Resolving the Octant θ_{23} Degeneracy by Neutrino Oscillation Experiments

Hiroshi Nunokawa
Pontificia Universidade Catolica do Rio de Janeiro

Based on the works

K. Hiraide, H. Minakata, T. Nakaya, H. Sugiyama, W.J.C.Teves, R. Zukanovich Funchal, HN, hep-ph/060I258 [PRD73, 093008 (2006)]
T. Kajita, H. Minakata, S. Nakayama, HN, to appear
@NOW2006, September 15, 2006

Outline

- Introduction
- Resolving of the θ_{23} Octant Degeneracy by (I) accelerator (superbeam) and reactor
- Resolving of the θ_{23} Octant Degeneracy by
(2) accelerator (superbeam) with 2 identical detectors
- Summary

Introduction

θ_{23} octant degeneracy is a part of the so called 8 fold parameter degeneracy we encounter when we try to determine neutrino mixing paramters by oscillation experiments
(I) θ_{23} octant degeneracy (Fogli and Lisi, I996)
(2) Intrinsic $\theta_{13} \delta$ degeneracy (Burguet-Castell et al, 200I)
(3) sign of $\Delta \mathrm{m}_{13}^{2}$ degeneracy (Minakata, $\mathrm{HN}, 200 \mathrm{I}$)

8 fold degeneracy (Barger et al, 2002)

Currently, we don't know if θ_{23} is maximal

From SK atmospheric neutrino data

$$
\begin{aligned}
\sin ^{2} 2 \theta_{23} & >0.92 @ 90 \% \mathrm{CL} \\
0.34 & <\sin ^{2} \theta_{23}<0.64
\end{aligned}
$$

From Theory Consideration: $\mu-\tau$ symmetry

> Typically predict $\theta_{23}=\pi / 4$ and $\theta_{13}=0$
> in the symmetry limit

What is the θ_{23} Octant degeneracy?

Fogli and Lisi, PRD 54, 3667 (1996)

Let us first consider the disapperance mode $\nu_{\mu} \rightarrow \nu_{\mu}$
One $\Delta \mathrm{m}^{2}$ dominance approximation and vanishing θ_{13}

$$
\mathrm{P}\left(v_{\mu} \rightarrow v_{\mu}\right) \approx 1-\sin ^{2} 2 \theta_{23} \sin ^{2}\left(\frac{\Delta \mathrm{~m}^{2}}{4 \mathrm{E}} \mathrm{~L}\right)
$$

Disappearance mode can determine $\sin ^{2} 2 \theta_{23}$

$$
\sin ^{2} \theta_{23}=\frac{1}{2}\left[1 \pm \sqrt{1-\sin ^{2} 2 \theta_{23}}\right]
$$

For example, $\sin ^{2} 2 \theta_{23}=0.96 \rightarrow \sin ^{2} \theta_{23}=0.4$ or 0.6

To be more precise...

$$
\mathrm{P}\left(v_{\mu} \rightarrow v_{\mu}\right) \equiv 1-\sin ^{2} 2 \theta_{\mathrm{eff}} \sin ^{2}\left(\frac{\Delta \mathrm{~m}^{2} \mathrm{eff}}{4 \mathrm{E}} \mathrm{~L}\right)
$$

$$
\sin ^{2} 2 \theta_{\text {eff }} \approx 4\left|\mathrm{U}_{\mu 3}\right|^{2}\left(1-\left|\mathrm{U}_{\mu 3}\right|^{2}\right) \begin{aligned}
& \mathrm{T} 2 \mathrm{~K} I \text { can measure this quantity } \\
& \text { with } \approx 1 \% \text { accuracy }
\end{aligned}
$$

For a given value of $\sin ^{2} 2 \theta_{\text {eff }}$

$$
\sin ^{2} \theta_{23} \approx \frac{1}{2}\left[1 \pm\left(1+\sin ^{2} \theta_{13}\right) \sqrt{1-\sin ^{2} 2 \theta_{\text {eff }}}\right]
$$

$$
\sin ^{2} 2 \theta_{\text {eff }}=0.96 \rightarrow \sin ^{2} \theta_{23} \approx(0.4 \text { or } 0.6)+\underline{0.1 \sin ^{2} \theta_{13}}
$$

What will happen if we add $v_{\mu} \rightarrow v_{e}$?

One Δm^{2} dominance approximation

$$
\mathrm{P}\left(v_{\mu} \rightarrow v_{\mathrm{e}}\right) \approx \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta \mathrm{~m}^{2}}{4 \mathrm{E}} \mathrm{~L}\right)
$$

Appearance mode can determine $\sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}$

$$
\left(\text { Not } \theta_{23} \text { and } \theta_{13}\right. \text { separately !) }
$$

Unless we know θ_{13} determined by some OTHER experiment, we can not distinguish 2 value of $\sin ^{2} \theta_{23}$ obtained by the disappearance mode!

Two solutions of $\left(\theta_{23}, \theta_{13}\right)$

$$
\sin ^{2} \theta_{23}^{\text {fake }} \sin ^{2} 2 \theta_{13}^{\text {fake }} \approx \sin ^{2} \theta_{23}^{\text {true }} \sin ^{2} 2 \theta_{13}^{\text {true }}
$$

Some Examples of Degenerate Solutions

Assume T2K Phase II: 4MW (2yrv + 6 yr $\bar{v})$, HK@Kamioka

How Can We Resolve This Degeneracy?

First Possible Strategy

Combine Reactor Data

 Minakata et al, PRD 68, 033017 (2003) See also Fogli and Lisi, PRD 54, 3667 (1996)$\mathrm{P}\left(\nu_{\mathrm{e}} \rightarrow \nu_{\mathrm{e}}\right) \approx 1-\sin ^{2} 2 \theta_{13} \sin ^{2}\left(\frac{\Delta \mathrm{~m}_{13}^{2}}{4 \mathrm{E}} \mathrm{L}\right)+\mathrm{O}\left(\sin ^{2} 2 \theta_{13} \Delta \mathrm{~m}_{12}^{2}\right)$
Reactor with $L \approx 1-1.5 \mathrm{~km}$ can provide a clean measurement of θ_{13} free from degeneracy

Since 2 degenerate solutions correspond to different values of θ_{13}, it will be possible to eliminate one of the solutions

Experimental Setup and Assumptions

(I) T2K Phase II: 4 MW 2.5 deg. OA beam ($2 \mathrm{yr} v+6 \mathrm{yr} \overline{\mathrm{v}}$) HK 0.54 Mt , appearance and disappearance modes
(2) High Statistics/Sensitivity Reactor Experiment with an exposure of $\sim 10 \mathrm{GW} \cdot \mathrm{kt} \cdot \mathrm{yr}, \mathrm{L}=1.5 \mathrm{~km}$ beyond Double CHOOZ
Inputs
$\Delta \mathrm{m}_{23}^{2}= \pm 2.5 \times 10^{-3} \mathrm{eV}^{2}$
$\Delta \mathrm{m}^{2}{ }_{12}=8 \times 10^{-5} \mathrm{eV}^{2}$
$\sin ^{2} \theta_{12}=0.31$
$\delta=0$

χ^{2} definitions

(1) $v_{\mu} \rightarrow v_{e}$ appearance mode

$$
\chi_{\mathrm{app}}^{2} \equiv \frac{\left(N_{\mathrm{sig}}^{\mathrm{obs}}+N_{\mathrm{BG}}^{\mathrm{obs}}-N_{\mathrm{sig}}^{\mathrm{theo}}-N_{\mathrm{BG}}^{\mathrm{theo}}\right)^{2}}{N_{\mathrm{sig}}^{\mathrm{obs}}+N_{\mathrm{BG}}^{\mathrm{obs}}+\left(\sigma_{\mathrm{sig}} N_{\mathrm{sig}}^{\mathrm{obs}}\right)^{2}+\left(\sigma_{\mathrm{BG}} N_{\mathrm{BG}}^{\mathrm{obs}}\right)^{2}}
$$

(2) $v_{\mu} \rightarrow v_{\mu}$ disappearance mode
$\chi_{\mathrm{dis}}^{2} \equiv \min _{\alpha_{\mathrm{sig}, \alpha_{\mathrm{BG}}}} \sum_{i} \frac{\left[N_{i}^{\mathrm{obs}}+N_{i, \mathrm{BG}}^{\mathrm{obs}}-\left(1+\alpha_{\mathrm{sig}}\right) N_{i}^{\mathrm{theo}}-\left(1+\alpha_{\mathrm{BG}}\right) N_{i, \mathrm{BG}}^{\mathrm{theo}}\right]^{2}}{N_{i}^{\mathrm{obs}}+N_{i, \mathrm{BG}}^{\mathrm{obs}}}+\left(\frac{\alpha_{\mathrm{sig}}}{\sigma_{\mathrm{sig}}}\right)^{2}+\left(\frac{\alpha_{\mathrm{BG}}}{\sigma_{\mathrm{BG}}}\right)^{2}$,
(3) $\bar{v}_{\mathrm{e}} \rightarrow \bar{v}_{\mathrm{e}}$ reactor disappearance mode

$$
\sigma_{\mathrm{sig}}=\sigma_{\mathrm{BG}}=2 \%: \text { sytematic erros }
$$

$\chi_{\text {reac }}^{2} \equiv \min _{\alpha^{\prime} \mathrm{s}} \sum_{a=f, n}\left[\sum_{i=1}^{17}\left\{\frac{\left(N_{a i}^{\mathrm{theo}}-\left(1+\alpha_{i}+\alpha_{a}+\alpha\right) N_{a i}^{\mathrm{obs}}\right)^{2}}{N_{a i}^{\mathrm{obs}}+\sigma_{\mathrm{db}}^{2}\left(N_{a i}^{\mathrm{obs}}\right)^{2}}+\frac{\alpha_{i}^{2}}{\sigma_{\mathrm{Db}}^{2}}\right\}+\frac{\alpha_{a}^{2}}{\sigma_{\mathrm{dB}}^{2}}\right]+\frac{\alpha^{2}}{\sigma_{\mathrm{DB}}^{2}}$,
(a) $\sigma_{D B}=\sigma_{D b}=2 \% \quad \sigma_{d B}=\sigma_{d b}=0.5 \%$: Conservative choice of sys. error
(b) $\sigma_{\mathrm{DB}}=\sigma_{\mathrm{Db}}=1 \% \quad \sigma_{\mathrm{dB}}=\sigma_{\mathrm{db}}=0.2 \%$: Optimistic choice of sys. error

D(B): Correlated between Detectors(Bins) d(b): Uncorrelated between Detectors(Bins)

Impact of adding Reactor data

Impact of adding Reactor data

Expected Sensitivity: Regions of paramters where the hierarchy can be determined

Expected Sensitivity: Regions of paramters where the hierarchy can be determined

Second Possible Strategy

T. Kajita, H. Minakata, S. Nakayama and HN, to appear

Superbeam with 2 detector system

M. Ishitsuka, T. Kajita, H. Minakata, HN, hep-ph/0504026

$$
\begin{aligned}
& P\left[\nu_{\mu}\left(\bar{\nu}_{\mu}\right) \rightarrow \nu_{\mathrm{e}}\left(\bar{\nu}_{e}\right)\right]=\left.c_{23}^{2}\right) \sin ^{2} 2 \theta_{12}\left(\frac{\Delta m_{21}^{2} L}{4 E}\right)^{2} \longleftarrow \text { Solar Term }=\mathrm{P}_{\text {solar }} \\
&+\sin ^{2} 2 \theta_{13} s_{23}^{2}\left[\sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)-\frac{1}{2} s_{12}^{2}\left(\frac{\Delta m_{21}^{2} L}{2 E}\right) \sin \left(\frac{\Delta m_{31}^{2} L}{2 E}\right)\right. \\
&\left. \pm\left(\frac{4 E a}{\Delta m_{31}^{2}}\right) \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right) \mp \frac{a L}{2} \sin \left(\frac{\Delta m_{31}^{2} L}{2 E}\right)\right] \\
&+2 J_{r}\left(\frac{\Delta m_{21}^{2} L}{2 E}\right)\left[\cos \delta \sin \left(\frac{\Delta m_{31}^{2} L}{2 E}\right) \mp 2 \sin \delta \sin ^{2}\left(\frac{\Delta m_{31}^{2} L}{4 E}\right)\right] \\
& \equiv \mathrm{P}_{\text {solar }}+\mathrm{P}_{\mathrm{atm}}
\end{aligned}
$$

Magnitude of the Solar term: $P_{\text {solar }} \equiv \cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \sin ^{2}\left(\frac{\Delta \mathrm{~m}_{12}^{2}}{4 \mathrm{E}} \mathrm{L}\right)$

Effect of solar term is very small at Kamioka ($\mathrm{L}=295 \mathrm{~km}$) but sizable at Korea ($\mathrm{L}=1050 \mathrm{~km}$)

Experimental Setup and Assumptions

T2KK (Tokai to Kamioka-Korea)

0.27 Mt detector @Kamioka (L=295 km) 2 Identitical detectors at the same 0.27 Mt detector @Korea (L=I050km) off axis angle
Appearance and disappearance modes

$$
\Delta \mathrm{m}_{23}^{2}= \pm 2.5 \times 10^{-3} \mathrm{eV}^{2} \quad \Delta \mathrm{~m}_{12}^{2}=8 \times 10^{-5} \mathrm{eV}^{2} \quad \sin ^{2} \theta_{12}=0.3 \mathrm{I}
$$

Impact of the Solar Term

χ^{2} definition

$\binom{v}{\bar{v}} \times\binom{$ kamioka }{ korea }$=4$ combinations

$$
\begin{gathered}
v_{\left.\mathrm{e}^{\left(\bar{v}_{\mathrm{e}}\right.}\right) \text { event (5 bins) }}^{\sigma_{i}^{2}}\left(\sum_{i=1}^{5} \frac{\left(N(e)_{i}^{\mathrm{obs}}-N(e)_{i}^{\exp }\right)^{2}}{\left.\sigma_{\mu}\right) \text { event (20 bins) }}+\sum_{i=1}^{20} \frac{\left(N(\mu)_{i}^{\mathrm{obs}}-N(\mu)_{i}^{\exp }\right)^{2}}{\sigma_{i}^{2}}\right)+\sum_{j=1}^{7}\left(\frac{\epsilon_{j}}{\tilde{\sigma}_{j}}\right)^{2} \\
N(e)_{i}^{\exp }=N_{i}^{\mathrm{BG}} \cdot\left(1+\sum_{j=1,2,7} f(e)_{j}^{i} \cdot \epsilon_{j}\right)+N_{i}^{\mathrm{signal}} \cdot\left(1+\sum_{j=3,7} f(e)_{j}^{i} \cdot \epsilon_{j}\right), \\
N(\mu)_{i}^{\exp }=N_{i}^{\mathrm{non}-\mathrm{QE}} \cdot\left(1+\sum_{j=4,6,7} f(\mu)_{j}^{i} \cdot \epsilon_{j}\right)+N_{i}^{\mathrm{QE}} \cdot\left(1+\sum_{j=4,5,7} f(\mu)_{j}^{i} \cdot \epsilon_{j}\right) .
\end{gathered}
$$

f_{j}^{i} : fractional change in the predicted event rate in the i-th bin due to the variation of the parameter ϵ_{j}

Systematic Errors
5 \% BG (Overall)
ϵ_{j} : systematic error parameters varied freely to minimize χ^{2}
5 \% BG (Energy Dep.)
5 \% Signal Efficiency
20 \% Separation of QE/nQE

Example of the case where the octant degeneracy is resolved

HK(0.54Mt) only at Kamioka

$2 \mathrm{HKs}(0.27 \times 2 \mathrm{Mt})$ at Kamioka and Korea
Kamioka 0.27Mton + Korea 0.27Mton detectors, $v 4 y r+\bar{v} 4 y r 4 M W$ beams

Octant degeneracy is resolved!

$$
\sin ^{2} \theta_{23}=0.60 \text { (true) }
$$

(Despite that sign $\Delta \mathrm{m}^{2}$ degeneracy is not completely resolved \rightarrow decoupling of degeneracy)

Parameter regions where the octant degeneracy can be resolved

Dependence on the mass hierarchy is weak

Comparing two methods...

T2K II + Reactor

T2KK

$\sin ^{2} 2 \theta_{13} \geq 0.04-0.06:$ T2KII + Reactor is better $\sin ^{2} 2 \theta_{13} \lesssim 0.04-0.06:$ T2KK is better

Summary

- Octant degeneracy exist if θ_{23} is different from $\pi / 4$
- MethodI:Superbeam (T2K II) + Reactor can resolve the octant degeneracy for $\sin ^{2} 2 \theta_{23} \approx 0.96$ (0.99) if $\sin ^{2} 2 \theta_{13} \approx 0.05$ (0.1) but not work for small θ_{13}
- Method II: Superbeam with 2 Far Detector System (T2KK) can Resolve the octant degeneracy for $\sin ^{2} 2 \theta_{23}$ <0.97 even for very small θ_{13}
- Both Methods are Complementary: For larger (smaller) $\theta_{13}, \sin ^{2} 2 \theta_{13} \gtrsim(\Sigma) 0.05$, Method I (II) would be better

