Testing the μ -e universality with $K^{\pm} \rightarrow I^{\pm} v$ decays

Venelin Kozhuharov

University of Sofia "St. Kl. Ohridski" / JINR Dubna

Neutrino Oscilation Workshop 2006

on behalf of the NA48/2 collaboration

Cambridge, CERN, Chicago, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Northwestern, Perugia, Pisa, Saclay, Siegen, Torino, Vienna

- Physics motivation
- Experimental setup
- Data analysis
- Preliminary result for 2003 data
- Conclusions

Motivation

 μ_{e}^{+}

Within the Standard Model:

M. Finkemeier: Phys.Lett.B387:391-394,1996

where δR_{M} arises from the radiative corrections, $M = \pi^{\pm}, K^{\pm}$ For K[±]: $\delta R_{\kappa} = -(3.78 \pm 0.04)\%$, leading to $R_{\kappa} = (2.472 \pm 0.001) * 10^{-5}$

Motivation

Within the Standard Model: M. Finkemeier: Phys.Lett.B387:391-394,1996 $\mathbf{M}^{\dagger} \mathbf{H}^{\dagger} \mathbf$

- Measurement of $\textbf{R}_{_{\!\!K}}$ tests the $\mu\text{-}e$ universality and provides a sensible test of the SM

15.09.2006

<u>Magnetic spectrometer</u>
 4 drift chambers
 p_⊥^{kick} = 121 MeV/c

∆p/p = 1% ⊕ 0.044*p [GeV/c]

- <u>Hodoscope</u>
 σ(t) = 150 ps
- Liquid Krypton Calorimeter
 △E/E ≅ 3.2%/√E ⊕ 9%/E ⊕ 0.42%
- <u>Hadron Calorimeter, Muon</u> <u>counters, Anticounters, Kaon</u> <u>Beam Spectrometer</u>

7

Experiment primarily designed for the measurement of the charge asymmetry in $K^{\pm} \rightarrow \pi^{-} \pi^{+} \pi^{\pm}$ and $K^{\pm} \rightarrow \pi^{0} \pi^{0} \pi^{\pm}$ decays

2003 run: ~ 50 days nominal conditions ~ 12 hour special run

2004 run: ~ 60 days nominal conditions ~ 56 hour special run

~ 200 TB of data recorded

The huge statistics (~4.10° K⁺ $\rightarrow \pi^+\pi^-\pi^+$) allows to

study rare kaon decays with high precision

2003 data: Trigger

- Kµ2 events: signal from the charged hodosope
- Ke2 events
 - L1 trigger: hodoscope signal + Energy deposition in the EM calorimeter > 10GeV
 - L2 trigger: online kinematics reconstruction

2003 data: Event Selection

- The similarity between the decays allows to exploit systematics cancellation
 - Charged track with momentum 15 GeV<P<55 GeV
 - No extra clusters with $E_{cl} > 1.5$ GeV, no hits in the anticounters, no in time tracks.
 - Vertex reconstructed within 2000 cm < Zvtx < 8500cm</p>

2003 data: MC simulation

• Full Geant3 based simulation of the detector response

Difference in acceptance: $\Delta(R_{K})=1.116 \pm 0.002(stat) \pm 0.006(syst)$

Radiative corrections

Decay	B.R.	Acceptance	Correction
Ke2g Eg>3MeV (IB)	1.56· 10 ⁻⁶	0.33 · A(Ke2)	+6.5%
Ke2g SD	1.5· 10 ^{-₅}	2.4 · 10 ⁻ 3· A(Ke2)	-0.22%
Kµ2g Eg>3MeV (IB)	6.5· 10 ⁻³	0.37 · A(Km2)	-0.64%

2003 data: Background in Ke2

<u>2004 data</u>

NB

- Dedicated data taking period:
 - 60 GeV kaon beam with diminished intensity
 - No Level-2 trigger using only minimum bias triggers
- Simpler selection better control of the systematics
- Analysis performed in momentum bins
 - Better background subtraction

Sample with similar statistics as in 2003

NA48 measurement is already **two times** more precise than the world average

- K[±]→l[±]v decays provide a very challenging opportunity to search for physics beyond the Standard Model
- Preliminary result for ${\rm R}_{_{\rm K}}$ based on 2003 data sample presented
- 2004 data analysis very advanced
- A sub-percent precision measurement of $R_{_K}$ will allow to probe for New Physics or rule out regions in the parameters space in different models