Hadron production results from the Harp experiment M.G.Catanesi /INFN Bari Italy NOW Workshop 9-16 September 2006

## Outline

## Motivations

- Hand measurements
  - K2K & MiniBoone flux predictions
     Al 12.9 GeV/c & Be 8.9 GeV/c
  - Inputs for Super Beams & Neutrino Factory Design
    - Tantalum 3-5-8-12 GeV/c
  - Atmospheric fluxes
     Carbon 12 GeV/c
- Coming results



It is vital to calibrate neutrino production targets in a proton beam

## Design of future projects

Primary energy, target material and geometry, collection scheme • maximizing the  $\pi^+$ ,  $\pi^-$  production rate /proton /GeV • knowing with high precision (<5%) the P<sub>T</sub> distribution CERN scenario: 2.2-5 GeV/c proton linac.

Phase rotation *longitudinally freeze*the beam: slow down
earlier particles,
accelerate later ones
need good knowledge
also of P<sub>L</sub> distribution



### Atmospheric neutrino fluxes: motivations for measurements

 Initial reaction - well above the highest energy accelerator available.
 Shower develops - a large number of lower energy interactions accelerator measurements are helpful.

- Energy region: from few GeV
  - $\rightarrow$  200 GeV (contained)
  - $\rightarrow$  2 TeV (through going)

Accelerator measurements are very sparse.

- Colliders: most particles close to beam and don't enter the detector.

- Fixed target: The energies are much lower and few experiments have published.

- No data available on O2 & N2





## How to overcome the problems

- Event-by-event experiments, not particle-by-particle
- Modern design
  - Open-geometry spectrometers
  - Full solid angle and P.Id.
  - Design inherited from Heavy Ions experiments (multiplicity, correlations, pion interferometry, ...)
- Full momentum acceptance, scan on incident proton momenta
- High event rate
  - Heavy ions experiments are designed for very high track density per event, not for high rate of relatively simple events



- Inaugurates a new era in Hadron Production for Neutrino Physics:
- Based on a design born for Heavy Ions physics studies
  - Full acceptance with P.Id.
  - High event rate capability (3KHz on TPC)
- Built on purpose
- Collaboration includes members of Neutrino
   Oscillation & Cosmic rays experiments
- HARP use T9 secondary beam line on the CERN PS that allows to explore the 2→15 GeV energy range

## HARP's recipe

### secondary hadron yields

- for different beam momenta
- as a function of momentum and angle of daughter particles
- for different daughter particles

### as close as possible to full acceptance

- thin, thick and cryogenic targets
- T9 secondary beam line on the CERN PS allows a 1.5→15 GeV energy range

### O(10<sup>6</sup>) events per setting

 a setting is defined by a combination of target type and material, beam energy and polarity

### Fast readout

- aim at ~10<sup>3</sup> events/PS spill, one spill=400ms. Event rate ~
   2.5KHz
- corresponds to some 10<sup>6</sup> events/day
- $\rightarrow$  very demanding (unprecedented!) for the TPC.



More details in the NIM paper "The Harp Detector @ the CERN PS"

## **Data taking summary**

### HARP took data at the CERN PS T9 beamline in 2001-2002 Total: 420 M events, ~300 settings

|   | SOLID:                                                |                                                      |                                                             |                                                          |                                                                 |                                                                |                                                                |                  |                                                                | 8                |
|---|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------|----------------------------------------------------------------|------------------|
|   | Be                                                    | С                                                    | Al                                                          | Cu                                                       | Sn                                                              | Τα                                                             | Pb                                                             | H₂O              | Empty                                                          |                  |
| - | 2%<br>5%<br>100%                                      | 2%<br>5%<br>100%                                     | 2%<br>5%<br>100%                                            | 2%<br>5%<br>100%                                         | 2%<br>5%<br>100%                                                | 2%<br>5%<br>100%                                               | 2%<br>5%<br>100%                                               | 10%<br>100%      | 0%                                                             |                  |
|   | +3,+5,+8,<br>+12,+15<br>-3,-5,-8,<br>-12,-15<br>GeV/c | +3,+5,+8,<br>+12,+15<br>-3,-5,-8<br>-12,-15<br>GeV/c | 13,+5,+8<br>+12,+15<br>-3,-5,-8<br>-12,-15<br><i>G</i> eV/c | 8, +3,+5,+8<br>+12,+15<br>, -3,-5,-8<br>-12,-15<br>GeV/c | 8, +3,+5,+8,<br>5 +12,+15<br>8, -3,-5,-8,<br>5 -12,-15<br>GeV/c | +1.5,<br>+3,+5,+8,<br>+12,+15<br>-3,-5,-8,<br>-12,-15<br>GeV/c | +1.5,<br>+3,+5,+8,<br>+12,+15<br>-3,-5,-8,<br>-12,-15<br>GeV/c | +1.5,+8<br>GeV/c | +1.5,<br>+3,+5,+8,<br>+12,+15<br>-3,-5,-8,<br>-12,-15<br>GeV/c |                  |
|   |                                                       | OGENI                                                |                                                             | 1                                                        | EXP:                                                            |                                                                |                                                                |                  |                                                                |                  |
|   | н                                                     | D                                                    | Ν                                                           | 0                                                        | Empty                                                           | K2K:                                                           | Al Mi                                                          | niBoone: Be      | LSND: H                                                        | 1 <sub>2</sub> 0 |
|   | 0.8%<br>2.4%                                          | 2.1%                                                 | 5.5%                                                        | 7.5%                                                     | 0%                                                              | 5%<br>50°                                                      | /o<br>2/                                                       | 5%<br>50%        | 10%<br>100%                                                    |                  |
|   | +3,+5,+8,<br>+12,+15<br>-3,-5,-8,                     | +3,+5,+8,<br>+12,+15<br>-3,-5,-8,                    | +3,+5,+8,<br>+12,+15<br>-3,-5,-8,                           | +3,+5,+8,<br>+12,+15<br>-3,-5,-8,                        | +3,+5,+8,<br>+12,+15<br>-3,-5,-8,                               | 100<br>Repl                                                    | %<br>ica                                                       | 100%<br>Replica  | 100%                                                           | 0                |
|   | -12,-15<br>GeV/c                                      | -12,-15<br>GeV/c                                     | -12,-15<br>GeV/c                                            | -12,-15<br>GeV/c                                         | -12,-15<br>GeV/c                                                | +12.9 6                                                        | eV/c +                                                         | 8.9 GeV/c        | +1.5 Ge\                                                       | //c              |

### **Relevance of HARP for K2K neutrino beam**

#### One of the largest K2K systematic errors comes from

**Pion Monitor** 



See also I.Kato talk

## AI 5% 12.9 GeV/c Results





### **Error Evaluation**

 Thorough systematics error evaluation performed, to quantify errors on both:

•  $d^2 \sigma^{\pi}/(dpd\Omega) (p,\theta)$ Typical error: 8.7%

σ<sup>π</sup>(0.75

Error on total cross-section: 4.7%

| LITO OGLEC                       | "diff (70) | unt (//) |
|----------------------------------|------------|----------|
| Overall normalization            | 4.0        | 4.0      |
| Momentum scale                   | 3.6        | 0.3      |
| Al target statistics             | 3.2        | 0.6      |
| Acceptance correction            | 2.6        | 0.7      |
| $(\pi, p)$ PID                   | 2.5        | 0.5      |
| Empty target statistics          | 2.2        | 0.4      |
| Electron PID                     | 2.1        | 0.5      |
| Momentum resolution (smearing)   | 1.3        | 1.6      |
| Empty target normalization       | 1.2        | 1.1      |
| Momentum resolution (model dep.) | 1.0        | 1.1      |
| Reconstruction efficiency        | 0.8        | 0.2      |
| Kaon PID                         | 0.3        | 0.1      |
| Secondary interactions           | 0.2        | 0.1      |
| PID probability cut              | 0.2        | 0.1      |
| Total                            | 8.7        | 4.7      |

Press Same

(b) 3 (b) 3

#### $\frac{d^2\sigma(p+AI\rightarrow\pi^++X)}{dpd\Omega}(p,\theta) = c_1 p^{c_2}(1-\frac{p}{p_{beam}}) \exp[-c_3 \frac{p^{c_3}}{p_{beam}^{c_3}}]$ $-c_6\theta(p-c_7p_{beam}\cos^{c_8}\theta)$

where:

- X: any other final state particle
- p<sub>heem</sub>=12.9: proton beam momentum (GeV/c)
- $p, \theta: \pi^+$  momentum(GeV/c), angle(rad)
- $d^2\sigma/(dpd\Omega)$  units: mb/(GeV/csr), where  $d\Omega \equiv 2\pi d(\cos\theta)$
- c<sub>1</sub>..., c<sub>8</sub>: emprical fit parameters

Sanford-Wang parametrization used to:

- Use HARP data in K2K beam MC
- Translate HARP pion production uncertainties into flux uncertainties Compare HARP results with previous results in similar beam momentum, pion phase space range

Parametrization of HARP Data

HARP data on inclusive pion production fitted to Sanford-Wang parametrization:

#### Dominant error contributions:

Overall normalization Momentum scale Statistics

## Al 5% 12.9 GeV/c Results



HARP results in black, Sanford-Wang parametrization of HARP results in red

## Far/Near Ratio in K2K



# **Miniboone:** 8.9 GeV p beam hitting a berillium target

Decay region

50 m

25 m.

## π<sup>-</sup>,K<sup>-</sup> *p ν ν*

## **MiniBooNE** $\nu_{\mu} \rightarrow \nu_{e}$ Analysis

1.8 m

10 ft

40 ft

24 ft

Drawing not to scale

450 m



- Goal: confirm or refute the  $\text{LSND} v_{\mu} \rightarrow v_{e}$  result in a definitive and independent way
- Method: combined fit to  $v_e$  CCQE and  $v_\mu$  CCQE samples in bins of reconstructed neutrino energy

#### See also Z.Djurcic talk

## HARP Be 8.9 GeV 5% Target Results





### More HARP data for accurate flux prediction coming:

K $\pm$  production data p  $\pi$  interaction in thick target  $\pi$ - production data Direct measurement of the main source of the ve background

#### Direct measurement of the rescattering

Anti-neutrino flux measurement



### Al 12 GeV/c : a first (raw) comparison with some geant4 hadronic generators:



## Be 8.9 GeV/c : a first comparison with geant4 hadronic generators:















#### black points are HARP data



### Possible proton-driver energies for neutrino factory & super beams

| Proton Driver                | GeV |
|------------------------------|-----|
| Old SPL energy (2.2 GeV)     | 2.2 |
| [New SPL energy 3.5GeV]      | 3.5 |
| FNAL linac (driver study 2)  | 8   |
| [FNAL driver study 1, 16GeV] | 16  |
| [BNL/AGS upgrade, 24GeV]     | 24  |



#### Harp Acceptance





3-5-8-12 GeV/c p-Ta Results  $\implies \pi$ +



3-5-8-12 GeV/c p-Ta Results  $\pi$ -



### $\pi$ + $\pi$ - vs beam momentum



## **Atmospheric neutrino fluxes**



### $p+C \rightarrow \pi^{\pm}+X$ , $p_{beam}=12 \text{ GeV/c}$



### New Harp measurements -



## Conclusions

- Precision n studies require a precise knowledge of v production and HARP measurements fill an important gap in v flux predictions
- HARP AI results have been published and incorporated into K2K final oscillation analysis giving a factor of 2 reduction in errors on F/N ratio predictions
- HARP Be results are ready . These results are used in MiniBooNE oscillation analyses
- Harp Ta results at large angle from 3 to 12 GeV/c are also ready. The work to integrated them in the design studies of the facilities for the next v beam generations is under way.
- Preliminary results from with Carbon target @12 GeV/c are now available
- Many new data will be available in the future



# Why we still need hadron production measurements ?



- The task to make a reliable prediction of the neutrino flux at the experiment is difficult.
  - You need a precise knowledge of the relative population of the different kind of particles and energy spectrum.
- To avoid one of the main source of systematic error the <u>neutrino experiments community</u> was always committed to measure in ancillary experiments the hadron production

## Forward Region : Tracking



## PId FW region:



## Large Angle Region (TPC)











dE/dx: Ta data 3,5,8 GeV/c

### Al 12.9 GeV/c: Comparison with older data

