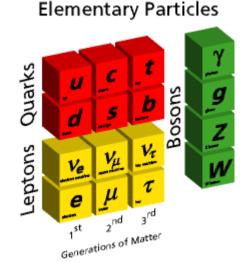
Neutrinos and Dark Matter

Manfred Lindner

Max-Planck-Institut für Kernphysik, Heidelberg

→ F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032

DM and Extensions of the Standard Model


SM = Success of renormalizable gauge field theories in d=4

QED \rightarrow QCD \rightarrow SMU(1)_{em}SU(3)_CSU(3)_C x SU(2)_L x U(1)_Y

- symmetry, renormalizability, no anomalies
- → particle content (symmtery representations):
 - gauge sector fixed by gauge group
 - scalar sector must break EW symmetry, $SB\sim 2_L$
 - fermions anomaly free combinations (least understood sector!!!)

→ different levels of SM extension...

- add SM representations: scalars, fermions
- extend the gauge symmetry
- add supersymmetry
- extend/modify basic concepts: quantum fields, nature of space-time, ...

increasing level of
speculation S:

new fields
follow gauge route
new concepts

4) wild speculation

Physics Beyond the Standard Model

Theoretical arguments:

SM does not exist without cutoff (triviality) Higgs-doublett = only simplest extension Gauge hierarchy problem Gauge coupling unification Charge quantization Strong CP problem Unification with gravity Why: 3 generations , which representations Many parameters (9+? masses, 4+? mixings)

Experimental facts:

- Electro weak scale << Planck scale
- Gauge couplings close to unification
- Neutrinos have masses & large mixings
- Dark Matter
- Dark Energy
- Baryon asymetry of the Universe
- Few $\geq 2\sigma$ deviations: g-2, ... ???

<u>a framework that solves</u>
<u>all problems...</u>
→ seems not (yet) to exist

... solve some problems:

pick your favourite problem
implications for other topics

<u>Gauge hierarchy:</u> → e.g. SUSY (S=3) → Dark Matter, neutrinos, ...

Strong CP problem: → Axions ...

Neutrino masses and mixings: → extra fields / gauge groups (S=1.5) → Dark Matter, ... ???

Adding Neutrino Mass Terms (S=1)

Simplest possibility: add 3 right handed neutrino fields

New ingredients: 1) Majorana masses (2nd explicit scale) 2) L violation (global symmetry)

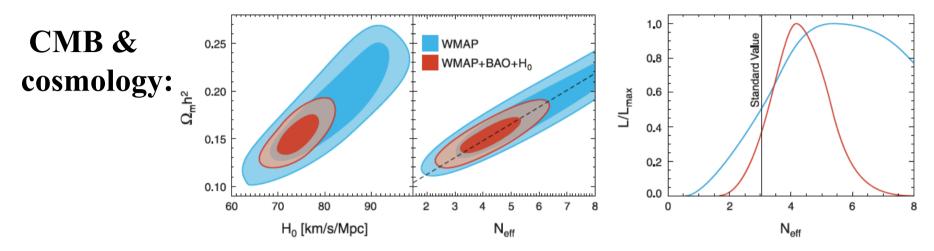
A natural consequence of the simplest, most suggestive and straight forward way to accommodate neutrino masses:

see-saw \rightarrow light active neutrinos and heavy sterile neutrinos active \rightarrow naturally light $\leftarrow \rightarrow$ observed neutrinos sterile \rightarrow masses O(M_R) and mixings O(m_D/M_R) \rightarrow tiny!

➔ right handed neutrinos probably exist

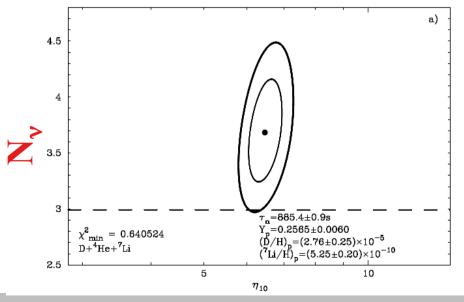
→ if viable, v's are obvious, natural and most conservative DM candidates!

Could Neutrinos be Dark Matter?


- Active neutrinos would be Hot Dark Matter → ruled out:
 - destroys small scale structure
 - required neutrino masses much too small → maybe HDM component
- <u>keV sterile neutrinos: Warm Dark Matter</u> → workes nicley:
 - \rightarrow relativistic at decoupling
 - \rightarrow non-relativistic at radiation to matter dominance transition
 - OK for $M_X \simeq$ few keV
 - reduced small scale structure **>** smoother profile , less dwarf satellites

• Astronomy

- -observations hint that a keV sterile particle may exist
- ➔ right-handed neutrino


Biermann, Kusenko & Segre, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, ...

More Indications for light DM Particle

BBN – 'feels' extra light particles:

$N_{\nu} \simeq 3.7 \pm 1$

E. Aver, K. Olive, E. Skillman (2010) Y. Izotov, T. Thuan(2010)

The vMSM

Asaka, Blanchet, Shaposhnikov, 2005 Asaka, Shaposhnikov, 2005

Particle content:

- Gauge fields of SU(3)_c x SU(2)_W x U(1)_Y: γ , W_±, Z, g
- Higgs doublet: Φ=(1,2,1)

	SU(3)c	${\rm SU}(2)_W$	$U(1)_{Y}$	U(1) _{em}
$\begin{pmatrix} \mathbf{u} \\ \mathbf{d} \end{pmatrix}_{\mathrm{L}}$	3	2	+1/3	(+2/3 -1/3)
$ u_{\mathbf{R}} $	3	1	+4/3	+2/3
d _R	3	1	-2/3	-1/3
$\begin{pmatrix} \mathbf{v}_{e} \\ e \end{pmatrix}_{L}$	1	2	-1	
$ e_R $	1	1	-2	-1
N	1	1	0	0

x3 generations

 \rightarrow lepton sector more symmetric to the quark sector

→ Majorana masses for N

→ choose for one sterile v ~keV mass → exceeds lifetime of Universe

• Matter

Abundance in the vMSM and in Alternatives

- Virtue and problem of vMSM:
 - scenario with sterile v and tiny mixing \rightarrow never enters thermal equilibrium
 - → requires non-thermal production from other particles (avoid over-closure)
 - → new physics before the beginning of the thermal evolution sets abundance
- Alternative scenario Bezrukov, Hettmannsperger, ML:
 - sterile v could be a non-singlet under some gauge extension
 - \rightarrow extra scale between M_W and M_{Pl} : LR symmetry, ...
 - \rightarrow very simple possibility to get correct abundance
 - sterile $\boldsymbol{\nu}$ is diluted after it drops out of thermal equilibrium
 - \rightarrow long-lived particle decay out of TE after DM sterile v freeze-out
 - → obvious candidate: one of the other (heavier) sterile neutrinos!
 - \rightarrow very efficient reduction of amount of DM sterile neutrinos

→ everything follows nicely from sterile neutrinos

Assumptions for the Alternative Scenario

- Three right-handed neutrinos N_1 , N_2 , N_3
- Dirac and Majorana mass terms
- Charged under some (BSM) gauge group; gauge boson mass M
- Specific LR example: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

Roles played by the sterile (~right-handed) neutrinos:

- Mass $M_1 \sim \text{keV}$
- Lifetime $au_1 > au_{Universe} \sim 10^{17} \ s$
- N_{2,3} dilute entropy after DM decoupling
 - Mass *M*_{2,3} > GeV
 - Lifetime $au_{2,3} \lesssim$ 0.1 s

Sterile Neutrino DM Freeze-Out & Abundance

Decoupling of N₁ in early Universe: sterile neutrino DM is light \rightarrow freezout while relativistic \rightarrow calculation like for active neutrinos + suppression of annihilation x-section by M

Freeze-out temperature:

Abundance of N₁ today:

$$egin{aligned} &\mathcal{T}_{\mathrm{f}}\sim g_{*\mathrm{f}}^{1/6}\left(rac{M}{M_W}
ight)^{4/3}\left(1\div2
ight)\,\mathrm{MeV}\ &rac{\Omega_N}{\Omega_N}\simeqrac{1}{2}\left(rac{10.75}{10.75}^{\mathrm{h}}
ight)\left(rac{M_1}{44}
ight) imes100 \end{aligned}$$

Required entropy generation factor:

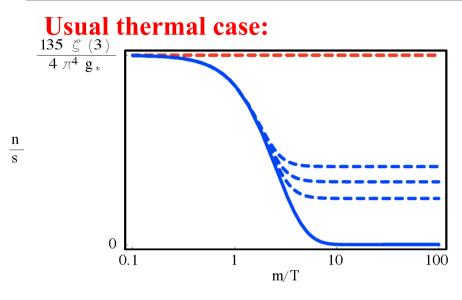
$$S \simeq 100 \left(rac{10.75}{g_{*\mathrm{f}}}
ight) \left(rac{M_{\mathrm{1}}}{\mathrm{1 \, keV}}
ight)$$

 $\overline{\Omega_{\mathsf{DM}}} \cong \overline{S} \setminus \overline{g_{*\mathsf{f}}} / \overline{\mathsf{1keV}}$

Entropy Generation by out-of Equilibrium Decay

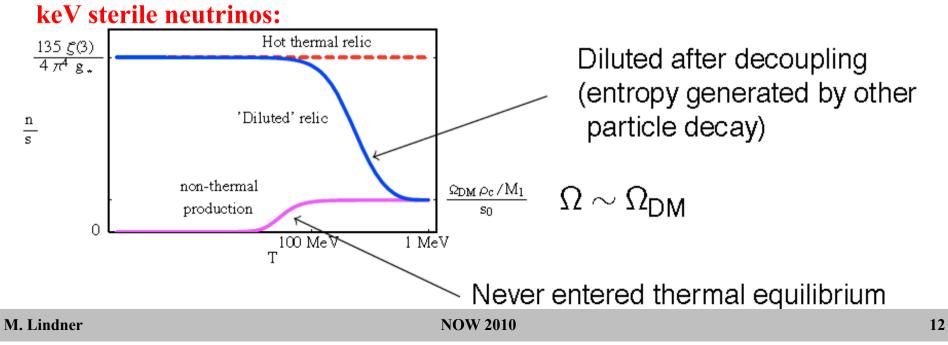
Heavy particle (here: N_3) dropping out of thermal equilibrium while relativistic $T_f > M_2$: \rightarrow bounds gauge scale from below

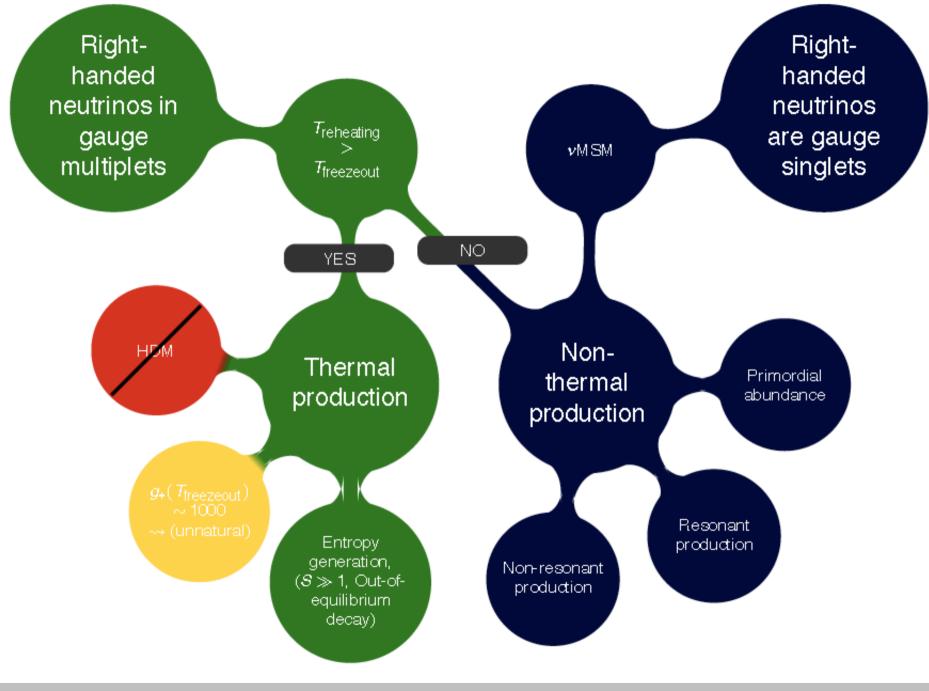
$$M > rac{1}{g_{*f}^{1/8}} \left(rac{M_2}{{
m GeV}}
ight)^{3/4} (10 \div 16) {
m TeV}$$


- → long lived → becomes non-relativistic
- → dominates expansion of Universe during its decay
- $\rightarrow \text{ entropy generation factor } = \frac{1}{4} \frac{4}{4} \frac{1}{4} \frac$

$$rac{\mathrm{s}_{\mathrm{after}}}{\mathrm{s}_{\mathrm{before}}} = S rac{\mathrm{a}_{\mathrm{before}}^3}{\mathrm{a}_{\mathrm{after}}^3}$$

$$S\simeq 0.76rac{g_{*}^{\prime}}{g_{*}\sqrt{\Gamma_{2}M_{\mathrm{Pl}}}}$$


 \rightarrow fixes decay width Γ_2


Obtaining the right Abundance

HDM: $\frac{\Omega}{\Omega_{DM}} \simeq \left(\frac{10}{g_{*f}}\right) \left(\frac{M}{10 \text{ eV}}\right)$ Decoupled relativistic

CDM: (M>>MeV) $\Omega \sim \Omega_{DM}$ Decoupled nonrelativistic

NOW 2010

Summary of Constraints

BBN $\tau_2 > 0.1 \div 2 \text{ sec}$

The entropy is effectively generated if the right-handed gauge scale is

$$M > g_{*f}^{-1/8} \left(\frac{M_2}{1 \text{ GeV}} \right)^{3/4} (10 \div 16) \text{ TeV}$$

 M_1

Implications for See-Saw

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} (\overline{\tilde{\nu}_{aL}^c}, \overline{\tilde{N}_{aR}}) \begin{pmatrix} M_L & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \tilde{\nu}_{aL} \\ \tilde{N}_{aR}^c \end{pmatrix} + \text{H.c.}$$

• Usual flavour (=tilde) to mass basis rotation

$$\begin{pmatrix} \tilde{\nu}_{aL} \\ \tilde{N}^c_{aR} \end{pmatrix} \simeq \begin{pmatrix} 1 & (M_R^{-1} m_D^T)^{\dagger} \\ -M_R^{-1} m_D^T & 1 \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix} \begin{pmatrix} \nu_{iL} \\ N^c_{IR} \end{pmatrix}$$

• U = PMNS matrix, $V_R = mixing in right-handed sector$

 $M_L - m_D M_R^{-1} m_D^T = U^* \cdot \operatorname{diag}(m_1, m_2, m_3) \cdot U^{\dagger} \longrightarrow \mathbf{M}_L = \mathbf{0}: \operatorname{Type-I} M_R = V_R^* \cdot \operatorname{diag}(M_1, M_2, M_3) \cdot V_R^{\dagger}$

• Mixing angles between mass states, sterile neutrinos and flavour states:

$$\theta_{aI} \equiv \frac{(m_D V_R)_{aI}}{M_I}$$
 and $\theta_I^2 \equiv \sum_{a=e,\,\mu,\,\tau} |\theta_{aI}|^2$

←→ strength of interaction (decay) of sterile neutrinos

- Current best fit values: $\Delta m_{sol}^2 = (7.65^{+0.69}_{-0.6}) \times 10^{-5} \text{ eV}^2$ $\Delta m_{atm}^2 = (2.4^{+0.35}_{-0.33}) \times 10^{-3} \text{ eV}^2.$
- Casas-Ibarra parametrization for type-I and II (Akhmedov, Rodejohann)

$$\theta_I^2 = \frac{\left[\sqrt{M_R}R^T m_\nu^{\text{diag}} R^* \sqrt{M_R}\right]_{II}}{M_I^2} , \ m_\nu^{\text{diag}} = \text{diag}(m_1, m_2, m_3)$$

• assume (convention) $\mathbf{m}_1 < \mathbf{m}_2 < \mathbf{m}_3$ \rightarrow we get for the first two sterile v's $M_1 \theta_1^2 = m_3 |\sin\omega_{13}|^2 + m_2 |\cos\omega_{13}|^2 |\sin\omega_{12}|^2$ $+ m_1 |\cos\omega_{13}|^2 |\cos\omega_{12}|^2$, $M_2 \theta_2^2 = m_3 |\cos\omega_{13}|^2 |\sin\omega_{23}|^2 + m_2 |\cos\omega_{23} \cos\omega_{12}$ $- \sin\omega_{23} \sin\omega_{13} \sin\omega_{12}|^2 + m_1 |\cos\omega_{23} \sin\omega_{12}$ $+ \sin\omega_{23} \sin\omega_{13} \cos\omega_{12}|^2$. • The relation $|z-w| \ge ||z| - |w||$ leads then to the following inequalities:

$$\begin{split} M_1 \theta_1^2 &\geq m_2 \{ \sin^2 \omega_{13} + \cos^2 \omega_{13} \sin^2 \omega_{12} \}, \\ M_2 \theta_2^2 &\geq m_2 \{ \cos^2 \omega_{13} \sin^2 \omega_{23} + (|\cos \omega_{23}| |\cos \omega_{12}| \\ &- |\sin \omega_{23}| |\sin \omega_{13}| |\sin \omega_{12}|)^2 \}. \end{split}$$

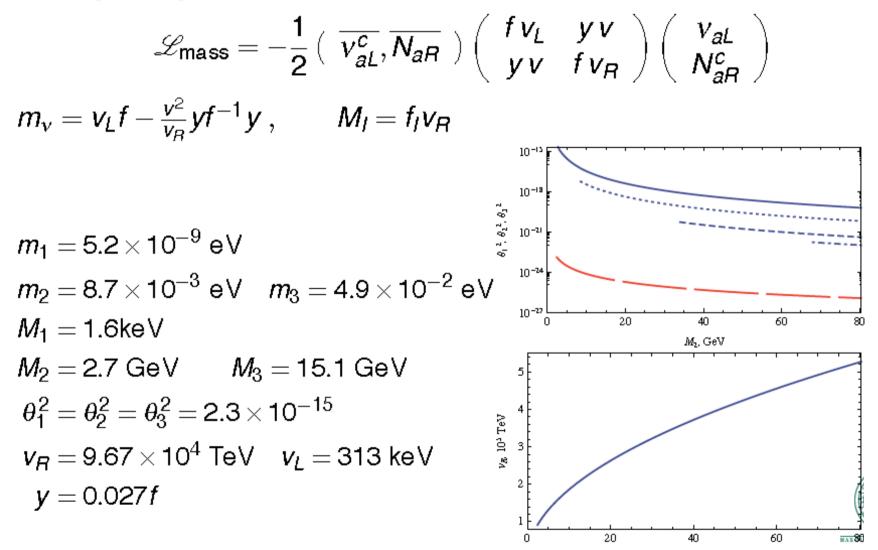
• The minimum of the sum on the *rhs* is $m_2 \rightarrow b$

$$M_1 \theta_1^2 + M_2 \theta_2^2 \ge m_2 \ge \Delta m_{sol}$$
 (*)

- In words: One cannot generate active v masses with type-I see-saw without sufficient mixings between active and sterile neutrinos
- → conflict with bounds:

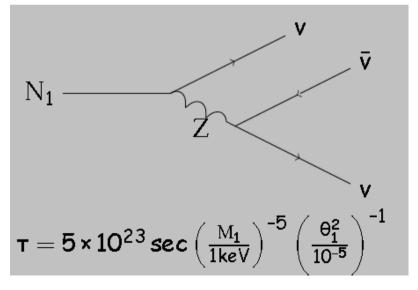
Entropy generation:

→ violates bound (*)

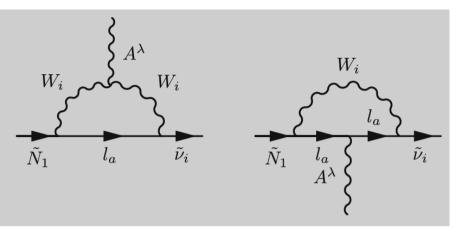

X-ray bound:

→ type-I see-saw impossible

 $egin{aligned} M_2 heta_2^2 &\lesssim 1.8 imes 10^{-3} ar{g}_*^{1/2} \left(rac{ ext{GeV}}{M_2}
ight)^2 \left(rac{ ext{keV}}{M_1}
ight)^2 \ M_1 heta_1^2 &\lesssim 2.7 imes 10^{-3} \left(rac{ ext{1.6 keV}}{M_1}
ight)^4 \end{aligned}$


Working example with type II see-saw

Exactly LR-symmetric model:



Observing keV-ish Neutrino DM

- LHC
 - sterile neutrino DM is not observable
 - WIMP-like particles still possible but not DM
- direct searches
 - sterile neutrino DM is not observable
- astrophysics/cosmology → at some level: keV X-rays
 - sterile neutrino DM is decaying into active neutrinos
 - decay $N_1 \rightarrow \bar{\nu} \nu \nu$, $N_1 \rightarrow \bar{\nu} \bar{\nu} \nu$
 - not very constraining since
 τ >> τ_{Universe}

• - radiative decays $N_1 \rightarrow v\gamma$

- so far: observations limit active-sterile mixing angle

$$\Gamma_{N_1 \to v\gamma} \simeq 5.5 \times 10^{-22} \theta_1^2 \left(\frac{M_1}{1 \text{ keV}}\right)^5 \text{s}^{-1}$$
$$\theta_1^2 \lesssim 1.8 \times 10^{-5} \left(\frac{1 \text{ keV}}{M_1}\right)^5$$

- mixing tiny, but naturally expected to be tiny: O(scale ratio)
- Other indirect effects of keV-ish sterile neutrino DM:
 - pulsar kicks Kusenko, Segre, Fuller, Mocioiu, Pascoli

M. Lindner

Sumary & Conclusions

- A keV-ish sterile neutrino is a very well motivated and good working Warm Dark Matter candidate ←→ finite v-masses
- Simplest realization: vMSM → requires non-thermal production
- Alternative: Sterile v's which are charged under some extended gauge group → interesting constrains
 - small mixings for keV neutrino from X-ray constraints
 - small mixings for other sterile neutrinos from entropy generation (DM abundance)
 - masses bound by BBN

→ Implications for neutrino mass generation:

- type-I see-saw not possible
- type-II works $\leftarrow \rightarrow$ very natural in gauge extensions
- requires one sterile neutrino to be light
 - → flavour symmetries ML, Merle, Niro to appear very soon