Resolving the Octant θ_{23} Degeneracy by Neutrino Oscillation Experiments

Hiroshi Nunokawa Pontificia Universidade Catolica do Rio de Janeiro

Based on the works

K. Hiraide, H. Minakata, T. Nakaya, H. Sugiyama,
W.J.C. Teves, R. Zukanovich Funchal, HN,
hep-ph/0601258 [PRD73, 093008 (2006)]

T. Kajita, H. Minakata, S. Nakayama, HN, to appear

@NOW2006, September 15, 2006

Outline

- Introduction
- Resolving of the θ_{23} Octant Degeneracy by (1) accelerator (superbeam) and reactor
- Resolving of the θ₂₃ Octant Degeneracy by
 (2) accelerator (superbeam) with 2 identical detectors
- Summary

Introduction

θ₂₃ octant degeneracy is a part of the so called
 8 fold parameter degeneracy we encounter
 when we try to determine neutrino mixing
 paramters by oscillation experiments

(1) θ_{23} octant degeneracy (Fogli and Lisi, 1996)

(2) Intrinsic θ_{13} - δ degeneracy (Burguet-Castell et al, 2001)

(3) sign of Δm_{13}^2 degeneracy (Minakata, HN, 2001)

8 fold degeneracy (Barger et al, 2002)

Currently, we don't know if θ_{23} is maximal

From SK atmospheric neutrino data

 $\sin^2 2\theta_{23} > 0.92 @ 90\% CL$ $0.34 < \sin^2 \theta_{23} < 0.64$

From Theory Consideration: μ - τ symmetry

Typically predict $\theta_{23} = \pi/4$ and $\theta_{13} = 0$ in the symmetry limit

What is the θ_{23} Octant degeneracy? Fogli and Lisi, PRD 54, 3667 (1996)

Let us first consider the disapperance mode $v_{\mu} \rightarrow v_{\mu}$

One Δm^2 dominance approximation and vanishing θ_{13}

$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$

Disappearance mode can determine $\sin^2 2\theta_{23}$

$$\sin^2 \theta_{23} = \frac{1}{2} \left[1 \pm \sqrt{1 - \sin^2 2\theta_{23}} \right]$$

For example, $\sin^2 2\theta_{23} = 0.96 \rightarrow \sin^2 \theta_{23} = 0.4$ or 0.6

To be more precise...

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^{2}2\theta_{eff} \sin^{2}\left(\frac{\Delta m^{2}eff}{4E}L\right)$$

 $\sin^2 2\theta_{eff} \approx 4|U_{\mu3}|^2 (1-|U_{\mu3}|^2)$ T2K | can measure this quantity with ≈ 1 % accuracy

For a given value of $\sin^2 2\theta_{eff}$

$$\sin^2 \theta_{23} \approx \frac{1}{2} \left[1 \pm (1 + \sin^2 \theta_{13}) \sqrt{1 - \sin^2 2\theta_{\text{eff}}} \right]$$

 $\sin^2 2\theta_{\text{eff}} = 0.96 \rightarrow \sin^2 \theta_{23} \approx (0.4 \text{ or } 0.6) + 0.1 \sin^2 \theta_{13}$

What will happen if we add $v_{\mu} \rightarrow v_{e}$? One Δm^{2} dominance approximation $P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m^{2}}{4E}L\right)$ Appearance mode can determine $\sin^{2}\theta_{23} \sin^{2}2\theta_{13}$ (Not θ_{23} and θ_{13} separately !)

Unless we know θ_{13} determined by some OTHER experiment, we can not distinguish 2 value of $\sin^2 \theta_{23}$ obtained by the disappearance mode!

> Two solutions of $(\theta_{23}, \theta_{13})$ $\sin^2 \theta_{23}^{\text{fake}} \approx \sin^2 \theta_{23}^{\text{true}} \sin^2 2\theta_{13}^{\text{true}}$

Some Examples of Degenerate Solutions

Assume T2K Phase II: 4MW (2yr v + 6 yr \overline{v}), HK@Kamioka

How Can We Resolve This Degeneracy?

First Possible Strategy

Combine Reactor Data

Minakata et al, PRD 68, 033017 (2003) See also Fogli and Lisi, PRD 54, 3667 (1996)

$$P(\nu_e \rightarrow \nu_e) \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{13}^2}{4E}L\right) + O(\sin^2 2\theta_{13}\Delta m_{12}^2)$$

Reactor with L \approx 1-1.5 km can provide a clean measurement of θ_{13} free from degeneracy

Since 2 degenerate solutions correspond to different values of θ_{13} , it will be possible to eliminate one of the solutions

Experimental Setup and Assumptions

(1) T2K Phase II: 4MW 2.5 deg. OA beam (2yr v + 6 yr \overline{v}) HK 0.54 Mt, appearance and disappearance modes

(2) High Statistics/Sensitivity Reactor Experiment with an exposure of ~10 GW·kt·yr , L = 1.5 km beyond Double CHOOZ

Inputs

$$\Delta m_{23}^{2} = \pm 2.5 \times 10^{-3} \text{ eV}^{2}$$
$$\Delta m_{12}^{2} = 8 \times 10^{-5} \text{ eV}^{2}$$
$$\sin^{2}\theta_{12} = 0.31$$
$$\delta = 0$$

χ^2 definitions

(1) $\nu_{\mu} \rightarrow \nu_{e}$ appearance mode

 $\chi^2_{\rm app} \equiv \frac{(N_{\rm sig}^{\rm obs} + N_{\rm BG}^{\rm obs} - N_{\rm sig}^{\rm theo} - N_{\rm BG}^{\rm theo})^2}{N_{\rm sig}^{\rm obs} + N_{\rm BG}^{\rm obs} + (\sigma_{\rm sig}N_{\rm sig}^{\rm obs})^2 + (\sigma_{\rm BG}N_{\rm BG}^{\rm obs})^2},$

(2) $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance mode

(3) $\overline{v}_{\rho} \rightarrow \overline{v}_{\rho}$ reactor disappearance mode

$$\chi_{\rm dis}^2 \equiv \min_{\alpha_{\rm sig}, \alpha_{\rm BG}} \sum_i \frac{[N_i^{\rm obs} + N_{i,\rm BG}^{\rm obs} - (1 + \alpha_{\rm sig})N_i^{\rm theo} - (1 + \alpha_{\rm BG})N_{i,\rm BG}^{\rm theo}]^2}{N_i^{\rm obs} + N_{i,\rm BG}^{\rm obs}} + \left(\frac{\alpha_{\rm sig}}{\sigma_{\rm sig}}\right)^2 + \left(\frac{\alpha_{\rm BG}}{\sigma_{\rm BG}}\right)^2,$$

 $\sigma_{sig} = \sigma_{BG} = 2\%$: sytematic erros

$$\chi_{\text{reac}}^2 \equiv \min_{\alpha\text{'s}} \sum_{a=f,n} \left[\sum_{i=1}^{17} \left\{ \frac{\left(N_{ai}^{\text{theo}} - (1+\alpha_i + \alpha_a + \alpha) N_{ai}^{\text{obs}} \right)^2}{N_{ai}^{\text{obs}} + \sigma_{\text{db}}^2 (N_{ai}^{\text{obs}})^2} + \frac{\alpha_i^2}{\sigma_{\text{Db}}^2} \right\} + \frac{\alpha_a^2}{\sigma_{\text{dB}}^2} \right] + \frac{\alpha^2}{\sigma_{\text{DB}}^2},$$

(a) $\sigma_{DB} = \sigma_{Db} = 2\% \quad \sigma_{dB} = \sigma_{db} = 0.5\%$: Conservative choice of sys. error (b) $\sigma_{DB} = \sigma_{Db} = 1\% \quad \sigma_{dB} = \sigma_{db} = 0.2\%$: Optimistic choice of sys. error

D(B): Correlated between Detectors(Bins) d(b): Uncorrelated between Detectors(Bins)

Impact of adding Reactor data

Impact of adding Reactor data

Expected Sensitivity: Regions of paramters where the hierarchy can be determined

Expected Sensitivity: Regions of paramters where the hierarchy can be determined

Second Possible Strategy

T. Kajita, H. Minakata, S. Nakayama and HN, to appear Superbeam with 2 detector system M. Ishitsuka, T. Kajita, H. Minakata, HN, hep-ph/0504026

$$P[\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})] = c_{23}^{2} \sin^{2} 2\theta_{12} \left(\frac{\Delta m_{21}^{2}L}{4E}\right)^{2} \qquad \text{Solar Term} = \mathsf{P}_{\text{solar}}$$

$$+ \sin^{2} 2\theta_{13}s_{23}^{2} \left[\sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right) - \frac{1}{2}s_{12}^{2} \left(\frac{\Delta m_{21}^{2}L}{2E}\right) \sin \left(\frac{\Delta m_{31}^{2}L}{2E}\right)\right]$$

$$\pm \left(\frac{4Ea}{\Delta m_{31}^{2}}\right) \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right) \mp \frac{aL}{2} \sin \left(\frac{\Delta m_{31}^{2}L}{2E}\right)\right]$$

$$+ 2J_{r} \left(\frac{\Delta m_{21}^{2}L}{2E}\right) \left[\cos \delta \sin \left(\frac{\Delta m_{31}^{2}L}{2E}\right) \mp 2\sin \delta \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E}\right)\right],$$

 $= P_{solar} + P_{atm}$

Magnitude of the Solar term: $P_{\text{solar}} \equiv \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{12}^2}{4E}L\right)$

Effect of solar term is very small at Kamioka (L=295km) but sizable at Korea (L=1050km)

Experimental Setup and Assumptions T2KK (Tokai to Kamioka-Korea)

 $\Delta m_{23}^2 = \pm 2.5 \times 10^{-3} \text{ eV}^2 \quad \Delta m_{12}^2 = 8 \times 10^{-5} \text{ eV}^2 \quad \sin^2 \theta_{12} = 0.31$

Appearance and disappearance modes

Impact of the Solar Term

χ^2 definition

$$\begin{split} & \underbrace{\left\langle \underbrace{\mathbf{Y}}_{\mathbf{V}} \right\rangle} \times \begin{pmatrix} \text{kamioka}_{\text{korea}} \right) = 4 \text{ combinations} \\ & \underbrace{\mathbf{v}_{\mathbf{e}}(\overline{\mathbf{v}}_{\mathbf{e}}) \text{ event } (5 \text{ bins})}_{\mathbf{v}_{\mathbf{\mu}}(\overline{\mathbf{v}}_{\mathbf{\mu}}) \text{ event } (20 \text{ bins})} \\ & \chi^{2} = \underbrace{\sum_{k=1}^{4} \left(\sum_{i=1}^{5} \frac{\left(N(e)_{i}^{\text{obs}} - N(e)_{i}^{\exp}\right)^{2}}{\sigma_{i}^{2}} + \sum_{i=1}^{20} \frac{\left(N(\mu)_{i}^{\text{obs}} - N(\mu)_{i}^{\exp}\right)^{2}}{\sigma_{i}^{2}} \right) + \sum_{j=1}^{7} \left(\frac{\epsilon_{j}}{\tilde{\sigma}_{j}}\right)^{2} \\ & N(e)_{i}^{\exp} = N_{i}^{\text{BG}} \cdot \left(1 + \sum_{j=1,2,7} f(e)_{j}^{i} \cdot \epsilon_{j}\right) + N_{i}^{\text{signal}} \cdot \left(1 + \sum_{j=3,7} f(e)_{j}^{i} \cdot \epsilon_{j}\right) , \\ & N(\mu)_{i}^{\exp} = N_{i}^{\text{non-QE}} \cdot \left(1 + \sum_{j=4,6,7} f(\mu)_{j}^{i} \cdot \epsilon_{j}\right) + N_{i}^{\text{QE}} \cdot \left(1 + \sum_{j=4,5,7} f(\mu)_{j}^{i} \cdot \epsilon_{j}\right) . \end{split}$$

 f_{j}^{i} : fractional change in the predicted event rate in the i-th bin due to the variation of the parameter ϵ_{j} Sy

 ϵ_i : systematic error parameters varied freely to minimize χ^2

Systematic Errors

5 % BG (Overall)

- 5 % BG (Energy Dep.)
- 5 % Signal Efficiency

20 % Separation of QE/nQE

Example of the case where the octant degeneracy is resolved

 $\sin^2 \theta_{23} = 0.60$ (true)

(Despite that sign Δm^2 degeneracy is not completely resolved \rightarrow decoupling of degeneracy)

Comparing two methods...

Summary

- Octant degeneracy exist if θ_{23} is different from $\pi/4$
- Method I: Superbeam (T2K II) + Reactor can resolve the octant degeneracy for $\sin^2 2\theta_{23} \approx 0.96$ (0.99) if $\sin^2 2\theta_{13} \approx 0.05$ (0.1) but not work for small θ_{13}
- Method II: Superbeam with 2 Far Detector System (T2KK) can Resolve the octant degeneracy for sin²2θ₂₃
 < 0.97 even for very small θ₁₃
- Both Methods are Complementary: For larger (smaller) θ_{13} , $\sin^2 2\theta_{13} \ge (\le) 0.05$, Method I (II) would be better