist?
Free parameters

Many (order of 100 ?)

Dark Matter

4 for PAMELA-consistent models.
(2 for branching ratio between different leptons, Mass, E_{F})

Maybe. (An unclear point is the escape probability could be less than 1\%)

Should show some
"bumpiness" due to different pulsars contributing

Yes. Sommerfeld enhancement plus substructure boost

Should have universal shape at energies from 100 - 600 GeV , the high-energy spectrum will depend on where in the decay chain $\mathrm{e}^{+} \mathrm{e}^{-}$are created
Bumpiness, perhaps anisotropy (small, percent level)

Diffuse gamma-ray could show an excess starting between $100-300 \mathrm{GeV}$

"Smoking gun" signature	Bumpiness, perhaps anisotropy (small, percent level)	Diffuse gamma-ray could show an excess starting between $100-300 \mathrm{GeV}$

Subcutoff particles spectra

\rightarrow Atmospheric neutrino contribution
\rightarrow Astronaut dose on board ISS
\rightarrow Indirect measurement of cross section in the atmosphere
\rightarrow Agile e Glast background estimation

Summary

- PAMELA has been in orbit and studying cosmic rays for ~4 years. $>10^{9}$ triggers registered and >20 TB of data has been down-linked, mission extended up to end 2011.
- Antiproton-to-proton flux ratio and antiproton energy spectrum ($\sim 100 \mathrm{MeV}-\sim 200 \mathrm{GeV}$) show no significant deviations from secondary production expectations.
- High energy positron fraction ($>10 \mathrm{GeV}$) increases significantly (and unexpectedly!) with energy (primary source?)
- Primary cosmic rays spectra show spectral features that may point to additional components (local source?)
- Analysis ongoing to finalize and release latest data and to measure the e^{+}spectrum up to $\sim 300 \mathrm{GeV}$ and the all electrum (e^{-} $+\mathrm{e}^{+}$) spectrum up to ~ 1 TV.

[^0]: Emiliano Mocchiutti, INFN Trieste - NOW2010 - Messengers of the Universe - September 9, 2010

