Charged Lepton Flavour Violation

M. Hirsch

mahirsch@ific.uv.es

Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain

\mathcal{I} . Introduction

$\ensuremath{\mathcal{II}}$. SUSY LFV and Seesaw

\mathcal{III} . Discrete symmetries and LFV

\mathcal{IV} . Exotic decay $\mu ightarrow eJ$

Introduction

NOW 2010, 10/09/2010 - p.3/41

Motivation

Lepton flavor is violated:

Parameter	Best fit	3σ c.l.	
Δm_\odot^2 ($10^{-5}~{ m eV^2}$)	$7.59_{-0.18}^{+0.23}$	7.03 - 8.27	
$\Delta m^2_{ m Atm}$ ($10^{-3}~ m eV^2$)	$2.40^{+0.12}_{-0.11}$	2.07 - 2.75	
$\sin^2 heta_{\odot}$	$0.318\substack{+0.019\\-0.016}$	0.27 - 0.38	
$\sin^2 heta_{ m Atm}$	$0.50\substack{+0.07 \\ -0.06}$	0.36 - 0.67	
$\sin^2 heta_{13}$	$0.013\substack{+0.013\\-0.009}$	≤ 0.053	

Data from updated global fit:

Schwetz, Tórtola & Valle, New J Phys 10:113011, 2008; arXiv:0808.2016 (hep-ph) updated V3: 11 Feb 2010

Hint for no-zero θ_{13} at 1.5 σ ? - Fogli et al., 2008

Experimental status: LFV

Decay	Current Limit
$ au o \mu \gamma$	$4.4 \cdot 10^{-8}$
$ au o e\gamma$	$3.3 \cdot 10^{-8}$
$\mu ightarrow e \gamma$	$1.2 \cdot 10^{-11}$
$ au o 3\mu$	$3.2 \cdot 10^{-8}$
$\tau^- \to e^- \mu^+ \mu^-$	$3.7 \cdot 10^{-8}$
$\tau^- \to e^+ \mu^- \mu^-$	$2.3 \cdot 10^{-8}$
$\tau^- \to \mu^- e^+ e^-$	$2.7 \cdot 10^{-8}$
$\tau^- \to \mu^+ e^- e^-$	$2.0 \cdot 10^{-8}$
$ au \to 3e$	$3.6 \cdot 10^{-8}$
$\mu ightarrow 3e$	$1 \cdot 10^{-12}$

Particle Data Group 2010

> Sensitivity MEG: Br($\mu \rightarrow e\gamma$)~ 10^{-13} see talk by: G. Cavoto

Experimental status: LFV

Capture	Current Limit
$\mu^{-32}S \to e^{-32}S$	$7 \cdot 10^{-11}$
$\mu^{-32}S \to e^{+32}Si$	$9 \cdot 10^{-10}$
$\mu^- T i \to e^- T i$	$4.3 \cdot 10^{-12}$
$\mu^- Ti \to e^+ Ca$	$3.6 \cdot 10^{-11}$
$\mu^- Pb \rightarrow e^- Pb$	$4.6 \cdot 10^{-11}$
$\mu^- A u \to e^- A u$	$7 \cdot 10^{-13}$

Particle Data Group 2010

Future sensitivity: $\sim 10^{-16}$ see talk by: Y. Kuno

Simplest LFV by m_{ν}

 \Rightarrow Extend the minimal SM by neutrino masses

 \Rightarrow LFV appears, such as $\mu \rightarrow e \gamma$:

$$Br(\mu \to e\gamma) \sim \frac{3\alpha}{32\pi} \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{i1}}{m^2_W} \le 10^{-54}$$

 \Rightarrow GIM suppressed by small neutrino masses \Rightarrow any observation of charged LFV points to physics beyond (neutrino mass extended) SM

LFV beyond m_{ν}

Simple example: Heavy neutrinos (N) with masses order $\mathcal{O}(TeV)$ exist:

$$\begin{split} \mathrm{Br}(\mu \to e\gamma) &\sim \quad \frac{\alpha^3 s_W^2}{256\pi^2} \frac{m_{\mu}^5}{m_W^4 \Gamma_{\mu}} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 \\ &\leq \quad 7 \times 10^{-6} \Big(\sum_i K_{\mu i}^* K_{ei} G(\frac{m_{N_k}^2}{m_W^2}) \Big)^2 & \swarrow \bigvee_{W} \bigvee_$$

 $\Rightarrow K_{ik}$ heavy neutrino - lepton mixing \Rightarrow G(x) loop function, G(1) = 1/8

(C)LFV - Models

 \Rightarrow Many models produce sizeable CLFV

- RPC Supersymmetry
- RPV Supersymmetry
- Practically any extended Higgs sector: Little Higgs models, additional Higgs doublets, triplets, etc...
- Extra generations
- Extra (large) dimensions
- etc ...
- \Rightarrow "Flavour problem" of BSM

Theoretical description

see, for example review: Kuno & Okada, 2001

General Lagrangian:

$$\mathcal{L} = -\frac{4G_F}{\sqrt{2}} \quad (m_{\mu}A_R\bar{\mu}\sigma^{\mu\nu}P_LeF_{\mu\nu} + \frac{\text{photonic diagrams}}{m_{\mu}A_L\bar{\mu}\sigma^{\mu\nu}P_ReF_{\mu\nu}}) \\ -\frac{G_F}{\sqrt{2}}\sum_f \quad (g_{L,\alpha,f}\bar{e}\mathcal{O}^{\alpha}P_L\mu + \frac{\text{contact interaction}}{g_{R,\alpha,f}\bar{e}\mathcal{O}^{\alpha}P_R\mu})(\bar{f}\mathcal{O}_{\alpha}f) + h.c$$

where $\alpha = S, P, V, A, T$ and $f = l_i, q_i$

 $\Rightarrow A_L$, A_R and $g_{L/R,\alpha,q}$ depend on model $\Rightarrow \tau$ lepton same structure, A and g matrices

Diagramatically

 \Rightarrow If photonic diagram dominates:

$$Br(l_i \to l_j l_k l_k) \sim \alpha \times Br(e \to l_j + \gamma)$$
$$Cr(\mu \to eN) \sim \alpha \times Br(\mu \to e + \gamma)$$

Photon dominance?

From Buras et al., 2010: Different particle models predict different ratios for ...

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\frac{\mathrm{Br}(\mu^- \to e^- e^+ e^-)}{\mathrm{Br}(\mu \to e\gamma)}$	0.02 1	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	$0.06 \dots 2.2$
$\frac{\operatorname{Br}(\tau \xrightarrow{-} e^{-} e^{+} e^{-})}{\operatorname{Br}(\tau \xrightarrow{-} e^{\gamma})}$	0.04 0.4	$\sim 1 \cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.07 \dots 2.2$
$\frac{\mathrm{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\mathrm{Br}(\tau \to \mu \gamma)}$	0.04 0.4	$\sim 2 \cdot 10^{-3}$	$0.06\ldots 0.1$	$0.06 \dots 2.2$
$\frac{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}{\operatorname{Br}(\tau \to e\gamma)}$	0.04 0.3	$\sim 2 \cdot 10^{-3}$	$0.02 \dots 0.04$	$0.03 \dots 1.3$
$\frac{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}{\operatorname{Br}(\tau \to \mu \gamma)}$	0.04 0.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	$0.04 \dots 1.4$
$\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}$	0.82	~ 5	0.30.5	$1.5 \dots 2.3$
$\frac{\operatorname{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	5 10	$1.4 \dots 1.7$
$\frac{\mathrm{R}(\mu\mathrm{Ti} \rightarrow e\mathrm{Ti})}{\mathrm{Br}(\mu \rightarrow e\gamma)}$	$10^{-3} \dots 10^2$	$\sim 5 \cdot 10^{-3}$	0.080.15	$10^{-12} \dots 26$

LHT: Little Higgs model with T-parity MSSM: Minimal supersymmetric model (with R_P) SM4: Standard model with 4th generation

Target dependence

Fig. from Cirigliano et al., 2009

Kitano et al., 2002

 \Rightarrow use different nuclear targets to distinguish different operators

SUSY LFV and Seesaw

NOW 2010, 10/09/2010 - p.14/41

The MSSM: Superfields

Superfield	Bosons	Fermions	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
Gauge Multiplets					
\widehat{G}	g	\widetilde{g}	8	0	0
\widehat{V}	W^a	\widetilde{W}^a	1	3	0
\widehat{V}'	В	\widetilde{B}	1	1	0
Matter N	lultiplets				
\widehat{L}	$(\tilde{ u}, \tilde{e}_L^-)$	(u, e_L^-)	1	2	-1
\widehat{E}^C	$ ilde{e}^+_R$	e_L^+	1	1	2
\widehat{Q}	$(ilde{u}_L, ilde{d}_L)$	(u_L,d_L)	3	2	1/3
\widehat{U}^C	$ ilde{u}_R^*$	u_L^c	3^*	1	-4/3
\widehat{D}^C	$ ilde{d}_R^*$	d_L^c	3*	1	2/3
Higgs Multiplets					
\widehat{H}_d	(H^0_d,H^d)	$(\tilde{H}_d^0, \tilde{H}_d^-)$	1	2	-1
\widehat{H}_{u}	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$	1	2	1

Soft SUSY breaking terms:

$$-\mathcal{L}_{soft} = (M_{\tilde{L}}^2)_{ij} (\tilde{e}_{L,i}^* \tilde{e}_{L,j} + \tilde{\nu}_{L,i}^* \tilde{\nu}_{L,j}) + \cdots$$

Off-diagonal elements lead to:

 \Rightarrow In general MSSM much too big: SUSY flavour problem

mSugra = CMSSM

At the GUT scale:

$$(m_{\tilde{L}}^2)_{ij} = (m_{\tilde{E}}^2)_{ij} = \cdots = m_0^2 \delta_{ij}$$

 $(A_l)_{ij} = A_0(Y_l)_{ij} , \quad (A_\nu)_{ij} = A_0(Y_\nu)_{ij}$
 $\cdots \cdots$

Imposing unification on all soft terms, one is left with only 5 parameters @ M_X :

$$m_0$$
, $M_{1/2}$, A_0 , t_{eta} , sgn(μ)

 \Rightarrow Essential

assumptions:

(i) SUSY breaking flavour blind (ii) $\Lambda_{seesaw} < \Lambda_{SUSY}$

`Classical' Seesaw

In the basis (ν_L , ν_R) write mass matrix:

$$\mathcal{M}_{
u} = \left(egin{array}{cc} 0 & m_D \ m_D & M_M \end{array}
ight)$$

Minkowski, 1977 Yanagida, 1979 Gell-Mann, Ramond & Slansky, 1979 Mohapatra & Senjanovic, 1980

If $m_D \ll M_M$:

$$m_{1/2}\simeq (-rac{m_D^2}{M_M},M_M)$$

⇒ For 3 ν_R 21 parameters ⇒ At low energy12 parameters measurable: 3 m_{l_i} , 3 m_{ν_i} , 3 angles & 3 phases ⇒ Predictive power: -9

Santamaria, 1993

.

mSugra and RGEs

Seesaw type-I:

Borzumati & Masiero, 1986

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} f(m_0, A_0, ...) (Y_{\nu}^{\dagger} L Y_{\nu})_{ij}$$

 $(\Delta M_{\tilde{E}}^2)_{ij} \simeq 0$

Note: $L_i = \log[M_G/M_i]$.

 \Rightarrow 9 independent parameters \Rightarrow 9+12=21!

Ellis et al., 2002

 \Rightarrow Rewrite Y_{ν}

Casas & Ibarra, 2001

$$Y_{\nu} = \sqrt{2} \frac{i}{v_U} \sqrt{\hat{M}_R} R \sqrt{\hat{m}_{\nu}} U^{\dagger}.$$

 $\Rightarrow \text{Measure } \hat{m}_{\nu} \& U \text{ at low-energy} \\\Rightarrow \text{Learn about } \hat{M}_{R} \text{ and } R \text{ from } (\Delta M_{\tilde{L}}^{2})_{ij} \dots ?$

$$(\Delta M_{\tilde{L}}^2)_{ij} \sim -\frac{1}{8\pi^2} g(m_0, A_0, M_{1/2}, ...) (Y_T^{\dagger} Y_T)_{ij} \log(M_G/M_T)$$
$$(\Delta M_{\tilde{E}}^2)_{ij} = 0$$

 \Rightarrow 9+12=21, but only 15 parameters

 $\Rightarrow \text{Measuring all entries in } (\Delta M_{\tilde{L}}^2)_{ij}$ "over-constrains" triplet seesaw ???

Analytical results

WARNING:

- Plot assumes right-handed neutrinos are degenerate
- Hierarchical right-handed neutrinos lead to very different results

Analytical results

NOW 2010, 10/09/2010 - p.22/41

Numerical results: SPheno3

Example: Seesaw-I, SPS3

Calculated assuming: (i) Degenerate N^c , (ii) TBM angles, (iii) best fit $\Delta m_{\rm A}^2$ and

 Δm_\odot^2 , (iv) $m_{
u_1}\equiv 0$:

 \Rightarrow Ratios determined by seesaw parameters!

 \Rightarrow LHC can see LFV (if SPS3-like ...)

Numerical results: LHC

Left: SPS1a'

Discrete symmetries and LFV

NOW 2010, 10/09/2010 - p.25/41

Discrete flavour symmetries

A very partial list:

S3: Kubo et al., 2003; Chen et al., 2004; Grimus and Lavoura, 2005;Lavoura and Ma, 2005; Teshima, 2006;Koide, 2006; Mohapatra et al., 2006; ···, ···

*S*₄: Ma, 2006; Hagedorn et al., 2006; Cai & Yu, 2006; Zhang, 2006; Koide, 2007; · · · , · · · Altarelli & Feruglio, 2010

*A*₄: Ma & Rajasekaran, 2001; Ma, 2002; Babu et al., 2003; Hirsch et al., 2003; Altarelli and Feruglio, 2005; Babu and He, 2005; Koide, 2007; · · · , · · ·

 Q_4 : Frigerio et al. 2005, · · ·

. . .

See also talks by: S Morisi C Hagedorn

arXiv:0705.0327

 D_4 : Grimus & Lavoura, 2003; Grimus et al., 2004; · · · , · · ·

A_4 : linear & inverse seesaw

Inverse seesaw, basis (ν, ν^c, S) :

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix},$$

Mohapatra & Valle, 1986

After EWSB the effective light neutrino mass matrix is given by

$$M_{\nu} = m_D M^{T^{-1}} \mu M^{-1} m_D^T$$

Linear seesaw:

$$M_{\nu} = \begin{pmatrix} 0 & m_D & M_L \\ m_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}.$$

Akhmedov et al., 1995

Light neutrino mass:

$$M_{\nu} = m_D (M_L M^{-1})^T + (M_L M^{-1}) m_D^T$$

NOW 2010, 10/09/2010 - p.27/41

If M_l is diagonalized on the left by the magic matrix U_ω

$$U_{\omega} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix},$$

(with $\omega \equiv \exp i\pi/3$) and

TBM in A_4

$$m_{\nu} = \left(\begin{array}{ccc} c & 0 & 0 \\ 0 & a & b \\ 0 & b & a \end{array} \right).$$

- \Rightarrow Lepton mixing is exactly TBM
- \Rightarrow If in addition: c = a, neutrino spectrum fixed

Mixing between light and heavy neutrinos is generically:

 $K = m_D . M^{-1}$

Use A_4 to fix charged lepton matrix and:

	(a	0	0	
$m_D =$		0	a	b	
		0	b	a)

Hirsch, Morisi & Valle, 2009

Then, $\sum_{j} K_{ik}^* K_{jk}$ fixed, example inverse seesaw:

$$\sum_{j} K_{ik}^{*} K_{jk} = \begin{pmatrix} a^{2} + \frac{4ab}{3} + \frac{2b^{2}}{3} & -\frac{1}{3}b(2a+b) & -\frac{1}{3}b(2a+b) \\ -\frac{1}{3}b(2a+b) & \frac{1}{3}b(4a-b) & a^{2} - \frac{2ab}{3} + \frac{2b^{2}}{3} \\ -\frac{1}{3}b(2a+b) & a^{2} - \frac{2ab}{3} + \frac{2b^{2}}{3} & \frac{1}{3}b(4a-b) \end{pmatrix}$$

Linear and inverse SS in A_4

 ${
m Br}(\mu
ightarrow e\gamma)$ for 3 different values of m_N for inverse and linear seesaw

Ratio:

 ${\rm Br}(\tau \to \mu \gamma)/{\rm Br}(\tau \to e \gamma)$ for inverse and linear seesaw assuming exact TBM mixing as function of

$$\alpha = \frac{\Delta m_{\odot}^2}{\Delta m_{\rm Atm}^2}$$

Exotic decay $\mu \rightarrow eJ$

NOW 2010, 10/09/2010 - p.31/41

Experimental status

Limits on Majoron emission both very old and very weak. PDG 2010 gives ($X^0 =$ "familon"):

$$Br(\mu o eX^0) \le 2.6 imes 10^{-6}$$
 A. Jodidio ef al. PRD34 (1986)

 \Rightarrow Not a valid limit for Majoron, since experimental cuts to minimize backgrounds eliminated interesting (angular) region. Estimated limit from fig.(7) of this paper, very roughly: $Br(\mu \rightarrow eJ) \sim (\text{few}) \ 10^{-5}$

```
Br(\tau \to \mu + J) \le 2.3\%Br(\tau \to e + J) \le 0.73\%
```

MARK-III Collaboration PRL 55 (1985)

Theoretical status?

(i) Classical "Singlet" Majoron

Chikashige, Mohapatra and Peccei, 1981

(ii) "Doublet" Majoron

Aulakh & Mohapatra, 1982

(iii) Triplet Majoron

Gelmini & Roncadelli, 1981

(iv) "Singlet-doublet" (?) Majoron

Masiero & Valle, 1990

(v) · · ·

Theoretical status?

(i) Classical "Singlet" Majoron Chikashige, Mohapatra and Peccei, 1981

(ii) "Doublet" Majoron

Aulakh & Mohapatra, 1982

(iii) Triplet Majoron

Gelmini & Roncadelli, 1981

(iv) "Singlet-doublet" (?) Majoron

Masiero & Valle, 1990

Alive, but Experimentally hopeless

DEAD - LEP

DEAD - LEP

ALIVE

$\mathcal{W} = h_U^{ij} \widehat{Q}_i \widehat{U}_j \widehat{H}_u + h_D^{ij} \widehat{Q}_i \widehat{D}_j \widehat{H}_d + h_E^{ij} \widehat{L}_i \widehat{E}_j \widehat{H}_d$ $+ \mu \widehat{H}_d \widehat{H}_u$

Spontaneous R/P

$$\mathcal{W} = h_U^{ij} \widehat{Q}_i \widehat{U}_j \widehat{H}_u + h_D^{ij} \widehat{Q}_i \widehat{D}_j \widehat{H}_d + h_E^{ij} \widehat{L}_i \widehat{E}_j \widehat{H}_d + h_\nu^{ij} \widehat{L}_i \widehat{\nu}_j^c \widehat{H}_u + \mu \widehat{H}_d \widehat{H}_u$$

 \Rightarrow Conserves L at level of $\mathcal W$

 \Rightarrow If scalar singlet gets vacuum expectation value:

 $\epsilon_i = h_i^{\nu} \langle \tilde{\nu}^c \rangle$

- \Rightarrow Spontaneous breaking of lepton number, Goldstone boson: Majoron
- \Rightarrow "Mostly" singlet Majoron of $\langle \tilde{\nu} \rangle \ll \langle \tilde{\nu}^c \rangle$
- \Rightarrow Neutrino data easily fitted

Spontaneous R/P

$\mathcal{W} = h_U^{ij} \widehat{Q}_i \widehat{U}_j \widehat{H}_u + h_D^{ij} \widehat{Q}_i \widehat{D}_j \widehat{H}_d + h_E^{ij} \widehat{L}_i \widehat{E}_j \widehat{H}_d$ $+ h_\nu^{ij} \widehat{L}_i \widehat{\nu}_j^c \widehat{H}_u - h_0 \widehat{H}_d \widehat{H}_u \widehat{\Phi} + h^{ij} \widehat{\Phi} \widehat{\nu}_i^c \widehat{S}_j$

As before, plus:

Masiero & Valle, 1990

- $\Rightarrow \widehat{\Phi}$ potentially solves μ -problem \widehat{a} la NMSSM
- \Rightarrow Dirac mass term for $\widehat{
 u}^c$ through v_{Φ}
- $\Rightarrow \nu^c$ light a la "inverse seesaw"
- \Rightarrow Many variants possible ...

Invisible neutralino decay

Lightest χ^0 decays to $J + \nu$ Decay channel large if $\mu - > eJ$ large

Hirsch et al., 2009

- \Rightarrow Large statistics necessary to improve limit
- \Rightarrow MEG experiment not sensitive, must search for $\mu > eJ + \gamma$ instead

- ⇒ observation of CLFV points to BSM beyond neutrino masses
- ⇒ distinguish between models by different operators (with same generation of leptons)
- \Rightarrow probe models of neutrino angles by comparing CLFV (using different generations of leptons)
- \Rightarrow If signs of SUSY at LHC, indirect insight into high energy world: Seesaw parameters (?)

Backup Slides

Neutrino angles

Very good first approximation: tri-bimaximal ansatz of Harrison, Perkins & Scott, 2002:

$$\mathcal{U}_{\nu}^{\text{HPS}} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Corresponding to

$$\tan^2 \theta_{\rm Atm} = 1$$
 , $\tan^2 \theta_{\odot} = \frac{1}{2}$, $\sin^2 \theta_{\rm R} = 0$

Trilinear RPV SUSY

Contrary to RPC SUSY photon diagram not dominant

