THEORY OF

NEUTRINO MASSES

Ferruccio Feruglio

Neutrino Oscillation Workshop
Conca Specchiulla, September $9^{\text {th }}-16^{\text {th }} 2006$

Plan

1. a lesson from the recent past
2. two extrapolations from lesson 1.
3. speculations

1. solution to sol and atm neutrino anomalies was the simplest

v propagation studied with 4 independent sources

- sun
- cosmic rays
- reactors
- accelerators
spanning > 12 order of magnitudes in L/E
vs propagate as massive neutral fermions with specific mixing angles between mass and interaction eigenstates:

v oscillations

+ possibly, a number of (still undetected) subleading effects

non-oscillation "solutions"

v decay	$P_{f f}=c+c^{\prime} e^{-\frac{m L}{\tau E}}+\ldots$	wrong E dependence
v decoherence	$P_{f f}=1-\frac{1}{2} \sin ^{2} 2 \vartheta\left(1-e^{-\frac{\lambda}{E}} \cos \frac{\Delta m^{2} L}{2 E}\right)$	wrong E dependence
spin flavour precession (for solar v)	$\mu_{i j} \approx 10^{-11} \mu_{B} \quad B \approx 80$ KGauss	rejected by KamLAND no such large B in Earth
Lorentz invariance violation	$P_{f f}=1-\sin ^{2} 2 \vartheta \sin ^{2}(\delta c L E / 2)$	wrong E dependence
non-standard v interactions	$\delta L=\varepsilon G_{F} \psi \psi \nu \nu$ E-independent $\quad P_{f f}$	sol: clash between solar and KamLAND data atm: wrong E dependence
mass varying neutrinos	$\delta m_{v}=\frac{\lambda \lambda^{\prime}}{m^{2}} N_{e}$	sol: clash between solar and KamLAND data
v oscillations with a non unitary mixing matrix U [1]	non-canonical v kinetic terms in flavour basis from dim=6 operator	v oscillations, W, Z decays universality tests, LFV $\mathrm{UU}^{+}=1$ at the percent level

[1] Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon 0607020
all these effects can play, at most, a subleading role
results can be encoded in a Lorentz-invariant Lagrangian

$1^{\text {st }}$ evidence of physics beyond the SM after more than 30 years!

additional operators giving negligibly
\rightarrow small contributions to v propagation
L_{SM} invariant under
global, non - anomalous

$$
\frac{B}{3}-L_{e}, \quad \frac{B}{3}-L_{\mu}, \quad \frac{B}{3}-L_{\tau}
$$

broken individually by $\delta \mathrm{L}(\mathrm{mv})$ possible exception: ($B-L$) in present experiments
either $\operatorname{dim}(\delta \mathrm{L}) \geq 6$ such as e.g.

$$
\frac{C_{1}}{\Lambda^{2}} \psi \psi l l+\frac{C_{2}}{\Lambda^{2}}(l H)^{+} \gamma^{\mu} \partial_{\mu}(l H)+\ldots
$$

or new particles in δL such as
$\lambda \varphi \nu \nu+\ldots$
new (pseudo)scalar

low-energy parameters in $\bar{\delta}\left(m_{v}\right)$

v masses
[3 light active v]

$$
m_{1}, m_{2}, m_{3}
$$

$$
\text { order } \quad m_{1}<m_{2}
$$

$$
\Delta m_{21}^{2}<\left|\Delta m_{32}^{2}\right|,\left|\Delta m_{31}^{2}\right| \quad\left[\Delta m_{i j}^{2} \equiv m_{i}^{2}-m_{j}^{2}\right]
$$

i.e. 1 and 2 are, by definition, the closest levels
two, still open, possibilities:

| two, still open,
 possibilities: | 3 | | |
| :--- | :--- | :--- | :--- | :--- |
| | 2 | | |

Mixing matrix (analogous to $\mathrm{V}_{\text {CKM }}$)

$$
\begin{aligned}
& U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{i \delta} \\
-s_{12} c_{23}-c_{12} s_{13} s_{23} e^{-i \delta} & c_{12} c_{23}-s_{12} s_{13} s_{23} e^{-i \delta} & c_{13} s_{23} \\
-c_{12} s_{13} c_{23}+s_{12} s_{23} e^{-i \delta} & -s_{12} s_{13} c_{23}-c_{12} s_{23} e^{-i \delta} & c_{13} c_{23}
\end{array}\right) \times \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \alpha} & 0 \\
0 & 0 & e^{i \beta}
\end{array}\right)} \\
& \text { - only if } v \text { are Majorana } \\
& \text { - drops in oscillations }
\end{aligned}
$$

from data

$$
\begin{aligned}
& \Delta m_{\text {sol }}^{2} \equiv \Delta m_{21}^{2}=7.92(1 \pm 0.09) \times 10^{-5} \mathrm{eV}^{2} \\
& \Delta m_{\text {atm }}^{2} \equiv\left|\Delta m_{32}^{2}\right|=2.6\left(1_{-0.15}^{+0.14}\right) \times 10^{-3} \mathrm{eV}^{2}
\end{aligned}
$$

[Marrone, ICHEP 2006 Moscow,
Fogli, Lisi, Marrone, Palazzo, 0506083]
sign $\left[\Delta m_{32}^{2}\right]$ unknown
$m_{i}<2 \mathrm{eV} \quad 95 \%$ C.L. [Tritium β-decay]

next CMB satellite + weak grav. $\quad \sum m_{i}<(0.02 \div 0.08) \mathrm{eV}(1 \sigma)$ lensing + improved galaxy survey

$$
\begin{aligned}
& \sin ^{2} \vartheta_{12}=0.314\left(1_{0.15}^{+0.18}\right) \\
& \sin ^{2} \vartheta_{23}=0.45\left(1_{-0.20}^{+0.35}\right) \\
& \sin ^{2} \vartheta_{13}=0.8_{-0.8}^{+2.2} \times 10^{-2}
\end{aligned}
$$

two lepton mixing angles are large

$V_{u s} \approx \lambda \quad V_{c b} \approx \lambda^{2} \quad V_{u b} \approx \lambda^{3}$
$\lambda \approx 0.22$
δ, α, β unknown

some parameters measured already quite precisely

$$
\left.\left.\begin{array}{c}
\vartheta_{12}=\left(34.1_{-1.6}^{+1.7}\right)^{0}
\end{array}\right][1 \sigma]\right][\underbrace{\vartheta_{C}}_{\text {Cabibbo angle }}=\left(47.0_{-1.6}^{+1.7}\right)^{0} .
$$

quark-lepton complementarity?
[Raidal 0404046
Minakata, Smirnov 0405088]

part 2.

two extrapolations from lesson 1

$1^{\text {st }}$ extrapolation: only $v_{e} v_{\mu}$ and v_{τ} take part in v oscillations

* (almost) all experiments explained by $3 v_{a}$
hint for a $3^{r d}$ independent $\Delta \mathrm{m}^{2}$ from an accelerator v beam (LSND)

$$
P\left(\bar{v}_{\mu} \rightarrow \bar{v}_{e}\right)=(2.6 \pm 0.8) 10^{-3} \quad \Delta m^{2} \geq 0.1 \mathrm{eV}^{2}
$$

only 3 active neutrinos

$$
N=2.984 \pm 0.009
$$

no room for LSND with $3 \quad v_{a}$
CPT violation, i.e. different $\Delta \mathrm{m}^{2}$ in v and anti- ν sectors, disfavoured by now
[Pakvasa\&Valle 0301061
Gonzalez-Garcia, Maltoni, Schwetz 0306226]
if confirmed $3 v_{a}+$ [at least $] 1 v_{s} \Omega$
inclusion of V_{S} worsens the global fits

- WMAP + LSS
$m_{s}<(0.4 \div 0.7) \mathrm{eV} \quad(99.9 \% \mathrm{CL})$ for $3 v_{a}+1 v_{s}$
[Dodelson, Melchiorri, Slosar 0511500
Seljak,Slosar,McDonald 0604335; Cirelli, Strumia 0607335]
* LSND soon checked by MiniBooNE data analysis under way

$$
\left(m_{t}, m_{H}\right)=(174.3,115) \mathrm{GeV}
$$

(invisible Z width)

$2^{\text {nd }}$ extrapolation: $\mathrm{B}-\mathrm{L}$ is violated

a theorist viewpoint:

- all other global symmetries of the SM are violated;
$B-L$ is violated in many GUTs
- B-L violation is welcome in baryogenesis
- global quantum numbers are expected to be violated
by quantum gravity effects at $\Lambda \cong M_{\text {Planck }}$
- simplest explanation of $m_{v} \ll m_{f}(f=e, u, d)$ is in term of $B-L$ violation

Weinberg's list $L=L_{S M}+\frac{C_{5}}{\Lambda} L_{5}+\frac{C_{6}}{\Lambda^{2}} L_{6}^{\leftarrow}+\ldots$
[80 independent dim=6 operators] $\Lambda=$ scale of new physics
a unique operator of dim=5 (up to flavour combinations)

$$
\frac{\mathcal{L}_{5}}{\Lambda}=\frac{(H l)(H l)}{\Lambda}=\frac{1}{2} \frac{v^{2}}{\Lambda} v v+\ldots \quad \Delta(B-L)=2
$$

$$
m_{v}=y \frac{v^{2}}{\Lambda} \longleftrightarrow m_{f}=\frac{y_{f}}{\sqrt{2}} v \quad \quad \text { smallness of } m_{v} \text { due to } \frac{v}{\Lambda} \ll 1
$$

* $m_{3} \approx \sqrt{\left|\Delta m_{32}^{2}\right|} \approx 0.05 \mathrm{eV} \rightarrow \Lambda \approx 10^{15} \mathrm{GeV}$ not that far from GUT scale
L_{5} is the leading operator in Weinberg expansion: $1^{\text {st }}$ effect of New Physics
* L_{5} perfectly matches $\delta \mathrm{L}\left(\mathrm{m}_{v}\right)$

experimental constraints

* oscillations are insensitive to L violation
* L violation can be tested in $0 v \beta \beta$ decay
$\mathrm{HM}\left({ }^{76} \mathrm{Ge}\right) \quad T_{1 / 2}>1.9 \times 10^{25} y r \quad\left|m_{e e}\right|<0.35 \mathrm{eV}$
$\operatorname{IGEX}\left({ }^{76} \mathrm{Ge}\right) \quad T_{1 / 2}>1.6 \times 10^{25} \mathrm{yr} \quad\left|m_{e e}\right|<(0.33 \div 1.35) \mathrm{eV} \quad[90 \% \mathrm{CL}]$
Cuoricino $\left({ }^{130} \mathrm{Te}\right) \quad T_{1 / 2}>1.8 \times 10^{24}$ yr $\quad\left|m_{e e}\right|<(0.2 \div 1.1) \mathrm{eV}$
uncertainty from

Petcov\&Pascoli 0310003 Bilenky 0403245; Bahcall, Murayama, Pena-Garay 0403167]

How to explain $\frac{y_{v_{e}}}{y_{e}}<10^{-6}$ if B -L is conserved?
[smallest ratio is $1 / 100$ for charged fermions in same gen.]

Interesting attempts in models with extra dimensions

large ED: standard Yukawa couplings to a singlet fermion v_{s} who lives in the bulk

$$
\mathcal{L}_{Y u k}=\frac{y_{v} \mathrm{v}}{\sqrt{2}}\left(\frac{M_{D}}{M_{P}}\right) v_{a}(x) v_{s}^{(0)}(x) \quad v_{s}(x, y)=\frac{v_{s}^{(0)}(x)}{\sqrt{V_{\delta}}}+\ldots
$$

no experimental hints from oscillations
$v_{s}^{(n)}$ effects subdominant, if present dimension 5 , L-violating operators not sufficiently suppressed by $M_{D} \approx 1 \mathrm{TeV}$
alternative models: warped compactifications, L gauged in the bulk,... not fully realistic in their minimal realization [Grossman\&Neubert'99 Gherghetta 0312392]

part 3.

speculations

PREMISE

theory of neutrino masses

it does not exist! Neither for neutrinos nor for charged fermions. We lack a unifying principle.
like weak interactions before the electroweak theory
$S U(2)_{L} \otimes U(1)_{Y} \quad$ all fermion-gauge boson interactions gauge invariance
 in terms of 2 parameters: g and g'

$?$
Yukawa interactions between fermions \rightarrow and spin 0 particles: many free parameters (up to 22 in the SM!)
only few ideas and prejudices about neutrino masses and mixing angles
caveat: several prejudices turned out to be wrong in the past!

- $\mathrm{m}_{v} \cong 10 \mathrm{eV}$ because is the cosmologically relevant range
- solution to solar is MSW SA
- atm problem will go away because it implies a large angle

Model building in two pages

hierarchies in fermion spectrum

$$
\begin{align*}
& \underset{\text { 气㐅 }}{\text { 气㐅 }} \quad \frac{m_{e}}{m_{\tau}} \ll \frac{m_{\mu}}{m_{\tau}} \ll 1 \\
& \begin{array}{l}
\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{\text {atm }}^{2}}=(0.025 \div 0.049) \approx \lambda^{2} \ll 1 \\
\left|U_{e 3}\right|<0.18 \leq \lambda \quad(2 \sigma)
\end{array}
\end{align*}
$$

$$
\begin{cases}\left(\frac{\pi}{4}-\vartheta_{23}\right)=0.06_{-0.12}^{+0.10} \quad \mathrm{rad} \\ \vartheta_{12}+\vartheta_{C}-\frac{\pi}{4}=0.035_{-0.056}^{+0.050} & \mathrm{rad}\end{cases}
$$

call $\xi_{i} \equiv$ small parameters
in modern model building we have two ways of understanding $\left|\xi_{i}\right| \ll 1$
$1 \xi_{i}$ are small breaking terms of an approximate flavour symmetry
when $\xi_{i} \rightarrow 0$ the theory becomes invariant under a flavour symmetry F
very appealing approach, unfortunately freedom is huge
example $\quad m_{e} \rightarrow 0 \quad$ in QED
$U(1)_{A} \quad e \rightarrow e^{i \alpha} e \quad e^{c} \rightarrow e^{i \alpha} e^{c}$

- symmetries global or local continuous or discrete
- breaking terms from SSB, ad-hoc explicit breaking,...
$2 \xi_{i}$ are small due to geometry
$\Lambda_{F} \equiv$ scale of flavour physics [unknown at present]
$E \approx \Lambda_{F} \quad$ a four-dimensional description of particle interactions might break down example: 1 extra dimension $0 \leq y \leq L$

$$
\frac{y_{v}}{y_{f}} \approx \frac{1}{\sqrt{L \Lambda}} \ll 1 \text { if } L \gg \frac{1}{\Lambda}
$$

many other possibilities in field and string theories

embedding in GUTs is fruitful

* v as a window on GUT physics

$$
m_{3} \approx\left(v^{2} / \Lambda\right) \approx 0.05 \mathrm{eV} \rightarrow \Lambda \approx 10^{15} \mathrm{GeV}
$$

* v^{c} present in many GUTs as $\mathrm{SO}(10), \mathrm{E}_{6}, \ldots$
* L_{5} can be obtained from the see-saw mechanism

$$
\begin{aligned}
& L=-\frac{1}{2} v^{c} M v^{c}-v^{c} m_{D} v+\text { h.c. } \\
& m_{v}=m_{D}^{T} M^{-1} m_{D}
\end{aligned}
$$

* link to baryogenesis through leptogenesis [Fukugita, Yanagida '86] CP violating, out-of-equilibrium decay of lightest v^{c} net $\Delta L \neq 0 \quad$ (converted into $\Delta B \neq 0 \quad$ by sphalerons) $m_{i}<(0.12 \div 0.15) \mathrm{eV}$ in simplest models
[Buchmuller, Di Bari, Plumacher 0401240
Hambye, Lin, Notari, Papucci,Strumia 0312203]
* a small mixing in m_{D} can be enhanced into a large mixing in m_{v} by the see-saw
[Smirnov 1993; Altarelli,F,
Masina 2000] a small $\quad \Delta m_{s o l}^{2} / \Delta m_{a t m}^{2}$ can be produced by the see-saw [King 1998]
in $\operatorname{SU}(5)$ even without see-saw a large θ_{23} mixing can be produced from large mixing between I_{2} and I_{3} in $\overline{5}_{2} \equiv\left(l_{2}, d_{2}^{c}\right)$ and $\overline{5}_{3} \equiv\left(l_{3}, d_{3}^{c}\right)$ [large mixing between $\mathrm{d}_{2}{ }^{\mathrm{c}}$ and $\mathrm{d}_{3}{ }^{\mathrm{c}}$: unobservable in $1^{\text {st }}$ approximation]
* link to LFV in specific models
many possibilities...

$1+2$: no compelling model from data at the moment

Here: any general feature of direct experimental interest, independent on the details of model building?
now: solar \& KamLAND data quite precise $\left(\Delta \mathrm{m}_{\text {sol }}^{2}, \theta_{12}\right)$ $\Delta \mathrm{m}^{2}{ }_{\text {atm }}$ soon improved by LBL
close future ($<10 \mathrm{yr}$ from now): precision/sensitivity on θ_{23} and θ_{13} down to

$$
\lambda^{2} \approx 0.04 \div 0.05 \mathrm{rad}\left(2.1^{0} \div 2.9^{0}\right)
$$

significant level of precision for model building
most of existing models predict

$$
\vartheta_{13}>\lambda^{2} \quad\left|\frac{\pi}{4}-\vartheta_{23}\right|>\lambda^{2}
$$

model	θ_{23}	θ_{13}	comments
‘NATURAL’ TEXTURES [1] providing 2 relations	O(1)	>0.03 (90\% C.L.)	for all cases but case " ${ }^{\prime}$ ": $\theta_{13}<0.02$
3 ZERO TEXTURES [2] for $m_{v}+$ large θ_{23} from U_{e}	O(1)	>0.025	
ANARCHY [3]	O(1)	$\mathrm{O}(1)$	structure-less neutrino mass matrix
FLAVOUR DEMOCRACY [4]	$\begin{gathered} 35.3^{0} \\ \text { (off by } 2 \sigma \text {) } \end{gathered}$	$(0.03 \div 0.1)$	
INVERTED HIERARCHY U_{v} bimaximal, θ_{12} corrected by U_{e}	O(1)	>0.1	θ_{13} much smaller if U_{e} does not contribute to θ_{12}
NORMAL HIERARCHY see-saw dominance of light v_{R} lopsided m_{v} and m_{e}	O(1)	$\underbrace{(0.03 \div 0.2)}_{\text {from } U_{v}} \oplus \underbrace{(0.02 \div 0.1)}_{\text {from } U_{e}}$	
$\mathrm{SU}(5) \mathrm{xU}(1)$ [5] [abelian flavour symmetries]	$\mathrm{O}(1)$	$\mathrm{O}(0.1)$	U(1) SB parameter optimized to fit the data; unknown O (1) coefficients generated at random
[1] Barbieri, Hambye, Romanino 0302118 [2] Watanabe, Yoshioka 0601152 [3] Hall, Murayama, Weiner 9911341	[4] Fritzsch, Xing PLB 372 (1996)[5] Altarelli, F, Masina 0210342 $\quad \theta_{23}$ maximal only by a fine-tuning		

an example: inverted hierarchy

enforced by a flavour symmetry acting as $L_{e}-L_{\mu}-L_{\tau}$ on lepton doublets
at the leading order: $\quad\left|m_{1}\right|=\left|m_{2}\right|=\sqrt{|a|^{2}+|b|^{2}} \quad m_{3}=0$
$\vartheta_{13}=0$
$\tan \vartheta_{23}=-\frac{b}{a} \quad \begin{aligned} & \text { large } \theta_{23} \text { expected, } \\ & \text { maximal only by a } \\ & \text { fine-tuning }\end{aligned}$
$\vartheta_{12}=45^{\circ} \quad \vartheta_{12}^{\text {exp }}=34$
SB terms are too small to correct θ_{12} -either we accept a tuning $1 / 10$

$$
\left\{\begin{array}{c}
1-\tan ^{2} \vartheta_{12} \approx O\left(\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{a t m}^{2}}\right) \\
0.36 \div 0.70(3 \sigma) \gg 0.015 \div 0.07(3 \sigma)
\end{array}\right.
$$

[Altarelli\&Franceschini 0512202]

- or we fix θ_{12} by a contribution from the charged lepton sector
if $\quad \vartheta_{23} \approx 45^{\circ}$, to $1^{\text {st }}$ order in $|u| \equiv \sin \vartheta_{12}^{e} \gg\left|\sin \vartheta_{13}^{e}\right| \approx 0$

$$
\begin{array}{ll}
1-\tan ^{2} \vartheta_{12}=2 \sqrt{2} \operatorname{Re}(u) & \begin{array}{l}
\text { [Frampton, Petcov, } \\
\text { Rodejohann O401206 }
\end{array} \\
\left|U_{e 3}\right|=\frac{1}{\sqrt{2}}|u| & \begin{array}{l}
\text { Altarelli, F., Masina 0402155 } \\
\text { Romanino 0402508] }
\end{array} \\
\delta_{C P}=\arg (u) &
\end{array}
$$

if $u \approx \vartheta_{C} \approx 0.22$
$1-\tan ^{2} \vartheta_{12} \approx 2 \sqrt{2} \vartheta_{C} \approx 0.6$ [right amount]

$$
\theta_{13}>0.1 \text { expected }
$$

a special class of models

$\left|\frac{\pi}{4}-\vartheta_{23}\right|<\lambda^{2} \quad$ and/or $\quad \vartheta_{13}<\lambda^{2} \quad$ would signal some special mechanism at work example: tri-bimaximal mixing

$$
\begin{array}{ll}
\sin ^{2} \vartheta_{13}=0.9_{-0.9}^{+2.3} \times 10^{-2} & \sin ^{2} \vartheta_{13}=0 \\
\vartheta_{23}=\left(41.6_{-5.7}^{+10.4}\right)^{0} & {[2 \sigma]} \\
\vartheta_{12}=\left(34.1_{-1.6}^{+1.7}\right)^{0} \quad[1 \sigma] & \sin ^{2} \vartheta_{23}=\frac{1}{2} \\
\sin ^{2} \vartheta_{12}=\frac{1}{3}
\end{array}
$$

not a bad $1^{\text {st }}$ order approximation!
[Harrison, Perkins and Scott=HPS]
assume future data will confirm $\theta_{23}=45^{0}$ to $\mathrm{O}\left(\lambda^{2}\right)$ precision, etc...
$\vartheta_{23}=45^{0}$ in some symmetry limit? [as $m_{e}=0$ when $U(1)_{A}$ exact in QED]

No, if the symmetry is realistic [$=$ no huge breaking terms]

θ_{23} always undetermined in the symmetry limit $\theta_{23}=45^{\circ}$ entirely determined by breaking effects
easiest possibility: flavour symmetry F spontaneously broken along different subgroups in e and v sectors

$$
\left\langle\varphi_{v}\right\rangle \neq\left\langle\varphi_{e}\right\rangle \quad \text { vacuum alignment problem }
$$

minimal example (not unique, many produced in the last year!)
[other discrete groups: Hagedorn, Lindner, Plentinger, Mohapatra 2006]
flavour symmetry
group of even permutations
of four objects
controls charged lepton mass hierarchies

	l	e^{C}	μ^{c}	τ^{c}	φ_{e}	φ_{v}	ξ_{v}
A_{4}	3	1	$1^{\prime \prime}$	1^{\prime}	3	3	1

minimization of V

 can produce the special alignment$\left\langle\varphi_{e}\right\rangle \propto(1,0,0) \quad\left\langle\varphi_{\nu}\right\rangle \propto(1,1,1) \quad\left\langle\xi_{\nu}\right\rangle \neq 0$

* m_{e} is diagonal

$$
m_{v}=\left(\begin{array}{ccc}
a+\frac{2}{3} b & -\frac{b}{3} & -\frac{b}{3} \\
-\frac{b}{3} & \frac{2}{3} b & a-\frac{b}{3} \\
-\frac{b}{3} & a-\frac{b}{3} & \frac{2}{3} b
\end{array}\right) \frac{v_{u}^{2}}{\Lambda}+O\left(\frac{V E V}{\Lambda}\right) . \quad U_{P M N S}=\left(\begin{array}{ccc}
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}
\end{array}\right)+O\left(\frac{V E V}{\Lambda}\right)
$$

v spectrum is of normal type, between_hierarchical and degenerate
$m_{1} \approx m_{2} \approx|a| \quad m_{3} \approx 3|a| \quad\left[\right.$ units $\left.\frac{v_{u}^{2}}{\Lambda}\right] \quad b \approx-2 a$ to reproduce $\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{a t m}^{2}} \approx \frac{1}{35}$
predictions:
$\left|m_{3}\right|^{2}=\left|m_{e e}\right|^{2}+(10 / 9) \Delta m_{a t m}^{2}\left(1-\Delta m_{s o l}^{2} / \Delta m_{a t m}^{2}\right)$
$m_{1}>0.017 \mathrm{eV} \quad \sum_{i} m_{i}>0.09 \mathrm{eV}$
if naively extended to the quark sector $\mathrm{V}_{\mathrm{CKM}}$ too close to 1 , unrealistic

SUMMARY

* Experimental side:
$\left(\Delta m_{21}^{2}, \vartheta_{12}\right) \quad$ entered a precision era
$\left(\Delta m_{32}^{2}, \vartheta_{23}\right)$ reasonably well-known ϑ_{13}, absolute spectrum, δ, \ldots still missing!
* several key points still unknown: - how many light neutrinos? - is L violated or not?
* theory of neutrino (and fermion) masses lacks a unifying principle ...
* light neutrino masses are naturally explained by L violation at a large scale, possibly close to GUT scale several "common" mechanisms that accommodate small quark mixing angles and large lepton mixing angles in GUTs are available
* aimed for sensitivities might provide a significant progress in theory

$$
\vartheta_{13} \approx \delta \vartheta_{23} \approx \lambda^{2} \approx 0.04 \div 0.05
$$

most of existing models predict

$$
\vartheta_{13}>\lambda^{2} \quad\left|\frac{\pi}{4}-\vartheta_{23}\right|>\lambda^{2}
$$

only in "special models"
$\vartheta_{13}<\lambda^{2}\left|\frac{\pi}{4}-\vartheta_{23}\right|<\lambda^{2} \begin{aligned} & \text { e.g. SB flavour symmetry } \\ & \text { with a natural vacuum alignment }\end{aligned}$

OTHER SLIDES

\square Most of plausible range for Ue 3 explored in 10 yr from now

>> 10 yr
10 yr
anarchy, inverted hierachy
|Ue3|<0.05 would select a very narrow (not empty) subset of existing models
similar conclusion by:
Barbieri, Hambye, Romanino 0302118
Ibarra, Ross 0307051
Chen, Mahanthappa 0305088
Lebed, Martin 0312219
Joshipura @ NOON 2004
too many models. Here: try to classify models by their predictions
Present and (near) future sensitivities

	current precision	future $<10 \mathrm{yr}$
Δm_{12}^{2}	$(8.0 \pm 0.3) \times 10^{-5} \mathrm{eV}^{2}[\approx 4 \%]$	few percent [KamLAND]
$\left\|\Delta m_{23}^{2}\right\|$	$(2.5 \pm 0.3) \times 10^{-3} \mathrm{eV}^{2}[\approx 12 \%]$	$0.15 \times 10^{-3} \mathrm{eV}^{2} \quad$ LBL conventional beams $0.05 \times 10^{-3} \mathrm{eV}^{2}[\approx 2 \%]$ superbeams
ϑ_{12}	$\begin{aligned} & \tan ^{2} \vartheta_{12}=0.45_{-0.08}^{+0.09} \\ & \vartheta_{12}=33^{0} \pm 2^{0} \end{aligned}$	$\delta \tan ^{2} \vartheta_{12} \approx 2 \delta \sin ^{2} \vartheta_{12} \quad v_{\mathrm{e}}$ scattering re down by about of pp neutrinos to 1 a factor 2 : challenging
ϑ_{13}	$<0.23\left(13^{0}\right) \quad 90 \%$ C.L.	0.10 rad LBL, Choozll 0.05 rad superbeams
ϑ_{23}	$\begin{aligned} & \sin ^{2} \vartheta_{23}=0.52_{-0.08}^{+0.07} \\ & \vartheta_{12}=46_{-5^{0}}^{0^{+4}} \end{aligned}$	$\begin{aligned} & \delta \sin ^{2} \vartheta_{23} \approx \delta \vartheta_{23} \quad \text { superbeams } \\ & \text { down by about } \\ & \text { a factor 2 } \end{aligned} \quad \text {. }$
$\operatorname{sign} \Delta m_{23}^{2}$	---	$>10 \mathrm{yr}$
δ	---	> 10 yr

normal models: some examples

-- degenerate spectrum

* anarchy $\begin{aligned} & \text { [Hell, Murayama, Weiner 2000 } \\ & \text { De Gouvea, Murayama 0301050] }\end{aligned}, \frac{\Delta m_{\text {sol }}^{2}}{\Delta m^{2}} \ll 1 \quad$ can be produced

$$
m_{v}=m\left(\begin{array}{lll}
O(1) & O(1) & O(1) \\
O(1) & O(1) & O(1) \\
O(1) & O(1) & O(1)
\end{array}\right) \quad \begin{array}{ccc}
\Delta m_{a t m}^{2} & \vartheta_{13} \ll \vartheta_{23} & \text { accidental } \\
\vartheta_{23} \approx \frac{\pi}{4} & \text { fortuitous }
\end{array}
$$

flavour democracy [Fritzsch, Xing]

$$
\begin{aligned}
& m_{f} \propto\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)+\ldots \\
& f \neq v \\
& m_{v} \propto\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\ldots
\end{aligned}
$$

substantial contribution to ϑ_{12} from charged leptons needed

$$
U_{P M N S}=U_{e}^{+} U_{v} \quad \text { standard parametrization } \quad U_{e}=U_{23}^{e} \cdot U_{13}^{e} \cdot U_{12}^{e}
$$

by expanding to $1^{\text {st }}$ order in $|u| \equiv \sin \vartheta_{12}^{e},|v| \equiv \sin \vartheta_{13}^{e} \ll 1 \quad \vartheta_{23} \approx 45^{\circ}$

$$
\begin{aligned}
1-\tan ^{2} \vartheta_{12} & =2 \sqrt{2} \operatorname{Re}(u+v) \\
\left|U_{e 3}\right| & =\frac{1}{\sqrt{2}}|u-v| \quad \tan ^{2} \vartheta_{23}=1+O\left(u^{2}, v^{2}\right. \\
\begin{array}{l}
\text { Rodejohann 0401206 } \\
\text { Altarelli, F, Masina 0402155 } \\
\text { Romanino 0402508] }
\end{array} & \delta_{C P}=\arg (u-v)
\end{aligned}
$$

if, by analogy with the quark sector:

$$
|v| \ll|u| \approx \vartheta_{C} \approx 0.22
$$

* $1-\tan ^{2} \vartheta_{12} \approx 2 \sqrt{2} \vartheta_{C} \approx 0.6$
[right amount] [Raidal 0404046
Minakata, Smirnov 0405088]
$\because\left|U_{e 3}\right|=\frac{\left(1-\tan ^{2} \vartheta_{12}\right)}{4 \cos \delta_{C P}}$

$$
\theta_{13}>0.1 \text { expected }
$$

Normal Hierarchy

\square Several viable mechanisms for ϑ_{23} large

- ϑ_{23}^{e} and ϑ_{23}^{V} small
but $\vartheta_{23} \equiv \vartheta_{23}^{v}-\vartheta_{23}^{e} \approx O(1)$
$*$ see-saw dominance of light v^{c} equally coupled to v_{μ} and v_{τ} [King]
* lopsided structure of m_{e} or/and m_{D} :
[Albright, Barr Altarelli, F]

$$
\bar{R}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & a & b
\end{array}\right) L
$$

large θ_{23} expected, maximal only by a fine-tuning

$$
U_{e 3} \approx \sin \vartheta_{13}^{v}-\sin \vartheta_{23} \cdot \sin \vartheta_{12}^{e}
$$

[${ }^{\text {st }}$ order in $\sin \vartheta_{12}^{e} \gg \sin \vartheta_{13}^{e}$]

$\approx \sin \vartheta_{12}^{v} \sqrt{\frac{\Delta m_{\text {sol }}^{2}}{\Delta m_{a t m}^{2}}}$	e-dominated		
$\approx(0.03 \div 0.3)$	$\approx-\sin \vartheta_{23} \sqrt{\frac{m_{e}}{m_{\mu}}}$		if we make a similar estimate in the quark sector
:---:			
$V_{u b} \approx \lambda^{3}(\lambda \approx 0.22)$			
θ_{13} not tiny, barring cancellations			

$\mathrm{U}_{\mathrm{e} 3}$ in models with $\mathrm{U}(1)$ flavour symmetry

$$
\left\{\begin{array}{c}
0.018<r \equiv\left|\frac{\Delta m_{12}^{2}}{\Delta m_{23}^{2}}\right|<0.053 \\
\left|U_{e 3}\right|<0.23 \\
0.30<\tan ^{2} \vartheta_{12}<0.64 \\
0.45<\tan ^{2} \vartheta_{23}<2.57
\end{array}\right.
$$

ε optimised case by case to fit
[Isabella Masina]

$$
m_{v}=m\left(\begin{array}{ccc}
\varepsilon^{2} & \varepsilon & \varepsilon \\
\varepsilon & 1 & 1 \\
& 1 & 1
\end{array}\right) \begin{aligned}
& \varepsilon=1 \text { anarchy=A } \\
& \varepsilon<1 \text { semianarchy=SA } \\
& \varepsilon<1 \text { normal hierarchv=H }
\end{aligned}
$$ unknown $O(1)$ coeff.

inverse hierarchy=IH

explanations of LSND signal

model	comments	MiniBooNE
$3 v_{a}+1 v_{s}$ unstable $\vartheta_{\mu \mathrm{S}} \neq 0 \quad v_{S} \rightarrow \overline{v_{e}}+\varphi[1]$	reactor bounds evaded by $U_{e S}=0$	expected signal
$3 v_{a}+1 v_{s}$ and mass - varying parameters air \neq earth	pure 3 mass varying neutrinos do not work	no signal
$3 v_{a}+1 v_{s}$ and CPT violation		?
anomalous μ decay $\begin{equation*} \mu^{+} \rightarrow e^{+} \overline{v_{e}} \overline{v_{\mu}} \tag{4} \end{equation*}$	Karmen: BR<0.009 90\% C.L. $\rho=0.7485$ versus $\rho=0.7508$ (10)	no signal

[1] Palomares Ruiz, Pascoli, Schwetz 0505216
[2] Barger, Marfatia, Whisnant 0509163
[3] Barger, Marfatia, Whisnant 0308299
[4] Babu, Pakvasa 0204236

