Majorana CP-Violation, $(\beta\beta)_{0\nu}$ -Decay and Leptogenesis

S. T. Petcov

SISSA/INFN, Trieste, Italy, and INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria

> NOW'06 Conca Specchiulla, Otranto September 9 - 16, 2006

Compelling Evidences for ν -Oscillations

 $-\nu_{atm}$: SK UP-DOWN ASYMMETRY $θ_Z$ -, L/E- dependences of μ-like events

Dominant $u_{\mu} \rightarrow
u_{\tau}$ K2K; MINOS, CNGS (OPERA)

 $-\nu_{\odot}$: Homestake, Kamiokande, SAGE, GALLEX/GNO Super-Kamiokande, SNO; KamLAND

Dominant $u_e
ightarrow
u_{\mu, au}$ BOREXINO,..., LowNu

- LSND

Dominant $\bar{
u}_{\mu}
ightarrow \bar{
u}_{e}$ MiniBOONE

$$\nu_{l\perp} = \sum_{j=1}^{N} U_{lj} \nu_{j\perp} \qquad l = e, \mu, \tau.$$
 (1)

B. Pontecorvo, 1957; 1958; 1967;Z. Maki, M. Nakagawa, S. Sakata, 1962;

Three Neutrino Mixing

$$\nu_{l\perp} = \sum_{j=1}^{3} U_{lj} \,\nu_{j\perp} \,\,. \tag{2}$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$
(3)

• $U - n \times n$ unitary:

 n
 2
 3
 4

 mixing angles:
 $\frac{1}{2}n(n-1)$ 1
 3
 6

CP-violating phases:

- ν_j Dirac: $\frac{1}{2}(n-1)(n-2) = 0 = 1 = 3$
- ν_j Majorana: $\frac{1}{2}n(n-1)$ 1 3 6

n = 3: 1 Dirac and

2 additional CP-violating phases, Majorana phases

S.M. Bilenky, J. Hosek, S.T.P.,1980; J. Schechter, J.W.F. Valle,1980; M. Doi, T. Kotani, E. Takasugi,1981

PMNS Matrix: Standard Parametrization

$$U = V \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix}$$
(4)

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13}e^{i\delta} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13}e^{i\delta} \end{pmatrix}$$
(5)

• $s_{ij} \equiv \sin \theta_{ij}, \ c_{ij} \equiv \cos \theta_{ij}, \ \theta_{ij} = [0, \frac{\pi}{2}],$

- δ Dirac CP-violation phase, $\delta = [0, 2\pi]$,
- α_{21} , α_{31} the two Majorana CP-violation phases.
- $\Delta m_{\odot}^2 \equiv \Delta m_{21}^2 \cong 8.0 \times 10^{-5} \text{ eV}^2 > 0$, $\sin^2 \theta_{12} \cong 0.30$, $\cos 2\theta_{12} \gtrsim 0.28$ (2 σ),
- $|\Delta m_{\text{atm}}^2| \equiv |\Delta m_{31}^2| \cong 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} \cong 1$,
- θ₁₃ the CHOOZ angle: sin² θ₁₃ < 0.027 (0.041) 2σ (3σ).
 A.Bandyopadhyay, S.Choubey, S.Goswami, S.T.P., D.P.Roy, hep-ph/0406328 (updated)
 T. Schwetz, hep-ph/0606060.

- $\sqrt{\Delta m_{\odot}^2 \sin^2 \theta_{12}} \cong 3.0 \times 10^{-3} \text{ eV} (\pm) \sqrt{|\Delta m_{\text{atm}}^2|} \sin^2 \theta_{13} \lesssim 2.2 \times 10^{-3} \text{ eV};$
- $\sqrt{|\Delta m_{\text{atm}}^2|} \cong 5 \times 10^{-2} \text{ eV}; \ \sqrt{|\Delta m_{\text{atm}}^2|} \cos 2\theta_{12} \gtrsim 1.4 \times 10^{-2} \text{ eV} \ (\cos 2\theta_{12} \gtrsim 0.28)$
- m_0 : $m_0^2 \gg \Delta m_\odot^2, |\Delta m_{
 m atm}^2|, m_0 \gtrsim 0.1 \ {
 m eV}$
- $sgn(\Delta m_{atm}^2) = sgn(\Delta m_{31}^2)$ not determined

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{31}^2 > 0$, normal mass ordering

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{32}^2 < 0$, inverted mass ordering

Convention: $m_1 < m_2 < m_3$ - NMO, $m_3 < m_1 < m_2$ - IMO

• Majorana phases α_{21} , α_{31} :

 $- \nu_l \leftrightarrow \nu_{l'}, \, ar{
u}_l \leftrightarrow ar{
u}_{l'}$ not sensitive;

S.M. Bilenky, J. Hosek, S.T.P.,1980; P. Langacker, S.T.P., G. Steigman, S. Toshev, 1987

 $-|<\!m>|$ in $(\beta\beta)_{0
u}$ -decay depends on α_{21} , α_{31} ;

 $-\Gamma(\mu \rightarrow e + \gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;

– BAU, leptogenesis scenario: $\alpha_{21,31}$!

Future Progress

- Determination of the nature Dirac or Majorana, of u_j .
- Determination of sgn($\Delta m^2_{\rm atm}$), type of $\nu-$ mass spectrum

 $m_1 \ll m_2 \ll m_3,$ NH, $m_3 \ll m_1 < m_2,$ IH, $m_1 \cong m_2 \cong m_3, \ m_{1,2,3}^2 >> \Delta m_{atm}^2,$ QD; $m_j \gtrsim 0.10$ eV.

- Determining, or obtaining significant constraints on, the absolute scale of ν_{j} -masses, or min (m_{j}) .
- Status of the CP-symmetry in the lepton sector: violated due to δ (Dirac), and/or due to α_{21} , α_{31} (Majorana)?
- High precision determination of Δm_{\odot}^2 , θ_{\odot} , $\Delta m_{\rm atm}^2$, θ_{atm} .
- Measurement of, or improving by at least a factor of (5 10) the existing upper limit on, $\sin^2 \theta_{13}$.

• Searching for possible manifestations, other than ν_l -oscillations, of the nonconservation of L_l , $l = e, \mu, \tau$, such as $\mu \to e + \gamma$, $\tau \to \mu + \gamma$, etc. decays. • Understanding at fundamental level the mechanism giving rise to the ν - masses and mixing and to the L_l -non-conservation. Includes understanding

– the origin of the observed patterns of ν -mixing and ν -masses ;

– the physical origin of CPV phases in U_{PMNS} ;

– Are the observed patterns of ν -mixing and of $\Delta m^2_{21,31}$ related to the existence of a new symmetry?

- Is there any relations between q-mixing and ν -mixing? Is $\theta_{12} + \theta_c = \pi/4$?

- Is $\theta_{23} = \pi/4$, or $\theta_{23} > \pi/4$ or else $\theta_{23} < \pi/4$?

- Is there any correlation between the values of CPV phases and of mixing angles in U_{PMNS} ?

• Progress in the theory of ν -mixing might lead to a better understanding of the origin of the BAU.

– Can the Majorana and/or Dirac CPVP in U_{PMNS} be the leptogenesis CPV parameters at the origin of BAU?

$(\beta\beta)_{0\nu}$ -Decay Experiments:

- Majorana nature of u_j
- Type of ν -mass spectrum (NH, IH, QD)
- Absolute neutrino mass scale
- ³H β -decay , cosmology: m_{ν} (QD, IH)
 - CPV due to Majorana CPV phases

 ν_j – Dirac or Majorana particles, fundamental problem

 ν_j -Dirac: conserved lepton charge exists, $L = L_e + L_\mu + L_\tau$, $\nu_j \neq \bar{\nu}_j$

 u_j -Majorana: no lepton charge is exactly conserved, $u_j \equiv \overline{
u}_j$

The observed patterns of ν -mixing and of $\Delta m_{\rm atm}^2$ and Δm_{\odot}^2 can be related to Majorana ν_j and an approximate symmetry:

$$L' = L_e - L_\mu - L_\tau$$

S.T.P., 1982

See-saw mechanism: u_j – Majorana

Establishing that ν_j are Majorana particles would be as important as the discovery of ν - oscillations.

If ν_j - Majorana particles, U_{PMNS} contains (3- ν mixing) δ -Dirac, α_{21} , α_{31} - Majorana physical CPV phases ν -oscillations $\nu_l \leftrightarrow \nu_{l'}$, $\bar{\nu}_l \leftrightarrow \bar{\nu}_{l'}$, $l, l' = e, \mu, \tau$, • are not sensitive to the nature of ν_j ,

S.M. Bilenky et al.,1980; P. Langacker et al., 1987

• provide information on $\Delta m_{jk}^2 = m_j^2 - m_k^2$, but not on the absolute values of ν_j masses.

The Majorana nature of ν_j can manifest itself in the existence of $\Delta L = \pm 2$ processes:

$$K^+ \to \pi^- + \mu^+ + \mu^+$$

 $\mu^- + (A, Z) \to \mu^+ + (A, Z - 2)$

The process most sensitive to the possible Majorana nature of ν_j - $(\beta\beta)_{0\nu}\text{-}$ decay

$$(A, Z) \to (A, Z + 2) + e^{-} + e^{-}$$

of even-even nuclei, ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd.

2n from (A,Z) exchange a virtual Majorana ν_j (via the CC weak interaction) and transform into 2p of (A,Z+2) and two free e^- .

strong in-medium modification of the basic process $dd \rightarrow uue^-e^-(\bar{v}_e\bar{v}_e)$

virtual excitation of states of all multipolarities in (A,Z+1) nucleus

(A,Z+2)

V. Rodin, talk at Gran Sasso, 2006

$$\begin{split} A(\beta\beta)_{0\nu} &\sim < m > \mathsf{M}(\mathsf{A},\mathsf{Z}), \qquad \mathsf{M}(\mathsf{A},\mathsf{Z}) - \mathsf{NME}, \\ || = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 \ e^{i\alpha_{21}} + m_3|U_{e3}|^2 \ e^{i\alpha_{31}}| \\ &= |m_1 \ c_{12}^2 \ c_{13}^2 + m_2 \ s_{12}^2 \ c_{13}^2 \ e^{i\alpha_{21}} + m_3 \ s_{13}^2 \ e^{i\alpha_{31}}|, \quad \theta_{12} \equiv \theta_{\odot}, \ \theta_{13} - \mathsf{CHOOZ} \end{split}$$

 α_{21} , α_{31} - the two Majorana CPVP of the PMNS matrix.

CP-invariance: $\alpha_{21} = 0, \pm \pi, \ \alpha_{31} = 0, \pm \pi;$

$$\eta_{21} \equiv e^{i\alpha_{21}} = \pm 1, \quad \eta_{31} \equiv e^{i\alpha_{31}} = \pm 1$$

relative CP-parities of ν_1 and $\nu_2,$ and of ν_1 and ν_3 .

L. Wolfenstein, 1981;

S.M. Bilenky, N. Nedelcheva, S.T.P., 1984;

B. Kayser, 1984.

Best sensitivity: Heidelberg-Moscow ⁷⁶Ge experiment.

- Claim for a positive signal at $> 3\sigma$:
- H. Klapdor-Kleingrothaus et al., PL B586 (2004),

```
|\langle m \rangle| = (0.1 - 0.9) \text{ eV} (99.73\% \text{ C.L.}).
```

```
IGEX <sup>76</sup>Ge: |<m>| < (0.33 - 1.35) eV (90% C.L.).
```

Taking data - NEMO3 (100 Mo), CUORICINO (130 Te):

|<m>| <(0.7-1.2) eV, |<m>| <(0.18-0.90) eV (90% C.L.).

Large number of projects: $| < m > | \sim (0.01 - 0.05)$ eV

```
CUORE - {}^{130}Te,
GERDA - {}^{76}Ge,
SuperNEMO - {}^{82}Se,
EXO - {}^{136}Xe,
MAJORANA - {}^{76}Ge,
MOON - {}^{100}Mo,
CANDLES - {}^{48}Ca,
XMASS - {}^{136}Xe.
```

$$|\!<\!m\!>|$$
 : m_j , $heta_\odot\equiv heta_{12}$, $heta_{13}$, $lpha_{21,31}$

 $m_{
m 1,2,3}$ - in terms of $\min(m_j)$, $\Delta m^2_{
m atm}$, Δm^2_{\odot}

S.T.P., A.Yu. Smirnov, 1994

Convention: $m_1 < m_2 < m_3$ - NMO, $m_3 < m_1 < m_2$ - IMO

$$\Delta m_{\odot}^2 \equiv \Delta m_{21}^2, \quad m_2 = \sqrt{m_1^2 + \Delta m_{\odot}^2}$$

while either

$$\Delta m_{\rm atm}^2 \equiv \Delta m_{31}^2 > 0$$
, $m_3 = \sqrt{m_1^2 + \Delta m_{\rm atm}^2}$, normal mass ordering, or

 $\Delta m_{\rm atm}^2 \equiv \Delta m_{32}^2 < 0, \quad m_1 = \sqrt{m_3^2 + |\Delta m_{\rm atm}^2| - \Delta m_{\odot}^2}, \quad \text{inverted mass ordering}$

The neutrino mass spectrum –

Normal hierarchical (NH) if $m_1 \ll m_2 \ll m_3$,

Inverted hierarchical (IH) if $m_3 \ll m_1 \cong m_2$,

Quasi-degenerate (QD) if $m_1 \cong m_2 \cong m_3 = m$, $m_j^2 >> |\Delta m_{atm}^2|$; $m_j \gtrsim 0.1 \text{ eV}$

Given $|\Delta m^2_{\rm atm}|$, Δm^2_{\odot} , θ_{\odot} , θ_{13} ,

|<m>| = |<m>| (m_{min}, α_{21} , α_{31} ; S), S = NO(NH), IO(IH).

$$\begin{split} A(\beta\beta)_{0\nu} &\sim < m > \mathsf{M}(\mathsf{A},\mathsf{Z}), \qquad \mathsf{M}(\mathsf{A},\mathsf{Z}) - \mathsf{NME}, \\ || &\cong \left| \sqrt{\Delta m_{\odot}^{2}} \sin^{2}\theta_{12}e^{i\alpha} + \sqrt{\Delta m_{31}^{2}} \sin^{2}\theta_{13}e^{i\beta_{M}} \right|, \ m_{1} \ll m_{2} \ll m_{3} \ (\mathsf{NH}), \\ || &\cong \sqrt{m_{3}^{2} + \Delta m_{13}^{2}} \left| \cos^{2}\theta_{12} + e^{i\alpha} \sin^{2}\theta_{12} \right|, \ m_{3} < (\ll)m_{1} < m_{2} \ (\mathsf{IH}), \\ || &\simeq m \left| \cos^{2}\theta_{12} + e^{i\alpha} \sin^{2}\theta_{12} \right|, \ m_{1,2,3} \cong m \gtrsim 0.10 \ \mathsf{eV} \ (\mathsf{QD}), \\ \theta_{12} \equiv \theta_{\odot}, \ \theta_{13} - \mathsf{CHOOZ}; \ \alpha \equiv \alpha_{21}, \ \beta_{M} \equiv \alpha_{31}. \end{split}$$

CP-invariance: $\alpha = 0, \pm \pi, \beta_M = 0, \pm \pi;$

 $|\!<\!m\!>\!|~\lesssim5 imes10^{-3}$ eV, NH;

$$\begin{split} \sqrt{\Delta m_{13}^2}\cos 2 heta_{12}&\cong 0.013~\mathrm{eV}\lesssim ~|<\!m>|~\lesssim \sqrt{\Delta m_{13}^2}\cong 0.055~\mathrm{eV},~~\mathrm{IH}; \ m\cos 2 heta_{12}\lesssim ~|<\!m>|~\lesssim m,~m\gtrsim 0.10~\mathrm{eV},~~\mathrm{QD}$$
.

S. Pascoli, S.T.P., 2006

The current 2σ ranges of values of the parameters used.

 $\begin{aligned} \sin^2\theta_{13} &= 0.015 \pm 0.006; \ 1\sigma(\Delta m_{\odot}^2) = 4\%, \ 1\sigma(\sin^2\theta_{\odot}) = 4\%, \ 1\sigma(|\Delta m_{\rm atm}^2|) = 6\%; \\ 2\sigma(|<\!m\!>\!| \) \text{ used}. \end{aligned}$

Nuclear Matrix Element Uncertainty

 $|\!<\!m\!>| = \zeta \; ((|\!<\!m\!>\!|_{\mathsf{exp}})_{\scriptscriptstyle{\mathsf{MIN}}} \pm \Delta) \;,\;\; \zeta \ge 1,$

 $(|\langle m \rangle|_{exp})_{MIN}$ - obtained with the maximal physically allowed value of NME. A measurement of the $(\beta\beta)_{0\nu}$ -decay half-life time

 $(|<\!m\!>|_{exp})_{_{\rm MIN}} - \Delta \leq |<\!m\!>|_{\leq \zeta} ((|<\!m\!>|_{exp})_{_{\rm MIN}} + \Delta)$.

The estimated range of ζ^2 :

- ⁴⁸Ca, $\zeta^2 \simeq 3.5$
- 76 Ge, $\zeta^2\simeq 10$
- ⁸²Se, $\zeta^2 \simeq 10$
- ¹³⁰Te, $\zeta^2 \simeq 38.7$

S. Elliot, P. Vogel, 2002

NH vs IH (QD):

$$\zeta \mid <\!m\!>\mid \stackrel{
m NH}{max} < \mid <\!m\!>\mid \stackrel{
m IH(QD)}{min} \;,\; \zeta \geq 1$$
 .

IH vs QD:

$$\zeta \;|\!<\!m\!>\!| \; \mathop{}_{\max}^{\mathrm{IH}} < |\!<\!m\!>\!| \; \mathop{}_{\min}^{\mathrm{QD}} \;, \; \zeta \geq 1$$
 .

Method of Analysis

$$\begin{split} \Gamma_{\rm th} &= G \left| \mathcal{M} \right|^2 \left(\left| < m > \right| \ (\mathbf{x}) \right)^2 \,, \ \mathbf{x} = \left(\mathbf{x}_{\rm osc}, \mathbf{x}_{\beta\beta}^{0\nu} \right) \\ \mathbf{x}_{\rm osc} &= \left(\theta_{12}, \theta_{13}, \left| \Delta \mathbf{m}_{31}^2 \right|, \Delta \mathbf{m}_{21}^2 \right) , \\ \mathbf{x}_{\beta\beta}^{0\nu} &= \left(m_0, \operatorname{sgn}(\Delta \mathbf{m}_{31}^2), \alpha_{21}, \alpha_{31} \right) . \end{split}$$
$$| < m > | \ ^{\text{obs}} \equiv \sqrt{\frac{\Gamma_{\text{obs}}}{G}} \frac{1}{|\mathcal{M}_0|} \,, \quad \sigma_{\beta\beta} = \frac{1}{2} \frac{1}{\sqrt{\Gamma_{\text{obs}}G}} \frac{1}{|\mathcal{M}_0|} \,\sigma(\Gamma_{\text{obs}}) \,, \end{split}$$

 $|\mathcal{M}_0|$ is some nominal value of the NME.

$$\chi^{2}(\mathbf{x}_{\beta\beta}^{0\nu},\mathbf{F}) = \min_{\boldsymbol{\xi} \in [1/\sqrt{F},\sqrt{F}]} \frac{\left[\boldsymbol{\xi} \left| \langle m \rangle \right| \, \left(\mathbf{x} \right) - \left| \langle m \rangle \right|^{\text{obs}} \right]^{2}}{\sigma_{\beta\beta}^{2} + \boldsymbol{\xi}^{2} \sigma_{\text{th}}^{2}}.$$
$$\boldsymbol{\xi} \equiv \frac{|\mathcal{M}|}{|\mathcal{M}_{0}|}, \quad \boldsymbol{\xi} = [1/\sqrt{F},\sqrt{F}], \quad F \ge 1,$$

 $|\mathcal{M}|$ is the *true* value of the NME.

S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

Majorana CPV Phases and | < m > |

IH spectrum: $m_{\min} < 0.01 \text{ eV}$, $\sin^2 \theta - \text{ negligible}$

$$\sqrt{\Delta m_{ ext{atm}}^2} |\cos 2 heta_\odot| \le |\!<\!m\!>\!| \ \le \sqrt{\Delta m_{ ext{atm}}^2}$$

"Just CP-violating" region:

$$\begin{aligned} (|< m >|_{\exp})_{\max} < \sqrt{(\Delta m_{\text{atm}}^2)_{\min}} , \\ (|< m >|_{\exp})_{\min} > \sqrt{(\Delta m_{\text{atm}}^2)_{\max}} (\cos 2\theta_{\odot})_{\max} , \\ |< m >| = \zeta ((|< m >|_{\exp})_{\min} \pm \Delta) , \quad \zeta \ge 1 \end{aligned}$$

Necessary condition for establishing CP-violation:

$$1 \leq \zeta < \frac{\sqrt{(\Delta m_{\rm atm}^2)_{\rm min}}}{\sqrt{(\Delta m_{\rm atm}^2)_{\rm max}} \left(\cos 2\theta_\odot\right)_{\rm max} + 2\Delta} \ \simeq \frac{1}{\left(\cos 2\theta_\odot\right)_{\rm max}}$$

QD spectrum, $m_{1,2,3} \simeq m_0 \gtrsim 0.20$ eV - similar condition: $\Delta m_{\rm atm}^2 \rightarrow m_0^2$.

CPV can be established provided

- $|\!<\!m\!>|$ measured with Δ \lesssim 15% ;
- $\Delta m^2_{\rm atm}$ (IH) or m_0 (QD) measured with $\delta \lesssim 10\%$;
- $-\xi \lesssim 1.5$;
- α_{21} (QD): in the interval $\sim [\frac{\pi}{4} \frac{3\pi}{4}]$, or $\sim [\frac{5\pi}{4} \frac{3\pi}{2}]$;
- $\tan^2 heta_\odot \gtrsim 0.40$.

S. Pascoli, S.T.P., W. Rodejohann, 2002

S. Pascoli, S.T.P., L. Wolfenstein, 2002

S. Pascoli, S.T.P., T. Schwetz, hep-ph/0505226

No "No-go for detecting CP-Violation via $(\beta\beta)_{0\nu}$ -decay"

V. Barger *et al.*, 2002

Absolute Neutrino Mass Measurements

The Troitzk and Mainz ³H β -decay experiments

 $m_{
u_e} < 2.3 \text{ eV}$ (95% C.L.)

There are prospects to reach sensitivity

KATRIN : $m_{\nu_e} \sim 0.2 \text{ eV}$

Cosmological and astrophysical data: the WMAP result combined with data from large scale structure surveys (2dFGRS, SDSS)

$$\sum_j m_j \equiv \Sigma < (0.4 - 1.7) \,\, {
m eV}$$

The WMAP and future PLANCK experiments can be sensitive to

$$\sum_j m_j \cong 0.4 \text{ eV}$$

Data on weak lensing of galaxies by large scale structure, combined with data from the WMAP and PLANCK experiments may allow to determine

$$\sum_j m_j$$
: $\delta \cong 0.04$ eV.

M_{ν} from the See-Saw Mechanism

P. Minkowski, 1977. M. Gell-Mann, P. Ramond, R. Slansky, 1979;

T. Yanagida, 1979;

R. Mohapatra, G. Senjanovic, 1980.

• Explains the smallness of ν -masses.

• Through leptogenesis theory links the ν -mass generation to the generation of baryon asymmetry of the Universe Y_B .

S. Fukugita, T. Yanagida, 1986.

• In SUSY GUT's with see-saw mechanism of ν -mass generation, the LFV decays

 $\mu \rightarrow e + \gamma, \quad \tau \rightarrow \mu + \gamma, \quad \tau \rightarrow e + \gamma \ , \ \text{etc.}$

are predicted to take place with rates within the reach of present and future experiments.

F. Borzumati, A. Masiero, 1986.

• The ν_j are Majorana particles; $(\beta\beta)_{0\nu}$ -decay is allowed.

See-Saw: Dirac ν -mass m_D + Majorana mass M_R for N_R

The Role of the CPV Phases

$$-\mathcal{L} = \overline{N_{Ri}} (m_D)_{ij} \nu_{Lj} + \frac{1}{2} \overline{(N_{Ri})^c} (M_R)_{ij} N_{Rj}$$

 m_D generated by the Yukawa interaction:

$$-\mathcal{L}_{Y} = \overline{N_{Ri}} (Y_{\nu})_{ij} L_{j} H_{u}, \ v_{u} = 174 \text{ GeV} \sin \beta, \ v_{u} Y_{\nu} = m_{D} - \text{complex}$$

For M_R - sufficiently large,

$$\begin{split} m_{\nu} \simeq m_{D}^{T} M_{R}^{-1} m_{D} = v_{u}^{2} Y_{\nu}^{T} M_{R}^{-1} Y_{\nu} = U_{\mathsf{PMNS}}^{*} m_{\nu}^{\mathsf{diag}} U_{\mathsf{PMNS}}^{\dagger} .\\ \text{Basis:} \ M_{R} = (M_{1}, M_{2}, M_{3}); \ D_{N} \equiv \mathsf{diag}(M_{1}, M_{2}, M_{3}), \ D_{\nu} \equiv \mathsf{diag}(m_{1}, m_{2}, m_{3}).\\ Y_{\nu} = \sqrt{D_{N}} \ R \ \sqrt{D_{\nu}} \ (U_{\mathsf{PMNS}})^{\dagger} / v_{u}, \ \text{all at} \ M_{R} \ ; \ R\text{-complex}, \ R^{T}R = 1.\\ \text{J.A. Casas and A. Ibarra, 2001}\\ \text{In GUTs,} \ M_{R} < M_{X}, \ M_{X} \sim 10^{16} \text{ GeV}; \end{split}$$

in GUTs, e.g., $M_R = (10^9, 10^{12}, 10^{15})$ GeV, $m_D \sim 1$ GeV.

Leptogenesis

$$Y_B = \frac{n_B - n_{\bar{B}}}{S} \sim 6 \times 10^{-10}$$

 $Y_B \cong -10^{-2} \quad \kappa \epsilon$
W. Buchmüller, M. Plümacher, 1998
W. Buchmüller, P. Di Bari, M. Plümacher, 2004

 κ - efficiency factor; $\kappa \sim 10^{-1} - 10^{-3}$: $\varepsilon \gtrsim 10^{-7}$.

 \mathcal{E} : CP-, L- violating asymmetry generated in out of equilibrium $N_{Rj}-$ decays in the early Universe,

G. F. Giudice et al., 2004

Plans: $BR(\tau \to \mu + \gamma) < 10^{-8} - 10^{-9}$ (LHC)

Standard Theory with $m_{\nu} \neq 0$, $U_{\text{PMNS}} \neq 1$:

$$BR(\mu
ightarrow e + \gamma) \sim 2.5 imes 10^{-4} \ (rac{m_j}{M_W})^4 \, \lesssim \, 10^{-46}$$

S.T.P, 1977;

SUSY GUTs with see-saw mechanism:

• Flavour universality of SUSY breaking at $M_X \sim 10^{16}$ GeV (scalar masses m_0 , trilinear couplings $A_0 \equiv a_0 m_0$, gaugino masses $m_{1/2}$)

• RG running: "large" LFV corrections to the slepton masses $\delta m^2 \sim Y_{\nu}^{\dagger} Y_{\nu}$ F. Borzumati, A. Masiero, 1986.

$$(m_{sL}^2)_{ji} \approx -\frac{1}{8\pi^2} (3m_0^2 + A_0^2) \left(Y_{\nu}^{\dagger} Y_{\nu}\right)_{ji} \log \frac{M_{\mathsf{X}}}{M_{\mathsf{R}}}, \qquad m_0, A_0 - \text{ at } M_X.$$

$$BR(\ell_i \to \ell_j + \gamma) \simeq \alpha^3 \left(\frac{(3 + A_0^2) m_0^2}{8\pi^2 m_S^4 G_F} \right)^2 \left| (Y_{\nu}^{\dagger} L Y_{\nu})_{ij} \right|^2 \tan^2 \beta \sim \frac{\left| (Y_{\nu}^{\dagger} L Y_{\nu})_{ij} \right|^2}{G_F^2 m_{\text{SUSY}}^4} \, \tan^2 \beta \, ,$$

 m_S - sparticle mass (at M_X); $L_k = \ln M_X/M_k$, k = 1, 2, 3.

$$\begin{split} m_S^8 &\simeq 0.5 \ m_0^2 \ m_{1/2}^2 \ (m_0^2 + 0.6m_{1/2}^2)^2 \ . \\ \text{S.T.P., S. Profumo, Y. Takanishi, C. Yaguna, 2003} \\ \text{For, e.g., } A_0 &\sim m_S \sim m_0 \sim 10^2 \ \text{GeV}, \ M_X \sim 10^{16} \ \text{GeV}, \ M_R \sim 10^{11} \ \text{GeV}, \ \tan \beta = 10, \\ BR(\ell_i \to \ell_j + \gamma) \sim 10^{-11} \ \left| (m_D^{\dagger} m_D)_{ij} \ \text{GeV}^{-2} \right|^2 \end{split}$$

"Benchmark SUSY scenario":

 $m_0 = m_{1/2} = 250 \text{ GeV}, \ A_0 = a_0 m_0 = -100 \text{ GeV}, \ \tan \beta \sim 5 - 10$.

 $\chi_1^0: m_1 \sim 100 \text{ GeV}; \chi_2^0, \chi^+: m_2 \sim 250 \text{ GeV}; m_{sq} \sim (400-600) \text{ GeV} (LHC).$

$$BR(\ell_i \to \ell_j + \gamma) \simeq 9.1 \times 10^{-10} \left| \left(\mathbf{Y}_{\nu}^{\dagger} L \mathbf{Y}_{\nu} \right)_{ij} \right|^2 \ \tan^2 \beta \ , \ \tan^2 \beta \gtrsim 10 \ .$$

- Leptogenesis: $\operatorname{Im}(Y_{\nu}Y_{\nu}^{\dagger})^2$, $(Y_{\nu}Y_{\nu}^{\dagger})_{11}$
- $\mu \rightarrow e + \gamma$, etc.: $Y_{\nu}^{\dagger}LY_{\nu}$
- See-saw: $Y_{\nu} = \sqrt{D_N} R \sqrt{D_{\nu}} (U_{\text{PMNS}})^{\dagger}$, all at M_R ; $R^T R = 1$.

J.A. Casas and A. Ibarra, 2001

Leptogenesis: $Y_{\nu}Y_{\nu}^{\dagger} = \sqrt{D_N} R D_{\nu} R^{\dagger} \sqrt{D_N}$, *R* should be complex.

 $R = R_{12}(\omega_{12})R_{13}(\omega_{13})R_{23}(\omega_{23}) = R_{12}(\omega_{12})R_{23}(\omega_{23})R_{12}(\omega'_{12}), \quad \omega_{ij}\text{-complex}.$

$$\mu \to e + \gamma : (Y_{\nu}^{\dagger} L Y_{\nu})_{21} = (Y_{\nu}^{\dagger})_{21} L_1(Y_{\nu})_{11} + (Y_{\nu}^{\dagger})_{22} L_2(Y_{\nu})_{21} + (Y_{\nu}^{\dagger})_{23} L_3(Y_{\nu})_{31}$$

- $(Y_{\nu}^{\dagger})_{21}L_1(Y_{\nu})_{11} \propto \sqrt{m_j m_k} \ M_1/v_u^2, \ j,k \neq 1$ (3), NH (IH);
- $(Y_{
 u}^{\dagger})_{22}L_2(Y_{
 u})_{21} \propto \sqrt{m_j m_k} \ M_2/v_u^2$;
- $(Y_{\nu}^{\dagger})_{23}L_3(Y_{\nu})_{31} \propto \sqrt{m_j m_k} \ M_3/v_u^2 \ .$
- Hierarchical spectrum: $M_1 \ll M_2 \ll M_3$

Low Energy Leptonic CPV and Leptogenesis Assume:

 $10^9 \lesssim M_1 \lesssim 10^{12} \text{ GeV}, \quad M_1 \ll M_2, M_3$

The "one-flavor" approximation used is correct only if $Y_{e,\mu,\tau}$ - "small": Boltzmann eqn. for $n(N_1)$ and $\Delta L = \Delta(L_e + l_\mu + L_\tau)$. $Y_l \bar{L}_l \Phi l_R$ - out of equilibrium at $T \sim M_1$. At $M_1 \sim 10^{12}$ GeV: Y_{τ} - in equilibrium, $Y_{e,\mu}$ - not. At $M_1 \sim 10^9$ GeV: Y_{τ} , Y_{μ} - in equilibrium, Y_e - not. Thus, at $M_1 \sim 10^{12}$ GeV: L_{τ} , ΔL_{τ} - distinguishable; L_e , L_{μ} , ΔL_e , ΔL_{μ} - individually not distinguishable;

 $L_e + L_\mu$, $\Delta(L_e + L_\mu)$

A. Abada et al., 2006; E. Nardi et al., 2006A. Abada et al., 2006;S. Blanchet and P. Di Bari, 2006.

Individual asymmetries:

$$\varepsilon_{1\alpha} = -\frac{3M_1}{16\pi v^2} \frac{\operatorname{Im}\left(\sum_{\beta\rho} m_{\beta}^{1/2} m_{\rho}^{3/2} U_{\alpha\beta}^* U_{\alpha\rho} R_{1\beta} R_{1\rho}^*\right)}{\sum_{\beta} m_{\beta} |R_{1\beta}|^2}$$

$$Y_{\alpha} \sim \varepsilon_{1\alpha} \kappa (\widetilde{m_{1\alpha}}), \quad \widetilde{m_{1\alpha}} = |Y_{\nu 1\alpha}|^2 v^2 / M_1$$
The baryon asymmetry is
$$Y_{\beta} = -(12/37) \left((115/36)Y_2 + (37/9)Y_7\right),$$

$$Y_2 = Y_{e+\mu}, \quad \varepsilon_2 = \varepsilon_{1e} + \varepsilon_{1\mu}, \quad \widetilde{m_2} = \widetilde{m_{1e}} + \widetilde{m_{1\mu}}$$

Real R: $\varepsilon_{1\alpha} \neq 0$, CPV from UExample: NH spectrum, $M_1 \ll M_2 \ll M_3$,

$$\epsilon_{\tau} \simeq \frac{3M_1}{16\pi v^2} \frac{(\Delta m_{\odot}^2 \Delta m_{31}^2)^{1/4} R_{12} R_{13}}{\sqrt{\Delta m_{\odot}^2 / \Delta m_{31}^2} R_{12}^2 + R_{13}^2} \times \left(c_{12}c_{23}s_{23}\sin\frac{\alpha_{32}}{2} - s_{12}c_{23}^2 s_{13}\sin\left(\delta - \frac{\alpha_{32}}{2}\right)\right)$$

S. Pascoli, S.T.P., A. Riotto, 2006.

 $M_1 = 10^{11}$ GeV, $R_{12} = 0.95$, $R_{13} = 0.3$, $\alpha_{32} = \pi$, $s_{13} = 0.09$, $s_{23} = 1/\sqrt{2}$, $s_{12} = 1/\sqrt{3}$, $0 \le \delta \le 2\pi$; $J \equiv Im(U_{e1}U_{e2}^*U_{\mu 1}^*U_{\mu 2})$.

S. Pascoli, S.T.P., A. Riotto, 2006.

The Role of LFV Decays: $\mu \rightarrow e + \gamma$ Assume: $M_1 \ll M_2 \ll M_3, M_3 \gtrsim 5 \times 10^{13} \text{ GeV (GUTs)}$

 $M_1 \ll M_2 \ll M_3$, $M_3 \gtrsim 5 \times 10^{13}$ GeV (GUTS) $(m_{\nu} \cong m_D^2/M_R; m_D \sim 175$ GeV, $m_{\nu} \sim 5 \times 10^{-2}$ eV, then $M_R \sim 6 \times 10^{14}$ GeV.)

 $M_{SUSY} \sim (100 - 600)$ GeV (LHC), e.g.,

$$m_0 = m_{1/2} = 250 \text{ GeV}, \quad A_0 = a_0 m_0 = -100 \text{ GeV},$$

 $BR(\mu \rightarrow e + \gamma) < 1.2 \times 10^{-11}$ implies:

terms ~ M_3 in $|(\mathbf{Y}_{\nu}^{\dagger}L\mathbf{Y}_{\nu})_{21}|$ – **suppressed**, i.e., $Y_{\nu 32} \cong 0$, or $Y_{\nu 31} \cong 0$.

One possible solution - the form of \mathbf{R} :

 $R = R_{12}(\omega_{12})R_{13}(\pi/2)R_{23}(\omega_{23}) = R(\omega_{12} - \omega_{23}) \equiv R(\omega), \text{ NH},$

 $R = R_{12}(\omega_{12})R_{23}(\mathbf{0})R_{12}(\omega_{12}') = R_{12}(\omega_{12} + \omega_{12}') \equiv R_{12}(\omega), \quad \text{IH}.$

NH spectrum:

$$\mathbf{R} \simeq \begin{pmatrix} 0 & \sin \omega & \cos \omega \\ 0 & \cos \omega & -\sin \omega \\ -1 & 0 & 0 \end{pmatrix}, \qquad \omega = \rho + i\sigma.$$
(6)

'. Rodeiohann, T. Shindou, Y. Takamshi, 2005 also: J. Ellis et al., 2004; A. Ibarra, G.G. Ross, 2004 The terms $\sim M_2$ in $|(\mathbf{Y}_{\nu}^{\dagger}L\mathbf{Y}_{\nu})_{21}|$ – dominant.

Leptogenesis, NH spectrum: $M_1 \gtrsim 10^{10}$ GeV, ω -complex.

 $M_2 \gtrsim \times 10^{11}$ GeV: predicted $BR(\mu \rightarrow e + \gamma) \sim 10^{-12}$

$$\epsilon_1 \simeq -\frac{3}{8\pi} \left(\frac{m_3 M_1}{v_u^2} \right) \frac{\operatorname{Im} \left[c_{\omega}^2 + \frac{\Delta m_{\odot}^2}{\Delta m_{31}^2} \ s_{\omega}^2 \right]}{|c_{\omega}|^2 + \sqrt{\frac{\Delta m_{\odot}^2}{\Delta m_{31}^2}} \ |s_{\omega}|^2}$$

$$\begin{aligned} |\epsilon_1| &\lesssim \frac{3}{8\pi} \left(\frac{m_3 M_1}{v_u^2} \right) \simeq 1.97 \times 10^{-7} \left(\frac{m_3}{0.05 \text{ eV}} \right) \left(\frac{M_1}{10^9 \text{ GeV}} \right) \left(\frac{174 \text{ GeV}}{v_u} \right)^2 \,. \\ \tilde{m}_1 \simeq m_3 |c_\omega|^2 + m_2 |s_\omega|^2 &= \frac{1}{2} (m_3 + m_2) \cosh 2\sigma + \frac{1}{2} (m_3 - m_2) \cos 2\rho \ge m_2 \,. \end{aligned}$$

 $9 \times 10^{-3} \text{ eV} < \widetilde{m}_1 \lesssim 0.12 eV$: $1.9 \times 10^{-3} \lesssim \kappa < 3.9 \times 10^{-2}$

IH (QD) spectrum:

•

$$\mathbf{R} \simeq \begin{pmatrix} \cos\omega & \sin\omega & 0\\ -\sin\omega & \cos\omega & 0\\ 0 & 0 & 1 \end{pmatrix} .$$
(7)

The terms $\sim M_2$ in $|(\mathbf{Y}_{\nu}^{\dagger}L\mathbf{Y}_{\nu})_{21}|$ – dominant.

Leptogenesis, IH spectrum: $M_1 \gtrsim 7 \times 10^{12}$ GeV, ω -complex.

 $M_2 \gtrsim 5 \times 10^{13}$ GeV: predicted $BR(\mu \rightarrow e + \gamma) \gg 10^{-11}$

$$\epsilon_{1} \simeq -\frac{3}{8\pi} \left(\frac{m_{2} \ M_{1}}{v_{u}^{2}} \right) \frac{\Delta m_{\odot}^{2}}{\left| \Delta m_{31}^{2} \right|} \frac{\mathrm{Im} \left[\sin^{2} \omega_{12} \right]}{\left(1 + \frac{\Delta m_{\odot}^{2}}{2|\Delta m_{31}^{2}|} \right) \left| \sin \omega_{12} \right|^{2} + \left| \cos \omega_{12} \right|^{2}}$$

$$\begin{split} |\epsilon_1| &\lesssim \frac{3}{16\pi} \left(\frac{m_2 M_1}{v_u^2} \right) \frac{\Delta m_{\odot}^2}{|\Delta m_{31}^2|} \simeq 3.2 \times 10^{-9} \left(\frac{m_2}{0.05 \text{ eV}} \right) \left(\frac{M_1}{10^9 \text{ GeV}} \right) \left(\frac{174 \text{ GeV}}{v_u} \right)^2, \\ \widetilde{m}_1 \simeq m_{1,2} (|\cos \omega_{12}|^2 + |\sin \omega_{12}|^2) = m_{1,2} \cosh 2\sigma \ge m_{1,2} \,. \end{split}$$

 $5 \times 10^{-2} \text{ eV} < \widetilde{m}_1 \lesssim 0.1 eV$: $2.4 \times 10^{-3} \lesssim \kappa < 5.4 \times 10^{-3}$

S.T.P., W. Rodejohann, T. Shindou, Y. Takanishi, 2005

Two possibilities:

• $M_{SUSY} \sim (600 - 2000)$ GeV, $(m_{1/2} \gg m_0, \text{ e.g, } m_0 = 300$ GeV, $m_{1/2} = 1400$ GeV, $a_0 m_0 = 0)$

• $M_{SUSY} \sim (100 - 600)$ GeV, but $\mathbf{Y}_{\nu 21} = 0$, or $\mathbf{Y}_{\nu 22} = 0$

A. $Y_{\nu 21} = 0$:

$$\tan \omega = e^{-i\alpha/2} \, \tan \theta_{12}.$$

B. $Y_{\nu 22} \cong 0$, neglecting s_{13} :

$$an \omega = -e^{-i\alpha/2} \operatorname{cot} \theta_{12}.$$

Leptogenesis: ω -complex; thus $\alpha \neq 0, \pi$, CP-violating values

B. $Y_{\nu 22} = 0$, including s_{13} :

$$\tan \omega = -\frac{c_{12} - s_{12}s_{13}e^{-i\delta}}{s_{12} + c_{12}s_{13}e^{-i\delta}} e^{-i\alpha/2}$$

IH spectrum:

$$|\langle m \rangle| \cong \sqrt{\Delta m_{13}^2 \left|\cos^2 \theta_{12} + e^{i\alpha} \sin^2 \theta_{12}\right|}$$

S.T. Petcov, T. Shindou, 2006

Figure 6: Predicted values of Y_B and $B(\mu \to e\gamma)$ for $s_{13} = 0$. The SUSY parameters are fixed as $m_0 = m_{1/2} = 450$, $A_0 = 0$, and $\tan \beta = 5$.

Conclusions

Determining the nature - Dirac or Majorana, of massive neutrinos is of fundamental importance for understanding the origin of neutrino masses.

The see-saw mechanism provides a link between ν -mass generation and BAU.

SUSY see-saw: LFV processes $\mu \rightarrow e + \gamma$, etc.

LHC: constraints on (discovery of?) SUSY.

 $\mu \rightarrow e + \gamma$, leptogenesis - significant constraints on the theory.

Majorana CPV phases in U_{PMNS} : $(\beta\beta)_{0\nu}$ -decay, Y_{B} , $\mu \rightarrow e + \gamma$.

CPV phases in U_{PMNS} can be the leptogenesis CPV parameters.

Low energy leptonic CPV can be directly related to the existence of BAU.

The searches for leptonic CP-violation are of fundamental importance.

Supporting Slide

Oscillation Parameters

$$\begin{split} \Delta m_{\odot}^2 &= 8.0 \times 10^{-5} \text{ eV}^2 , \quad 3\sigma(\Delta m_{\odot}^2) = 12\% ,\\ &\sin^2\theta_{\odot} = 0.30 , \quad 3\sigma(\sin^2\theta_{\odot}) = 24\% ,\\ &|\Delta m_{\text{atm}}^2| = 2.5 \times 10^{-3} \text{ eV} , \quad 3\sigma(|\Delta m_{\text{atm}}^2|) = 28\%. \end{split}$$

Future:

3 kTy KamLAND: $3\sigma(\Delta m_{\odot}^2) = 7\%$, $3\sigma(\sin^2\theta_{\odot}) = 18\%$; A. Bandyopadhyay et al., hep-ph/0410283

SK-Gd (0.1% Gd: 43×(KL $\bar{\nu}_e$ rate)), 3y: $3\sigma(\Delta m_{\odot}^2) \cong 4\%$ S. Choubey, S.T.P., hep-ph/0404103; J. Beacom and M. Vagins, hep-ph/0309300

KL type reactor $\bar{\nu}_e$ detector, $L \sim 60$ km, ~ 60 GW kTy: $3\sigma(\sin^2\theta_{\odot}) \cong 12\%$ A. Bandyopadhyay et al., hep-ph/0410283 and hep-ph/0302243; H. Minakata et al., hep-ph/0407326

T2K (SK): $3\sigma(|\Delta m_{\rm atm}^2|) \cong 6\%$

sgn(Δm_{atm}^2): ν_{atm} experiments, studying the subdominant $\nu_{\mu(e)} \rightarrow \nu_{e(\mu)}$ and $\bar{\nu}_{\mu(e)} \rightarrow \bar{\nu}_{e(\mu)}$ oscillations; LBL ν -oscillation experiments (T2K, NO ν A); ν -factory.

 $\sin^2 \theta_{13}$: reactor $\bar{\nu}_e$ experiments, $L \sim (1-2)$ km: Double CHOOZ, Daya-Bay, KASKA - factor (5 - 10).

Majorana Neutrinos

- Can be defined in QFT using fields or states.
- Fields: $\chi_k(x)$ 4 component (spin 1/2), complex, m_k
- Majorana condition:

 $C \ (\bar{\chi}_k(x))^{\top} = \xi_k \chi_k(x), \quad |\xi_k|^2 = 1$

- Invariant under proper Lorentz transformations.
- Reduces by 2 the number of components in $\chi_k(x)$.
- Implications:

$$U(1): \ \chi_k(x) o e^{ilpha} \chi_k(x) - \ ext{impossible}$$

- $-\chi_k(x)$ cannot absorb phases.
- $-Q_{U(1)} = 0$: $Q_{el} = 0, L_l = 0, L = 0, ...$
- $\chi_k(x)$: 2 spin states of a spin 1/2 absolutely neutral particle - $\chi_k \equiv \bar{\chi}_k$

Propagators: $\Psi(x)$ -Dirac, $\chi(x)$ -Majorana $< 0|T(\Psi_{\alpha}(x)\overline{\Psi}_{\beta}(y))|0> = S_{\alpha\beta}^{F}(x-y)$, $< 0|T(\Psi_{\alpha}(x)\Psi_{\beta}(y))|0> = 0$, $< 0|T(\overline{\Psi}_{\alpha}(x)\overline{\Psi}_{\beta}(y))|0> = 0$. $< 0|T(\chi_{\alpha}(x)\overline{\chi}_{\beta}(y))|0> = S_{\alpha\beta}^{F}(x-y)$, $< 0|T(\chi_{\alpha}(x)\chi_{\beta}(y))|0> = -\xi^{*}S_{\alpha\kappa}^{F}(x-y)C_{\kappa\beta}$, $< 0|T(\overline{\chi}_{\alpha}(x)\overline{\chi}_{\beta}(y))|0> = \xi C_{\alpha\kappa}^{-1}S_{\kappa\beta}^{F}(x-y)$

$$U_{CP} \chi(x) U_{CP}^{-1} = \eta_{CP} \gamma_0 \chi(x'), \quad \eta_{CP} = \pm i$$
.

Currents of Majorana Fields