Test of Non-Standard Interactions at Super-K

G. Mitsuka Nagoya University

Now2010, Sep. 6th, 2010 Otranto

Outline

Introduction & Physics motivation

• Expected "NSI" phenomena at SK

• Data sets

• Analysis results

Conclusions

What is NSI?

- Note: there are many non-standard interaction "NSI" in markets.
- In this analysis, NSI is defined as either FCNC $\sigma(\nu_{\alpha} + f \rightarrow \nu_{\beta} + f) \neq 0$ $\varepsilon_{\alpha\beta}$ and Non-universality(NU). $\sigma(\nu_{\alpha} + f) \neq \sigma(\nu_{\beta} + f)$ $\varepsilon_{\alpha\alpha}, \varepsilon_{\beta\beta}$

NSI driven transition probability

the number density "Nf" and the flight length "L".

Transition Probabilities

Standard Oscillation

$\overline{P_{\nu_{\mu} \to \nu_{\mu}}} =$ $1 - f(\varepsilon, \varepsilon') \sin^2(\sqrt{2}G_F < N_f > L\varepsilon f(\varepsilon, \varepsilon'))$ $f(\varepsilon,\varepsilon') \equiv \frac{4\varepsilon^2}{4\varepsilon^2 + \varepsilon'^2}$ ε=FCNC ε'=NU $P_{ u_{\mu} o u_{\mu}}$ ε=10, ε'=0.1 0.8 Large E,E' drives 0.6 transition in short L 0.4 $\epsilon = 1.0, \epsilon' = 1.0$ E'>E subdress 0.2 $P(v_{\alpha} \rightarrow v_{\beta})$ ε=1.0, ε'=0.0 0 0.5 1 1.5 2 2.5 3 3.5 log(L(km))

NSI

Sizable transition can occur in NSI even in high energy.

v NSI hunting ?

- Precise measurement of V-int. cross section CHARM, NuTeV, etc...
- Atmospheric neutrino Super-Kamiokande, MACRO
- Solar neutrino(matter→vacuum transition)
 Borexino
- Accelerator neutrino
 V factory ?

NOTE:MACRO data is phenomenologically analyzed

Advantage of Super-K

Fermion number density sensitive to FCNC & NU

Surveying wide range energy 100MeV - 100TeV

Large number of events 2,900events/year @SK

Pure NSI \Rightarrow Hybrid NSI

Analysis procedures

Data&MC sets

- FC, PC, and UP μ SK-I & II atm-V data.
- 2,280 livedays = 6.25years
- MC statistics is 500years.
- Reconstruction tools and MC have been updated since the past oscillation analysis with SK-I and II.
- Agreement between data and MC is derived by checking "zenith angle" and "momentum" bins.
- Systematic errors related to neutrino flux, interaction, detector responses are taken into account(totally 90 terms).

2-Flavor Hybrid(µT sector)

Zenith angle distributions with typical parameters

2-Flavor Hybrid(µT sector)

3-Flavor Hybrid(eT sector)

Zenith angle distributions with typical parameters

Red : Standard oscillation Green : NSI $\varepsilon_{ee} = 0.0$ $\varepsilon_{eT} = 0.2$ $\varepsilon_{TT} = 0.2$

Note : All lines after χ^2 fitting with systematics.

3-Flavor Hybrid(eT sector)

Note : No constraint to ε_{ee} can be given by atm-V. External constraint by CHARM is added(-0.6 < ε_{ee} < 0.5).

<u>Best fit parameters</u>	<u>Limit from SK-1 & SK-II</u>
$\Delta m^2 = 2.1 \times 10^{-3} eV^2$	<u>(90%C.L.)</u>
$\sin^2 2\theta = 1.0$	ε _{eτ} <0.16
$\varepsilon_{ee} = -0.25$	-0.05<ε _{ττ} <0.06
$\epsilon_{eT} = 0.016$	
ε _{ττ} = 0.024	

Constraints by SK

-0.5

0

0

Conclusion

- V oscillation is stable even with additional NSI term.
- NSI is consistent with 0.
- Limit on FCNC is tighter by an order of magnitude.
- Limit on NU(TT) is significantly improved.

What is NSI ?

- NSI : Interaction between a given particle and another one beyond standard model
- NSI is studied in neutrino as well as toppair and decay etc...

Theorists' opinions

- Hybrid mode with oscillation and NSI can be expected, where NSI is contained as sub-dominant channel[1,2]
- Large value is theoretically allowed in eT channel[3]
- Loose limit on eT channel can spoils the sensitivity ofθ13[3,4]
 [1] N. Fornengo et al., Phys. Rev. D65
 (2002) 013010 [hep-ph/0108043]
 [2] M. C. Gonzalez-Garcia and M. Maltoni,

Hybrid model with oscillation and NSI

We follow the formalism by M. C. Gonzalez-Garcia and Michele Maltoni in PRD 70, 033010 (2004)

2-Flavor Hybrid(µT sector)

