NOW 2010 Neutrino Oscillation Workshop Conca Specchiulla (Otranto, Lecce, Italy) September 5, 2010

Advances in the detection of $0v2\beta$ decay

Andrea Giuliani

University of Insubria (Como) and INFN Milano-Bicocca

Italy

Outline

- Introduction to Double Beta Decay
- Experimental challenge and strategies
- > Overview of the projects under development

- Some very promising experiments
- Prospects and conclusions

Outline

- Introduction to Double Beta Decay
- Experimental challenge and strategies
- > Overview of the projects under development

- Some very promising experiments
- Prospects and conclusions

Decay modes for Double Beta Decay

Double Beta Decay is a very rare, second-order weak nuclear transition which is possible for a few tens of even-even nuclides

Two decay modes are usually discussed:

(1)
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$$

②
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$
 ◄

2v Double Beta Decay - allowed by the Standard Model already observed $-\tau \sim 10^{19} - 10^{21}$ y

neutrinoless Double Beta Decay (0v-DBD) never observed (except a discussed claim) $\tau > 10^{25}$ y

Process ② would imply new physics beyond the Standard Model

violation of total lepton number conservation

Observation of **0v-DBD**

Majorana nature of neutrino

0v-DBD and neutrino physics

From where we start...

...and where we want to go

Outline

- Introduction to Double Beta Decay
- Experimental challenge and strategies
- > Overview of the projects under development

- Some very promising experiments
- Prospects and conclusions

The main signature: electron sum energy spectra in DBD

The shape of the two electron sum energy spectrum enables to distinguish among the two different decay modes

In order to start to explore the inverted hiererachy region,

- Target bakground of the order of ~ few counts / y ton
 - Sensitive mass of the order of ~100's kg \rightarrow **10²⁶ 10²⁷ nuclides**

Experimental strategies

① Detect and identify the daughter nuclei (indirect search)

geochemical experiments radiochemical experiments

it is not possible to distinguish the decay channel important in the 70s-80s – no more pursued now

2 Detect the two electrons with a proper nuclear detector (direct search)

Possible approaches to direct searches

Two approaches:

- gaseous drift chamber
- magnetic field and TOF

- constraints on detector materials
- very large masses are possible demonstrated: up to ~ 50 kg proposed: up to ~ 1000 kg with efficiency close to 1
- with proper choice of the detector, very high energy resolution
 - Ge-diodes
 - bolometers
- in gaseous/liquid xenon detector, indication of event topology
 - 🙁 in contradiction
- it is difficult to get large source mass and high efficiency
- neat reconstruction of event topology
- several candidates can be studied
 with the same detector

$2\nu - \beta\beta$ decay: irreducible background

Experimental sensitivity to 0v-DBD

sensitivity F: lifetime corresponding to the minimum detectable number of events over background at a given confidence level

Choice of the nuclide

Outline

- Introduction to Double Beta Decay
- Experimental challenge and strategies
- Overview of the projects under development

- Some very promising experiments
- Prospects and conclusions

Experiments and techniques ~Se-Multi-site events CUORE - 130Te Array of low temp Ø81 mm First step: 200 Kg Eas Proved energy res 32 mm **BEGe** it can take advanta p-type germanium technology GERDA - 76Ge 878 g Array of enriched (n⁺ contact p⁺ contact First phase (NOW) Proved energy res 800 800 Amplitude [a.u.] Amplitude [a.u.] MAJORANA 4 76 Array of enriched (Based on 60 Kg m А Α Proved energy res LUCIFER - 82Se Ω 1000) 0 500 Time after trigger [ns] -500 500 1500 -500 1000 1500 0 Array of scintillatin Time after trigger [ns] First step: ~ 10 Kg Single-site event Proved energy res **Multi-site event** Eas

SNO+ – ¹⁵⁰Nd \rightarrow Jose Maneira SNO detector filled with Nd-loaded 0.1% loading in wieght with natural Crucial points: Nd radio-purity and, KamLAND-Zen – ¹³⁶Xe

2 Se-

Insert a mini-balloon containing Xe 400 kg of enriched Xe (2.7% w) Data taking in 2011

XMASS – ¹³⁶Xe

Multipurpose scintillating liquid Xe Three development stages: 3 Kg (r DBD option: low background in the High light yield and collection efficie Target: to cover inverted hierarchy **CANDLES** – 48 Ca Array of natural pure (not Eu dope Prove of principle completed –p rov The good point of this search is the \Rightarrow out of γ (2.6 MeV end point), β (3 Other background cuts come from

Mini Balloon study

S 2

1%)

activity

d Bi-Tl

EXO - ¹³⁶Xe

TPC of enriched liquid (first phase) and gaseous (second phase) Xenon (a henergy resolution (a 1%) Event position and topology; in prospect, tagging of Ba single ion (DBD daughter) \Rightarrow only 2v DBD background Next step (EXO-200: funded, under commissioning): 200 kg enriched – WIPP facility Further steps: 1-10 ton Proved energy resolution: 3.3 % FWHM (inproved thanks to simultaneous measurement of ionization and light) In parallel with the EXO-200 development, R&D for Ba ion grabbing and tagging Ba⁺⁺ e⁻ e⁻ final state is identified through optical spectroscopy

NEXT - ¹³⁶Xe

High pressure (10 bar) gas TPC Principle: primary scintillation for t_0 – electroluminescent light for tracking and calorimetry Aims at energy resolution down to 1% FWHM exploiting electroluminesce in high field region NEXT-100, a 100kg prototype, is scheduled to provide data in CANFRANC in 2013 **COBRA** - ¹¹⁶Cd competing candidate – 9 $\beta\beta$ isotopes – **Ben Janutta's talk** Array of ¹¹⁶Cd enriched CdZnTe of semiconductor detectors at room temperatures Small scale prototype at LNGS Proved energy resolution: 1.9% FWHM Pixellization can provide tracking capability

Easy to get tracking capability

Co

Easy to approach zero background (with the exception of 2v DBD component)

CLASS 3

Ba tagging

S 3

Laser –induced fluorescence of Ba+ ion \rightarrow emission of 10⁷ photons/s

Next step (EXO-200: funded Further steps: 1-10 ton Proved energy resolution: 3. In parallel with the EXO-200 Ba⁺⁺ e⁻ e⁻ final state is identif **NEXT** - ¹³⁶Xe High pressure (10 bar) gas 1 Principle: primary scintillation Aims at energy resolution dc

Easy to get tracki

NEXT-100, a 100kg prototyp COBRA - ¹¹⁶Cd competing Array of ¹¹⁶Cd enriched CdZi Small scale prototype at LN(Proved energy resolution: 1. Pixellization can provide trac

TPC of enriched liquid (first

Event position and topology;

EXO - 136Xe

Semiconductor tracker

Real data: 55 µm pixel size

EXO - ¹³⁶Xe

TPC of enriched liquid (first Event position and topology Next step (EXO-200: funded Further steps: 1-10 ton Proved energy resolution: 3 In parallel with the EXO-200 Ba⁺⁺ e⁻ e⁻ final state is identi

NEXT - ¹³⁶Xe

High pressure (10 bar) gas Principle: primary scintillatic Aims at energy resolution do NEXT-100, a 100kg prototy **COBRA** - ¹¹⁶Cd competing Array of ¹¹⁶Cd enriched CdZ Small scale prototype at LN Proved energy resolution: 1 Pixellization can provide tra

Easy to get track

3

CLASS 4

SUPERNEMO - ⁸²Se or ¹⁵⁰Nd \rightarrow **Robert Flack's talk** Modules with source foils, tracking (drift chamber in Geiger mode) and calorimetric (low Z scintillator) sections Magnetic field for charge sign Possible configuration: 20 modules with 5 kg source for each module \Rightarrow 100 Kg in Modane extension Energy resolution: 4 % FWHM it can take advantage of NEMO3 experience High energy resolution («1%) MOON - 100Mo or 82Se or 150Nd Multilayer plastic scintillators interleaved with source foils + tracking section (PL fibers or MWPC) Easy to reject 2v DBD background MOON-1 prototype without tracking section (2006) MOON-2 prototype with tracking section Proved energy resolution: 6.8 % FWHM Final target: collect 5 y x ton DCBA - 150Nd Momentum analyzer for beta particles consisting of source foils inserted in a drift chamber with magnetic field Realized test prototype DCBA-T2: space resolution ~ 0.5 mm; energy resolution 11% FWHM at 1 MeV \Rightarrow 6 % FWHM at 3 MeV Test prototype DCBA-T3 under construction: aims at improved energy resolution thanks to higher magnetic field (2kG) and higher space resolution Final target: 10 modules with 84 m² source foil for module (126 through 330 Kg total mass) detector Low energy resolution $\geq 1\%$) Tracking capability Source \neq Detector Easy to approach zero background Easy to get tracking capability (with the exception of 2v DBD component)

Outline

- Introduction to Double Beta Decay
- Experimental challenge and strategies
- > Overview of the projects under development

- Some very promising experiments
- Prospects and conclusions

CUORE

Technique/location: natural TeO₂ bolometers at 10 mK– LNGS (Italy) evolution of Cuoricino
Source: TeO₂ – 741 kg with natural tellurium - 9.5x10²⁶ nuclides of ¹³⁰Te

Sensitivity: 35 - 82 meV

Timeline: first CUORE tower in 2011 – data taking with full apparatus in 2013

GERDA – phase 1

CLASS 1

Technique/location: bare enriched Ge diodes in liquid argon – LNGS (Italy) Source: Ge - 17.66 kg – ⁷⁶Ge enriched at 86% - 1.2x10²⁶ nuclides Sensitivity: can scrutinize Klapdor's claim in ~1 year data taking Timeline: GERDA phase-I is working now with normal Ge diodes for system debugging Background contribution from ⁴²Ar higher than expected

 \rightarrow understand before inserting enriched detectors

SUPERNEMO

CLASS 4

Technique/location:

tracking geiger cells+ plastic scintillator – Modane (France) – evolution of NEMO-3

Source: to be decided (⁸²Se, ¹⁵⁰Nd, ⁴⁸Ca) options (assuming 100 kg of materials):

- 7x10^{26 82}Se nuclides

- **2.5x10**^{26 150}**Nd nuclides** (it depends on the possibility of laser isotope separation)

Sensitivity: 53 – 145 meV (for ⁸²Se)

Timeline: demonstrator module in 2013 (~7 kg) – construction of 20 modules: 2014-2015

EXO-200

Technique/location: phase 1: liquid enriched xenon TPC – WIPP (New Mexico, US)

Source: Xe - 200 kg – ¹³⁶Xe enriched at 80% 7.1x10²⁶ nuclides

Sensitivity: 133 - 186 meV

Timeline: phase 1 under commissioning – phase 2: R&D (Ba tagging)

Detail of the TPC electrodes

Detail of the read-out plane

CLASS 3

SNO+

Technique/location: upgrade of SNO with Nd-loaded liquid scintillator

Source: 1000 tons with 0.1 % w/w natural Nd (44 kg of ¹⁵⁰Nd): **1.7x10²⁶ nuclides**

Sensitivity: 100 meV

Timeline: data taking in 2012

CLASS 2

Outline

- Introduction to Double Beta Decay
- Experimental challenge and strategies
- > Overview of the projects under development

- Some very promising experiments
- Prospects and conclusions

Future scenarios and branching points in terms of discovery

Future scenarios and branching points in terms of discovery

Future scenarios and branching points in terms of discovery

