Neutrinos and Nucleosynthesis

Rebecca Surman Union College

> NOW 2010 6 September 2010

the astrophysical formation of the elements

 $\underline{http://nedwww.ipac.caltech.edu/level5/Pagel/Figures/figure1_4.jpeg$

R Surman, Union College

Neutrinos and Nucleosynthesis

heavy element synthesis

R Surman, Union College

Neutrinos and Nucleosynthesis

NOW 2010

v-rich environments for heavy element synthesis

v-rich environments for heavy element synthesis

Neutrinos and Nucleosynthesis

(1) free neutrons and protons

$$p + e^{-} \Leftrightarrow n + v_{e}$$

$$n + e^+ \Leftrightarrow p + \overline{v}_e$$

(2) assembly of alpha particles

 $p, n \rightarrow \alpha$'s + excess p or n

(3) assembly of seed nuclei

 α 's + excess *p* or *n* \rightarrow iron peak nuclei + remaining *p* or *n*

(4) free nucleon capture on seeds

iron peak nuclei + remaining *p* or $n \rightarrow$ heavy nuclei

(1) free neutrons and protons

 $p + e^- \Leftrightarrow n + v_e$ v can set the neutron to proton ratio, n/p $n + e^+ \Leftrightarrow p + \overline{v}_e$ n/p determines the subsequent nucleosynthesis

(2) assembly of alpha particles

 $p, n \rightarrow \alpha$'s + excess p or n

(3) assembly of seed nuclei

 α 's + excess p or $n \rightarrow$ iron peak nuclei + remaining p or n

(4) free nucleon capture on seeds

iron peak nuclei + remaining p or $n \rightarrow$ heavy nuclei

(1) free neutrons and protons	
$p + e^{-} \Leftrightarrow n + v_{e}$	
$n + e^+ \iff p + \overline{v}_e$	
(2) assembly of alpha particles	v can continue to convert the excess p or n
$p, n \rightarrow \alpha$'s + excess p or n	this alters the free nucleons available for capture onto seeds
(3) assembly of seed nuclei	e.g., 'alpha effect'
α 's + excess <i>p</i> or <i>n</i> \rightarrow iron peak nuclei + remaining <i>p</i> or <i>n</i>	
(4) free nucleon capture on seeds	
iron peak nuclei + remaining p or $n \rightarrow$ heavy nuclei	

the supernova neutrino-driven wind

 $p, n \rightarrow \alpha, n \rightarrow \text{seed nuclei} + n \rightarrow r \text{ process}$

the supernova neutrino-driven wind

Hydrodynamic conditions required to build the heaviest nuclei are difficult to achieve, in part due to the neutrino-induced alpha effect.

In the standard SNe energy heirarchy, neutrino oscillations only enhance the role of neutrinos.

$$\left\langle E_{v_{x}}\right\rangle \geq \left\langle E_{\overline{v}_{e}}\right\rangle > \left\langle E_{v_{e}}\right\rangle$$

 $p, n \rightarrow \alpha, n \rightarrow \text{seed nuclei} + n \rightarrow r \text{ process}$

where does each nucleosynthesis stage take place?

v oscillation calculation by Huaiyu Duan and Alex Friedland (as in hep-ph/10062359)

No v for $T_9 < 9$ -3 No oscillations -4 Multiangle voscillation log Y(A) -5 calculation Single angle voscillation -6 calculation multidngle single angle -8 s/k = 200120 140 160 180 200 $\tau = 18 \text{ ms}$ А

a full neutrino oscillation + *r*-process calculation

Duan, Friedland, McLaughlin, & Surman, in preparation (2010)

R Surman, Union College

Neutrinos and Nucleosynthesis

Neutrino interactions on nucleons play an important role in heavy element synthesis in extreme environments

Supernova nucleosynthesis calculations cannot (safely) ignore neutrino oscillations

 \Rightarrow act only increase the importance of neutrino interactions

 \Rightarrow the influence is the greatest at the earliest stages of nucleosynthesis

⇒ correctly predicting the radius at which the flavor
transformations occur is of key importance for the nucleosynthesis
this requires a multiangle v oscillation calculation