

K2K and T2K experiments

Issei Kato TRIUMF, Canada for the K2K and T2K collaborations

Neutrino Oscillation Workshop 2006 at Conca Specchiulla, Otranto, Italy

Outline

• K2K experiment, shortly - What's updated from the previous results, and the final results T2K experiment - Experimental setup What needs to be measured - ND280 off-axis detectors Summary

K2K experiment

• KEK to Kamioka long baseline experiment

- Pure v_{μ} beam with $\langle E_{\nu} \rangle = 1.3$ GeV and L=250 km
- To confirm neutrino oscillation seen in atmospheric neutrino observations
- Search for v_e appearance
- Brief history
 - 1996-1998: civil construction and detector installation
 - 1998-2004: physics run
 - 1998-2001 with SK-I and 2002-2004 with SK-II
 - 1998 June: the first event in SK
 - 2002: indications for oscillation (0.47x10²⁰ pot)
 - 2004: evidence for oscillation (0.89x10²⁰ pot)
 - 2006: the final results (0.92x10²⁰ pot)

What's updated?

- Full date set is used
- Far-to-near spectrum ratio
 - − Pion monitor measurements → HARP results
 - Published in Nucl. Phys. B732, 1-45 (2006)
- Neutrino interaction study
 - No CC coherent π production
 - Published in Phys. Rev. Lett. 95, 252301 (2005)
- For v_e appearance search, more sophisticated selection applied to reject NC- π^0 events
 - Energy v.s. invariant mass of an event

Far/near ratio from HARP

 Far/near ratio is estimated using HARP results

FRIUMF

Results for disappearance

hep-ex/0606032, will be soon published in Phys. Rev. D

Search for ve appearance

Published in Phys. Rev. Lett. 96, 181801 (2006)

Invariant mass v.s. Energy 300 Signal MC 0 500 1000 0 E_e (MeV) 300 v_{μ} background MC 0 500 1000 0 E_e (MeV) # of events in the signal region = 1 Expected B.G. = $1.7_{-0.4}^{+0.6}$ (no oscillation case) (v_{μ} int. = 1.3, beam- v_{e} = 0.4)

 $\sin^2\theta_{\mu e} < 0.13 \text{ at } \Delta m^2_{\mu e} = 2.8 \times 10^{-3} \text{ eV}^2$

Tokai (J-PARC) to Kamioka neutrino experiment

- to determine θ_{23} and Δm_{23} presidely,
- to discover the θ_{13} and beyond
- with intense neutrino beam tuned at the oscillation maximum by off-axis technique

Neutrino Oscillation Workshop 2006 / Conca

What needs to be measured?

Towards precise measurements of v_{μ} disappearance

- With energy spectrum (CCQE events)

 $E_{v} = \frac{m_{N}E_{l} - m_{l}^{2}/2}{m_{N} - E_{l} + p_{l}\cos\theta_{l}}$

To see its re-appearance

- Understanding of the v_{μ} spectrum and backgrounds (mainly CC1 π and NC1 π) is the key issue

• Towards search for v_e appearance

- Small signal in 0.5-1.0 GeV region
- Understanding of the backgrounds (NC1 π^0 and beam- v_e) is the key issue

ND280m off-axis detectors

- To measure the neutrino spectrum
 - UA1 Magnet (0.2T)
 - Tracker (FGD+TPC)
 - Side-MRD (SMRD)
- To estimate the background events
 - Pi-zero detector (P0D)
 - EM calorimeter (ECAL)+ Tracker

Neutrino Oscillation Workshop 2006 / Conca Specchiulla, Italy

Tracker – FGD + TPC CC measurements Plastic 9,5mm

- FGD + TPC with magnet
 - For CC measurements
 - Spectrum and backgrounds
- To select pure CCQE
 - Select μ by negative track with small dE/dx
 - Momentum measured by TPC/SMRD
 - Proton by dE/dx v.s. momentum
- To select/reject CC π productions
 - Tagging pions by
 - Positive track in TPC (π^+)
 - dE/dx v.s. momenum
 - Decay-e in FGD (10µs active window)
 - Interaction in FGD
 - EM/hadron clusters in ECAL (π^0/π^{\pm})

Plastic scintillator 9.5mm

30cm

Micromegas for gas amplification

THREE TPC MODULES WIT

ADD HUND

~1mm

MPPC readout

September 9-16, 2006

Neutrino Oscillation Workshop 2006 / Conca

Side-MRD

- Relatively large fraction of muons going sideway.
- SMRD measures these muons' energy by range

Scintillator slabs inserted in between the iron plates of magnet yoke Scillator Slab: Length = ~ 87 cm Width = ~ 18 cm Thickmess = 10 mm S-shape grooves for WLS fiber readout: Depth = 4 mm Length = ~ 2.5 m

ECAL and POD Backgrounds to v_e appearance

- Beam-v_e measurement
 - ECAL surrounding the tracker
 - Electron ID using EM shower in ECAL and dE/dx in TPC
- NC π^0 production by v_{μ}
 - Pi-zero detector (P0D)
 - Detector design optimized for NC-π⁰ measurements
 - With large statistics
 - $1.7 \times 10^4 \text{ NC1} \pi^0$ events/year
 - ECAL with tracker can also do the job
 - Exclusive NC1 π^0 study
 - But low efficiency (low stat.)
 - ~800 NC1 π^0 events/year

September 9-16, 2006

Neutrino Oscillation Workshop 2

$NC1\pi^0$ in POD

Neutrino Oscillation Workshop 2006 / Conca Specchiulla, Italy

Requirements for systematics

- To estimate the neutrino beam properties with systematic uncertainty well below the SK statistical error
 - Neutrino flux: < 5%</p>
 - Spectrum shape: width of shape, for example, < 10%
 - Non-QE/QE: < 5–10%</p>
 - NC-1 π^{0} , beam- v_{e} : < 10%
 - SK energy scale: < 2%</p>

T2K prospects

Neutrino Oscillation Workshop 2006 / Conca Specchiulla, Italy

Summary and T2K schedule

- K2K confirmed the neutrino oscillation observed in atmospheric neutrino
 - Null oscillation: < 0.0015% (4.3σ)
 - Allowed region: $1.9 \times 10^{-3} < \Delta m^2 < 3.5 \times 10^{-3} \text{ eV}^2$ at $\sin^2 2\theta = 1$ (90%C.L.)
- T2K: the next generation neutrino experiment
 - To measure Δm_{23}^2 and $\sin^2 2\theta_{23}$ precisely
 - To discover v_e appearance, measure the θ_{13} , and beyond

T2K schedule:

- Beam line construction started in April 2004
- Start of ND280m detectors manufacturing
- ND280 hall construction start
- UA1 magnet installation
- Complete ND280 building
- 50 GeV MR commissioning
- Begin installation of ND280 detectors
- Neutrino beam line commissioning
- T2K physics run

on schedule Fall 2006 April 2007 May 2008 December 2008 2008 January 2009 April 2009 2009