Concha Gonzalez-Garcia

NEUTRINO MASSES AND MIXING:

PROGRESS REPORT & ARISEN ISSUES

(OR LIVING IN THE data squeezing TIMES)

Concha Gonzalez-Garcia (ICREA-U Barcelona & YITP-Stony Brook) NOW 2010

a Gonzalez-Garcia

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac ν :

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana ν

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

a Gonzalez-Garcia

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac ν :

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana ν

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

a Gonzalez-Garcia

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = x\nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

- To fully determine the lepton flavour sector we want to know:
 - * How many, N, massive ν_i and their masses m_i
 - * Their mixing and CP properties (angles and phases in U_{LEP})
 - * Their *nature*: Dirac neutrino \Rightarrow If *L* is conserved Majorana neutrino \Rightarrow If *L* is violated (and extra phases)

a Gonzalez-Garcia

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac ν :

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana ν

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

• In general for N = 3 + m massive neutrinos U_{LEP} is $3 \times N$ matrix

 $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

• U_{LEP} : 3(N-2) angles + 2N - 5 Dirac phases + N - 1 Majorana phases

a Gonzalez-Garcia

- Minimal Extensions to give Mass to the Neutrino:
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac ν :

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana ν

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{CKM}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

• For example for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}$$

Effects of ν **Mass: Oscillations**

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$: $|\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$

• After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin \left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

Effects of ν **Mass: Oscillations**

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$: $|\nu_{\alpha}\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i\rangle$

• After a distance L it can be detected with flavour β with probability

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin\left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac

(1)

0

0

• U: 3 angles, 1 CP-phase + (2 Majorana phases)

0	0	$\begin{pmatrix} c_{13} \end{pmatrix}$	0	$s_{13}e^{i\delta}$	(c_{21})	s_{12}	0)
c_{23}	s_{23}	0	1	0	$-s_{12}$	c_{12}	0
$-s_{23}$	c_{23}	$\sqrt{-s_{13}e^{-i\delta}}$	0	c_{13}	0	0	1

• U: 3 angles, 1 CP-phase + (2 Majorana phases) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

•Dominant oscillations:

– Solar and KamLAND ($\nu_e \rightarrow \nu_{\mu,\tau}$): $\Delta m_{\text{solar}}^2 \simeq \Delta m_{21}^2$ and θ_{12}

- ATM and Acc LBL ($\nu_{\mu} \rightarrow \nu_{\tau}$): $\Delta M^2_{\text{atmos}} \simeq |\Delta m^2_{31}| \simeq |\Delta m^2_{32}| \gg \Delta m^2_{21}$ and θ_{23}

– SBL Reactors (CHOOZ): $\sin^2 \theta_{13} \lesssim 0.05$

• Subdominant 3ν mixing effects:

- Effects due to θ_{13}
- Difference between Inverted and Normal
- Interference of two wavelength oscillations and CP violation due to phase δ

Comments on Solar Neutrino Analysis

- Radiochemical Experiments:
 - * $\Sigma({
 m Cl}) = 2.56 \pm 0.16 \pm 0.16$ (snu)
 - * $\Sigma(\text{Gallex}) = 68.1 \pm 6.05 \pm 3.9$ (SNU) Reanalisis in Kaeter *etal* arXiv:1001.2731
 - * $\Sigma({
 m GNO}) = 62.9 \pm 5.4 \pm 2.5$ (SNU)
 - * $\Sigma(\text{SAGE}) = 65.4^{+3.1+2.6}_{-3.0-2.8}$ (SNU) 2002-2007 Sage Coll arXiv:0901.2200 (before $66.2^{+3.3+3.5}_{-3.2-3.2}$)
- Callibration of Gallium Experiments with ⁵¹Cr and ³⁷Ar Sources:

p(predicted) using ν capture cross section in ⁷¹Ge from Bahcall hep-ph/97100491

- Low rates in new callibrations
- Proposed lower ν capture CS removing capture in two lower ⁷¹Ge excited states Sage Coll. arXiv:0901.2200, Haxton nucl-th/9804011

For alternatives talk by C. Giunti

Comments on Solar Neutrino Analysis

• Getting the most of Borexino Spectrum Borexino Coll. arXiv:0805.3943, Talk by M. Pallavicini – Not using the total rate $R_{7Be} = 49 \pm 3 \pm 4$ events

 But extraction of solar ν contribution (with oscillations) from fit to Borexino spectrum (Overall normalization of ¹¹C, ¹⁴C, ²¹⁰Bi, ⁸⁵Kr backgrounds fitted to data) MCG-G, M Maltoni, J Salvado arXiv:0910.4584

Comments on Solar Neutrino Analysis: Fluxes

Newer determination of abundance of heavy elements in solar surface give lower values
Solar Models with these lower metalicities fail in reproducing helioseismology data

– Two sets of SSM:

Starting from Bahcall etal 05, now Serenelli etal 0909.2

GS98 uses older metalicities **AGSXX** uses newer metalicities

Flux cm ⁻² s ⁻¹	GS98	AGSS09
$pp/10^{10}$	$5.97~(1\pm 0.006)$	$6.03~(1\pm 0.005)$
$pep/10^{8}$	$1.41~(1\pm 0.011)$	$1.44~(1\pm 0.010)$
$hep/10^3$	$7.91(1 \pm 0.15)$	$8.18~(1\pm 0.15)$
⁷ Be/10 ⁹	$5.08~(1\pm 0.06)$	$4.64~(1\pm 0.06)$
${}^{8}\text{B}/10^{6}$	$5.88~(1\pm 0.11)$	$4.85~(1\pm 0.12)$
13 N/10 ⁸	$2.82~(1\pm 0.14)$	$2.07(1^{+0.14}_{-0.13})$
$^{15}\text{O}/10^{8}$	$2.09\;(1^{+0.16}_{-0.15})$	$1.47 \ (1^{+0.16}_{-0.15})$
17 F/10 ¹⁶	5.65 $(1^{+0.17}_{-0.16})$	$3.48~(1^{+0.17}_{-0.16})$

– Which one does the data favours?

Talk by F. Villante

Comments on Solar Neutrino Analysis: Fluxes

Comments on Solar Neutrino Analysis

 \bullet Inclusion of Low Energy Threshold ($T_{\rm eff}>3.5$ MeV) Analysis SNO Phase I+II SNO Coll. arXiv:0910.2984, Talk N. Tolich

Data

- Data reduced to an effective $P_{ee}(E_{\nu})$ (5 "data" points+ $\Phi_{^8B}$)

 $A(E_{\nu}) = a_{0} + a_{1}(E_{\nu} - 10 \text{ MeV})$ $P_{ee}^{\text{day}}(E_{\nu}) = c_{0} + c_{1}(E_{\nu} - 10 \text{ MeV})$ $+ c_{2}(E_{\nu} - 10 \text{ MeV})^{2}$ $P_{ee}^{\text{night}}(E_{\nu}) = P_{ee}^{\text{day}} \times \frac{1 + A(E_{\nu})/2}{1 - A(E_{\nu})/2}$

Parame	eter Value	Stat	Syst
$\Phi_{8}{}_{\mathrm{B}}$	5.046	$^{+0.159}_{-0.152}$	$^{+0.107}_{-0.123}$
<i>a</i> ₀	0.0325	$+0.0366 \\ -0.0360$	+0.0059 -0.0092
a_1	-0.0311	+0.0279 -0.0292	$+0.0104 \\ -0.0056$
c_0	0.3435	+0.0205 0.0107	+0.0111
с ₁	0.00795	+0.00780	+0.00308
c_2	-0.00206	-0.00745 + 0.00302 - 0.00311	-0.00335 +0.00148 -0.00128

Correlation

- Assumes unitarity in 3 flavours
- Not usable for scenarios with sterile neutrinos
- Not usable for scenarios with other functional dependences of $P_{ee}(E_{\nu})$

	${}^{\Phi 8}{}_{ m B}$	a_0	a_1	c_0	c_1	c_2
$\Phi_{8}{}_{\mathrm{B}}$	1.000	-0.166	0.051	-0.408	0.103	-0.246
a_0 -	-0.166	1.000	-0.109	-0.263	0.019	-0.123
a_1	0.051	-0.109	1.000	-0.005	-0.499	-0.031
c_0 -	-0.408	-0.263	-0.005	1.000	-0.101	-0.321
c_1	0.103	0.019	-0.499	-0.101	1.000	-0.067
c_2 -	-0.246	-0.123	-0.031	-0.321	-0.067	1.000

Comments on Solar Neutrino Analysis

- \bullet Inclusion of Low Energy Threshold ($T_{\rm eff}>3.5$ MeV) Analysis SNO Phase I+II SNO Coll. arXiv:0910.2984, Talk N. Tolich
- Data reduced to an effective $P_{ee}(E_{\nu})$ (5 "data" points+ $\Phi_{^8B}$)

 $A(E_{\nu}) = a_{0} + a_{1}(E_{\nu} - 10 \text{ MeV})$ $P_{ee}^{\text{day}}(E_{\nu}) = c_{0} + c_{1}(E_{\nu} - 10 \text{ MeV})$ $+ c_{2}(E_{\nu} - 10 \text{ MeV})^{2}$ $P_{ee}^{\text{night}}(E_{\nu}) = P_{ee}^{\text{day}} \times \frac{1 + A(E_{\nu})/2}{1 - A(E_{\nu})/2}$

- Assumes unitarity in 3 flavours
- Not usable for scenarios with sterile neutrinos
- Not usable for scenarios with other functional dependences of $P_{ee}(E_{\nu})$

Solar Neutrinos: Leading Oscillations

Solar Neutrino Oscillations: θ_{13}

For solar neutrinos

 $P_{ee}^{3\nu} = \sin^4 \theta_{13} + \cos^4 \theta_{13} P_{ee}^{2\nu} (\Delta m_{21}^2, \theta_{12})$

For $E_{\nu} \lesssim \text{few} \times 100 \text{ KeV}$ $P_{ee}^{2\nu}(\Delta m_{21}^2, \theta_{12}) \simeq 1 - \frac{1}{2} \sin^2(2\theta_{12})$

For $E_{\nu} \gtrsim \text{few} \times 1 \text{ MeV}$ $P_{ee}^{2\nu}(\Delta m_{21}^2, \theta_{12}) \simeq \sin^2(\theta_{12})$

Goswami and Smirnov, hep-ph/0411359

Concha Gonzalez-Garcia

Solar Neutrino Oscillations: θ_{13}

$\sin^2\vartheta_{13}=0$ ∆m₂₁ (10⁻⁴ eV²) $\sin^2 \vartheta_{13} = 0$ $\sin^2 \vartheta_{13} = 0$ $\theta_{13} = 0$ Best fit _Ga(08) SK SK SI FGa(09 Ga(09) SNO (09) SNO (08)-CI SNO (09) CI CI + 10 Borex-LE AGSS09 Borex-LE **GS98** . ک **GS98** Solar Before Sage(09) SNO(09) and Borexino ∆m₂₁ (10⁻⁴ eV²) $\sin^2 \vartheta_{13} = 0.04$ $\sin^2 \vartheta_{13} = 0.04$ $\sin^2 \vartheta_{13} = 0.04$ 8 Present (GS98 Fluxes) Present (AGSS09 Fluxes) Present (AGSS09) 6 with modifed Ga cross section 10 ∆m₂₁ (10⁻⁴ eV²) $\sin^2 \vartheta_{13} = 0.1$ $\sin^2 \vartheta_{13} = 0.1$ $\sin^2 \vartheta_{13} = 0.1$ 2 0 0.03 0.06 0.07 0.02 0.04 0 0.01 0.05 $\sin^2 \vartheta_{13}$ 10 110^{-1} 110⁻¹ 10^{-1} $\tan^2 \vartheta_{12}$ $\tan^2 \vartheta_{21}$ $\tan^2 \vartheta_{12}$

MCGG, Maltoni, Salvado arXiv:1001.4552

Solar + KamLAND and θ_{1,3} After Fogli *etal* arXiv:0806.2649³

For KamLAND also $P_{ee}^{3\nu} = \sin^4 \theta_{13} + \cos^4 \theta_{13} P_{ee}^{2\nu} (\Delta m_{21}^2, \theta_{12})$

With $P_{ee}^{2\nu,\text{kam}} = 1 - \frac{1}{2}\sin^2(2\theta_{12})\sin^2\frac{\Delta m_{21}^2 L}{2E}$

Better Agreement with $\theta_{13} \neq 0$

But significance of $\theta_{13} \neq 0$ decreased

MCGG, Maltoni, Salvado arXiv:1001.4552

Atmospheric Neutrinos

• Complete SKI+II+III data: SuperKamiokande Coll. arXIv:1002.3471, Talk by T, Kajita

Atmospheric Neutrinos

• Our Analysis of SKI+II+III data: MCGG, Maltoni, Salvado arXiv:1001.4552

Atmospheric Neutrinos: Leading Oscillations

MCGG, Maltoni, Salvado arXiv:1001.4552

Atmospheric Neutrinos: θ_{13} , Δm_{21}^2 and δ effects

• For $\Delta m_{21}^2 \neq 0$ and $\theta_{13} \neq 0$ sensitivity to δ_{CP} Most important for Sub-GeV e

$$\frac{N_e}{N_{e0}} - 1 \sim (s_{23}^2 - \frac{1}{\bar{r}})$$

Most important for Multi-GeV e

Atmospheric Neutrinos: Status of θ_{13}

• Excess of multi-GeV e?

* Small ν_e excess SKI \Rightarrow "hint' of $\theta_{13} \neq 0$ Fogli *etal* arXiv:0806.2649

* Due mainly to two bins in Multi-GeV ν_e Disappeared in SKI+II

Maltoni Schwetz arXiv:0812.3161

* Less significant in SKI+II+III MCGG, Maltoni, Salvado arXiv:1001.4

MINOS Disappearance

New Results Presented in $\nu 2010$:

2

 $\nu_{\mu} \rightarrow \nu_{\mu} \qquad 7.2 \times 10^{20} \text{ POT}$ $\underbrace{\text{MINOS Far Detector}}_{\text{Far detector data}}$ $\underbrace{\text{No oscillations}}_{\text{Best oscillation fit}}$ $\underbrace{\text{No background}}_{\text{Homogeneration}}$

6

4

Reconstructed neutrino energy (GeV)

8

10

$\overline{ u}_{\mu} \rightarrow \overline{ u}_{\mu} \qquad 1.7 \times 10^{20} \text{ POT}$

MINOS Disappearance: Leading Oscillations

MINOS Appearance: θ_{13}

₹ Z

۶

MINOS

With 3.15×10^{20} POT: arXiv:0909.4996

35 events for $27 \pm 5 \pm 2$ bckg (1.5 σ excess)

With 7×10^{20} POT: April 2010

54 events for $49.1 \pm 7 \pm 2.7$ bckg (0.7 σ excess)

Significance of $\theta_{13} \neq 0$ decreased

MCGG, Maltoni, Salvado arXiv:1001.4552

Concha Gonzalez-Garcia

Neutrino Mass Scale

 ${}^{3}H \rightarrow {}^{3}He + e + \overline{\nu}_{e}$: for both Dirac or Majorana ν 's

$$m_{\nu_e} = \sum m_j |U_{ej}|^2 = \sum_i m_i^2 |U_{ei}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2 < 2.2 \text{ eV} \quad (95\%)$$

Katrin, Talk by E. Ferri

 ν -less Double- β decay: $(A, Z) \rightarrow (A, Z+2) + e^- + e^-$ for majorana $\nu's$

$$m_{ee} = \left| \sum U_{ej}^2 m_j \right| = \left| c_{13}^2 c_{12}^2 m_1 e^{i\eta_1} + c_{13}^2 s_{12}^2 m_1 e^{i\eta_2} + s_{13}^2 e^{-i\delta_{CP}} \right| < \text{few } 0.1 \text{ eV}$$

+theor. uncert. < ?

Talks by F. Iacello and A. Giullani

COSMO:CMB, LSS, Type I-SN... : for both Dirac or Majorana ν 's

$$\sum m_i = m_1 + m_2 + m_3$$

Talk by A. Cooray

Global oscillation analysis

 $\Rightarrow \text{Correlated ranges for } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* hep-ph/0408045)

From Update MMG-G, Maltoni, Salvado at 95% CL

Global oscillation analysis

 $\Rightarrow \text{Correlated ranges for } m_{\nu_e}, m_{ee} \text{ and } \sum m_{\nu}$ (Fogli *et al* hep-ph/0408045)

Analysis of Comological data

 \Rightarrow Constraint on $\sum m_{\nu}$. But careful

Bound depends on Cosmological model (and on Cosmo observables considered)

For example from Analisys beyond Λ CDM with:

- $-m_{\nu}$
- Equation of state of DE $\omega \neq -1$
- Extra radiation ($\Delta N_{\rm eff}$)
- Non-flatness ($\Omega_k \neq 0$)

MCG-G,Maltoni, Salvado arXiv 1006.3795

 $\Lambda \text{CDM} + m_{\nu}$

 $\Lambda \text{CDM} + m_{\nu}$

 $\Lambda \text{CDM} + m_{\nu}$

 $\Lambda \text{CDM} + m_{\nu}$

Global oscillation analysis

 \Rightarrow Correlated ranges for m_{ν_e} , m_{ee} and $\sum m_{\nu_e}$ (Fogli *et al* hep-ph/0408045)

CMB (+SN)

CMB+BAO

CMB+LSSPS

CMB+H0

< 1.2

< 0.75

< 0.55

 ≤ 0.45

		Cosmo+Oscillations 95% Ranges				
Model	Observables	$m_{\nu_{e}}$ (eV)	m_{ee} (eV)	Σm_{ν} (eV)	1	
$o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$	CMB+HO+SN+BAO	N $[0.0047 - 0.51]$ I $[0.047 - 0.51]$	N $[0.00 - 0.51]$ I $[0.014 - 0.51]$	N $[0.0056 - 1.5]$ I $[0.0098 - 1.5]$		
$o\omega ext{CDM} + \Delta N_{ ext{rel}} + m_{ u}$	CMB+HO+SN+LSSPS	N $[0.0047 - 0.27]$ I $[0.047 - 0.27]$	N $[0.00 - 0.25]$ I $[0.014 - 0.25]$	N $[0.0056 - 0.75]$ I $[0.0098 - 0.76]$	06.3795	
$\Lambda { m CDM} + m_{ u}$	CMB+H0+SN+BAO	N $[0.0047 - 0.20]$ I $[0.048 - 0.21]$	N $[0.00 - 0.20]$ I $[0.014 - 0.21]$	N $[0.0056 - 0.61]$ I $[0.0097 - 0.61]$	arXiv 10	
$\Lambda { m CDM} + m_{\nu}$	CMB+H0+SN+LSSSP	N $[0.0047 - 0.12]$ I $[0.047 - 0.12]$	N $[0.00 - 0.12]$ I $[0.014 - 0.12]$	N [0.0056 - 0.36] I [0.0098 - 0.36]	Salvado	
$\Lambda { m CDM} + m_{ u}$	CMB (+SN)	N $[0.0047 - 0.40]$ I $[0.047 - 0.40]$	N $[0.00 - 0.40]$ I $[0.014 - 0.41]$	N $[0.0056 - 1.2]$ I $[0.0098 - 1.2]$	Ialtoni, S	
$\Lambda { m CDM} + m_{ u}$	CMB+BAO	N $[0.0052 - 0.25]$ I $[0.047 - 0.25]$	N $[0.00 - 0.25]$ I $[0.014 - 0.25]$	N $[0.0056 - 0.75]$ I $[0.0099 - 0.75]$	[CG-G,N	
$\Lambda { m CDM} + m_{ u}$	CMB+LSSPS	N $[0.0047 - 0.18]$ I $[0.048 - 0.19]$	N $[0.00 - 0.18]$ I $[0.014 - 0.19]$	N $[0.0056 - 0.55]$ I $[0.0099 - 0.55]$	From M	
$\Lambda { m CDM} + m_{ u}$	CMB+H0	N $[0.0047 - 0.14]$ I $[0.047 - 0.16]$	N $[0.00 - 0.14]$ I $[0.014 - 0.16]$	N $[0.0056 - 0.44]$ I $[0.0097 - 0.45]$		

And MiniBooNE?

Concha Gonzalez-Garcia Talk by C. Polly

Neutrino Results (2007): No Signal, Bound

Antieutrino Results (2010): Signal

Status of CPT Violation

Update by M. Maltoni

Steriles in Cosmology

Comology Fits Favours Extra Radiation Analysis in Λ CDM with massive neutrinos

Found also in More General Cosmologies With Dynamical Dark Energy $\omega \neq -1$ Without Assuming Flatness $\Omega_k \neq 0$

MCG-G, Maltoni, Salvado arXiv:1006.3795

Summary

- Progress in Determining Neutrino Parameters has *slowed down* (hopefully for short)
- Largest improvement in *leading* oscillation parameters: Δm_{21}^2 and θ_{12} from SNO LETA $|\Delta m_{31}^2|$ from MINOS keep an eye on $|\overline{\Delta m^2}_{31}|$ from MINOS
- Significance of $\theta_{13} \neq 0$ decreased to 1-1.2 σ level
- Subdominant effects: Normal versus Inverted or $\theta_{23} \neq \frac{\pi}{4}$ not significant
- Cosmological Mass Bound is model dependent. For example it is relaxed to 1.5 eV within $o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$ cosmologies
- MiniBooNE/LSND remains an open problem