Duality in left-right symmetric seesaw

Evgeny Akhmedov

KTH, Stockholm \& Kurchatov Institute, Moscow

In collaboration with Michele Frigerio

Why are neutrinos so light?

\diamond A simple and elegant explanation - The seesaw mechanism
(Minkowski, 1977; Gell-Mann, Ramond \& Slansky, 1979; Yanagida, 1979; Glashow, 1979; Mohapatra \& Senjanović, 1980)

In addition:
Seesaw has a built-in mechanism for generating the baryon asymmetry of the Universe - Baryogenesis via Leptogenesis
(Fukugita \& Yanagida, 1986; Luty, 1992; Covi et al., 1996; Buchmüller \& Plümacher, 1996; ...)

The simplest version: Add 3 RH ν 's $N_{R i}$ yo the minimal SM

Heavy $N_{R i}$'s make $\nu_{L i}$'s light :

$$
-\mathcal{L}_{Y+m}=Y_{\nu} \bar{l}_{L} N_{R} H+\frac{1}{2} M_{R} N_{R} N_{R}+\text { h.c. }
$$

Neutrino mass matrix in the $\left(\nu_{L},\left(N_{R}\right)^{c}\right)$ basis:

$$
\mathcal{M}_{\nu}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D}^{T} & M_{R}
\end{array}\right)
$$

$N_{R i}$ are EW singlets $\Rightarrow \quad M_{R} \sim M_{G U T}\left(M_{I}\right) \gg m_{D} \sim v$.
Block diagonalization: $M_{N} \simeq M_{R}$,

$$
m_{\nu_{L}} \simeq-m_{D} M_{R}^{-1} m_{D}^{T} \quad \Rightarrow \quad m_{\nu} \sim \frac{(174 \mathrm{GeV})^{2}}{M_{R}}
$$

For $m_{\nu} \lesssim 0.05 \mathrm{eV} \Rightarrow M_{R} \gtrsim 10^{15} \mathrm{GeV} \sim M_{\text {GUT }} \sim 10^{16} \mathrm{GeV}$!

Type II seesaw

Type I seesaw: Neutrino mass generated through exchage of a heavy RH ν 's N_{R}; in type II - through exchage of a heavy $S U(2)_{L}$ - triplet scalars Δ_{L} :

Type II seesaw: Magg \& Wetterich, 1980; Lazarides et al., 1981; Schechter \& Valle, 1980; Mohapatra \& Senjanović, 1981,...

In the SM, RH neutrinos N_{R} are singlets of the gauge group - "aliens".
They are more natural in Left-Right symmetric extensions of the SM: $S U(2)_{L} \times S U(2)_{R} \times U(1)_{\mathrm{B}-\mathrm{L}}, \quad S U(2)_{L} \times S U(2)_{R} \times S U(4)_{\mathrm{PS}}, \quad S O(10), \ldots$

LR symmetric models explain in a nice way maximal P - and C -violation in low- E weak interactions as a spontaneous symmetry breaking phenomenon

- likely to be present in the final theory

In LR - symmetric models:

In general, both type I and type II seesaw contributions to m_{ν} are present :

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ll}
m_{L} & m_{D} \\
m_{D}^{T} & M_{R}
\end{array}\right)
$$

Block diagonalization of \mathcal{M}_{ν} :

$$
\diamond \quad m_{\nu} \simeq m_{L}-m_{D} M_{R}^{-1} m_{D}^{T}, \quad m_{L}=f_{L} v_{L}
$$

m_{D} comes from Yukawa interactions with the bi-doublet Higgs Φ :

$$
Y_{1} \bar{l}_{L} \Phi l_{R}+Y_{2} \bar{l}_{L} \tilde{\Phi} l_{R}, \quad \tilde{\Phi} \equiv \tau_{2} \Phi^{*} \tau_{2} \quad \Rightarrow \quad m_{D}=y v
$$

m_{L} and M_{R} - from Yukawa couplings with triplet Higgses Δ_{L} and Δ_{R}

$$
\Rightarrow \quad m_{\nu} \simeq f_{L} v_{L}-v^{2} y\left(f_{R} v_{R}\right)^{-1} y^{T}
$$

In general: m_{ν}, f_{L} and f_{R} - complex symmetric, y - complex matrix

Discrete LR symmetry

Discrete LR symmetry in LR-symm. models - two possible implementations (P or C):

$$
\text { (1) } \quad l_{L i} \leftrightarrow l_{R i}, \quad \Delta_{L} \leftrightarrow \Delta_{R}^{*}, \quad \Phi \leftrightarrow \Phi^{\dagger}
$$

Yields

$$
f_{L}=f_{R}^{*}, \quad y=y^{\dagger},
$$

(2) $\quad l_{L i} \leftrightarrow l_{L i}^{c} \equiv\left(l_{R i}\right)^{c}, \quad \Delta_{L} \leftrightarrow \Delta_{R}, \quad \Phi \leftrightarrow \Phi^{T}$

Yields

$$
f_{L}=f_{R} \equiv f, \quad y=y^{T} .
$$

Both implementations possible. Implem. (2) is more natural in $S O(10)$ GUTs (is an automatic gauge symmetry)

Adhere to the second implementation

$$
m_{\nu}=f v_{L}-v^{2} y\left(v_{R} f\right)^{-1} y
$$

For realization (1) (parity): type I term contains $\left(f^{*}\right)^{-1}$ instead of f^{-1}.
$N_{R}, \Delta_{R}, \Delta_{L}$ are all at very high scale $\left(\sim 10^{12}-10^{16} \mathrm{GeV}\right) \Rightarrow$ no direct way of probing this sector of the theory.
\diamond Neutrinos may provide a low-energy window into new physics at very high energy scales !

Bottom-up approach:

- Take m_{ν} from experiment
- Take y from data + theoretical assumptions (quark-lepton symm., GUTs)
- Solve the seesaw relation for f
E.A. and M. Frigerio, PRL 96 (2006) 061802 and hep-ph/0609046

What would we like to know?

Try to learn as much as possible about the heavy neutrino sector

- What are the masses of heavy RH neutrinos?
- What are the mixing and CP violation in the heavy RH neutrino sector?
- Can all this give us a hint of the underlying theory?
- Is the solution that we found unique?
- Is type I or type II contribution in the light neutrino mass dominant or are they equally important?

Inverting the seesaw formula

Pure typel $\left(c_{0} \equiv v^{2} / v_{R}\right)$:

$$
m_{\nu}=-c_{0}\left(y f^{-1} y^{T}\right) \quad \Rightarrow \quad f=-c_{0}\left(y^{T} m_{\nu}^{-1} y\right)
$$

Inverting the seesaw formula

Pure type I $\left(c_{0} \equiv v^{2} / v_{R}\right)$:

$$
m_{\nu}=-c_{0}\left(y f^{-1} y^{T}\right) \quad \Rightarrow \quad f=-c_{0}\left(y^{T} m_{\nu}^{-1} y\right)
$$

Pure type II:

$$
m_{\nu}=f v_{L} \quad \Rightarrow \quad f=m_{\nu} / v_{L}
$$

Inverting the seesaw formula

Pure type I $\left(c_{0} \equiv v^{2} / v_{R}\right)$:

$$
m_{\nu}=-c_{0}\left(y f^{-1} y^{T}\right) \quad \Rightarrow \quad f=-c_{0}\left(y^{T} m_{\nu}^{-1} y\right)
$$

Pure type II:

$$
m_{\nu}=f v_{L} \quad \Rightarrow \quad f=m_{\nu} / v_{L}
$$

General LR-symmetric type I + II seesaw:

$$
m_{\nu}=f v_{L}-\frac{v^{2}}{v_{R}}\left(y f^{-1} y\right)
$$

- a nonlinear matrix equation for f. Yet can be readily solved analytically !

Inverting the seesaw formula

Pure type I $\left(c_{0} \equiv v^{2} / v_{R}\right)$:

$$
m_{\nu}=-c_{0}\left(y f^{-1} y^{T}\right) \quad \Rightarrow \quad f=-c_{0}\left(y^{T} m_{\nu}^{-1} y\right)
$$

Pure type II:

$$
m_{\nu}=f v_{L} \quad \Rightarrow \quad f=m_{\nu} / v_{L}
$$

General LR-symmetric type I + II seesaw:

$$
m_{\nu}=f v_{L}-\frac{v^{2}}{v_{R}}\left(y f^{-1} y\right)
$$

- a nonlinear matrix equation for f. Yet can be readily solved analytically ! Important point: A duality property of LR-symmetric seesaw

$$
\text { If } f \text { is a solution, so is } \hat{f} \equiv\left(m_{\nu} / v_{L}-f\right)
$$

Inverting the seesaw formula

Pure type I ($\left.c_{0} \equiv v^{2} / v_{R}\right)$:

$$
m_{\nu}=-c_{0}\left(y f^{-1} y^{T}\right) \quad \Rightarrow \quad f=-c_{0}\left(y^{T} m_{\nu}^{-1} y\right)
$$

Pure type II:

$$
m_{\nu}=f v_{L} \quad \Rightarrow \quad f=m_{\nu} / v_{L}
$$

General LR-symmetric type I + II seesaw:

$$
m_{\nu}=f v_{L}-\frac{v^{2}}{v_{R}}\left(y f^{-1} y\right)
$$

- a nonlinear matrix equation for f. Yet can be readily solved analytically ! Important point: A duality property of LR-symmetric seesaw

$$
\text { If } f \text { is a solution, so is } \hat{f} \equiv\left(m_{\nu} / v_{L}-f\right)
$$

$\Rightarrow \quad$ There is always an even number of solutions! $\quad\left(\#\right.$ sol. $\left.=2^{n}\right)$

LR symmetry important for duality!

It was important that $f_{L}=f_{R}$ and $y^{T}=y$.
\diamond For the other realization of parity symmetry $\left(f_{L}=f_{R}^{*}\right.$ and $\left.y=y^{\dagger}\right)$ exactly the same duality holds !

Two-generation case

$$
\begin{aligned}
& f^{-1}=\frac{1}{F}\left(\begin{array}{cc}
f_{22} & -f_{12} \\
-f_{12} & f_{11}
\end{array}\right), \quad y=\left(\begin{array}{ll}
y_{e 1} & y_{e 2} \\
y_{\mu 1} & y_{\mu 2}
\end{array}\right), \\
& F \equiv \operatorname{det} f, y_{\mu 1}=y_{e 2} . \text { Define: } x
\end{aligned} \begin{aligned}
& v_{L} v_{R} / v^{2} \text { and } m \equiv m_{\nu} / v_{L} \Rightarrow \\
x F\left(f_{11}-m_{e e}\right)= & f_{22} y_{e 1}^{2}-2 f_{12} y_{e 1} y_{e 2}+f_{11} y_{e 2}^{2}, \\
x F\left(f_{22}-m_{\mu \mu}\right)= & f_{22} y_{e 2}^{2}-2 f_{12} y_{e 2} y_{\mu 2}+f_{11} y_{\mu 2}^{2}, \\
x F\left(f_{12}-m_{e \mu}\right)= & f_{22} y_{e 1} y_{e 2}-f_{12}\left(y_{e 1} y_{\mu 2}+y_{e 2}^{2}\right) \\
& +f_{11} y_{e 2} y_{\mu 2},
\end{aligned}
$$

A system of coupled 3rd order equations

Admits a simple exact analytic solution!
Go to the basis where y is diagonal: $y=\operatorname{diag}\left(y_{1}, y_{2}\right)$ (no loss of generality)

$$
\begin{aligned}
x F\left(f_{11}-m_{e e}\right) & =f_{22} y_{1}^{2} \\
x F\left(f_{22}-m_{\mu \mu}\right) & =f_{11} y_{2}^{2} \\
x F\left(f_{12}-m_{e \mu}\right) & =-f_{12} y_{1} y_{2}
\end{aligned}
$$

Rescaling:

$$
f_{i j}=\sqrt{\lambda} f_{i j}^{\prime}, \quad m_{i j}=\sqrt{\lambda} m_{i j}^{\prime}, \quad y_{i j}=\sqrt{\lambda} y_{i j}^{\prime},
$$

λ - arbitrary; fix it by requiring $F^{\prime} \equiv \operatorname{det} f^{\prime}=1$. The system of eqs. for $f_{i j}^{\prime}$ becomes linear

Express $f_{i j}^{\prime}$ back through unprimed $m_{i j}, y_{1,2}$ and subst. into $F^{\prime}=1 \Rightarrow$ 4th order characteristic equation for λ

The solution:

$$
f=\frac{x \lambda}{(x \lambda)^{2}-y_{1}^{2} y_{2}^{2}}\left(\begin{array}{cc}
x \lambda m_{e e}+y_{1}^{2} m_{\mu \mu} & m_{e \mu}\left(x \lambda-y_{1} y_{2}\right) \\
\ldots & x \lambda m_{\mu \mu}+y_{2}^{2} m_{e e}
\end{array}\right)
$$

λ has to be found from

$$
\begin{array}{r}
{\left[(x \lambda)^{2}-y_{1}^{2} y_{2}^{2}\right]^{2}-x\left[\operatorname{det} m\left(x \lambda-y_{1} y_{2}\right)^{2} x \lambda\right.} \\
\left.+\left(m_{e e} y_{2}+m_{\mu \mu} y_{1}\right)^{2}(x \lambda)^{2}\right]=0
\end{array}
$$

Has 4 complex solutions $\Rightarrow 4$ solutions for f which form $\underline{2 \text { dual pairs }}$
Determinant of the seesaw relation $x \hat{f}=-y f^{-1} y \quad \Rightarrow \quad x^{2} F \hat{F}=y_{1}^{2} y_{2}^{2}$ $F^{\prime}=1 \Rightarrow F=\lambda$; therefore

$$
x^{2} \lambda \hat{\lambda}=y_{1}^{2} y_{2}^{2}
$$

Allows to express the four solutions for λ in a simple closed form

Which seesaw type dominates?

If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \gg 4\left|y_{i} y_{j} / x\right|$, one of the solutions λ_{i} satisfies $\left|x \lambda_{1}\right| \gg\left|y_{i} y_{j}\right|$ $\Rightarrow \quad f_{1} \simeq m$ (type II seesaw)

Which seesaw type dominates?

If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \gg 4\left|y_{i} y_{j} / x\right|$, one of the solutions λ_{i} satisfies $\left|x \lambda_{1}\right| \gg\left|y_{i} y_{j}\right|$ $\Rightarrow \quad f_{1} \simeq m$ (type II seesaw)

Then for the dual solution λ_{2} : $\left|x \lambda_{2}\right| \ll\left|y_{i} y_{j}\right|$

$$
\Rightarrow \quad f_{2}=\hat{f}_{1} \quad \text { corresponds to type I seesaw }
$$

The remaining 2 solutions are of mixed type.

Which seesaw type dominates?

If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \gg 4\left|y_{i} y_{j} / x\right|$, one of the solutions λ_{i} satisfies $\left|x \lambda_{1}\right| \gg\left|y_{i} y_{j}\right|$

$$
\Rightarrow \quad f_{1} \simeq m \quad \text { (type II seesaw) }
$$

Then for the dual solution λ_{2} : $\left|x \lambda_{2}\right| \ll\left|y_{i} y_{j}\right|$

$$
\Rightarrow \quad f_{2}=\hat{f}_{1} \quad \text { corresponds to type I seesaw }
$$

The remaining 2 solutions are of mixed type.
If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \lesssim 4\left|y_{i} y_{j} / x\right|$, all 4 solutions are of mixed type.
Similar situation in 3-generation case

Which seesaw type dominates?

If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \gg 4\left|y_{i} y_{j} / x\right|$, one of the solutions λ_{i} satisfies $\left|x \lambda_{1}\right| \gg\left|y_{i} y_{j}\right|$ $\Rightarrow \quad f_{1} \simeq m$ (type II seesaw)

Then for the dual solution λ_{2} : $\left|x \lambda_{2}\right| \ll\left|y_{i} y_{j}\right|$

$$
\Rightarrow \quad f_{2}=\hat{f}_{1} \quad \text { corresponds to type I seesaw }
$$

The remaining 2 solutions are of mixed type.
If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \lesssim 4\left|y_{i} y_{j} / x\right|$, all 4 solutions are of mixed type.
Similar situation in 3-generation case
In general, if there is a solution with seesaw type I dominance, there is always also a solution with type II sessaw dominance and vice versa.

Which seesaw type dominates?

If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \gg 4\left|y_{i} y_{j} / x\right|$, one of the solutions λ_{i} satisfies $\left|x \lambda_{1}\right| \gg\left|y_{i} y_{j}\right|$
$\Rightarrow \quad f_{1} \simeq m$ (type II seesaw)
Then for the dual solution λ_{2} : $\left|x \lambda_{2}\right| \ll\left|y_{i} y_{j}\right|$

$$
\Rightarrow \quad f_{2}=\hat{f}_{1} \quad \text { corresponds to type I seesaw }
$$

The remaining 2 solutions are of mixed type.
If $\left|m_{\alpha \beta} m_{\gamma \delta}\right| \lesssim 4\left|y_{i} y_{j} / x\right|$, all 4 solutions are of mixed type.
Similar situation in 3-generation case
In general, if there is a solution with seesaw type I dominance, there is always also a solution with type II sessaw dominance and vice versa.

Using low-energy data (and v_{R}) only, it is impossible to say which seesaw type dominataes (if any) - additional criteria necessary (leptogenesis?)

Three lepton generations

A system of six coupled 4th order equations - can be readily solved analytically by making use of the same trick as in 2-g case plus duality.

Characteristic equation for the rescaling factor λ is of 8 th order \Rightarrow 8 solutions $\lambda_{i} \Rightarrow 8$ solutions $f_{i}(i=1, \ldots, 8)$.

Form 4 pairs of mutually dual solutions

For given y (i.e. m_{D}), all 8 solutions result in exactly the same mass matrix of light neutrinos m_{ν} !

Analysis of solutions recently done: Hosteins et al. (hep-ph/0606078); EA \& Frigerio (hep-ph/0609046)

Study of some stability and leptogenesis issues under way (Stockholm group)

A realistic numerical example

Take: normal hierarchy, tri-by-maxial mixing, no $\varnothing P$,
$m_{1}=0.005 \mathrm{eV}, \quad \Delta m_{21}^{2} / \Delta m_{31}^{2}=0.031, \quad v_{L} \simeq 0.05 \mathrm{eV}, \quad v_{R} \simeq 6 \times 10^{14} \mathrm{GeV}$
Also: $\quad V_{\text {CKM }} \approx \mathbb{1}, \quad y_{1}=0.01, \quad y_{2}=0.1, \quad y_{3}=1$

$$
m \equiv \frac{m_{\nu}}{v_{L}}=\left(\begin{array}{ccc}
0 & 0.1 & -0.1 \\
0.1 & 0.55 & 0.45 \\
-0.1 & 0.45 & 0.55
\end{array}\right)
$$

Now solve the seesaw equation for f

Solutions:

$$
\begin{aligned}
& f_{1} \approx\left(\begin{array}{ccc}
-0.001 & 0.10 & -0.14 \\
\ldots & 0.56 & 0.49 \\
\ldots & \ldots & 0.88
\end{array}\right) \quad \hat{f}_{1} \approx\left(\begin{array}{ccc}
0.001 & -0.005 & 0.04 \\
\ldots & -0.006 & -0.04 \\
\ldots & \ldots & -0.33
\end{array}\right) \\
& f_{2} \approx\left(\begin{array}{ccc}
-0.01 & 0.11 & -0.04 \\
\cdots & 0.55 & 0.44 \\
\cdots & \cdots & -0.88
\end{array}\right) \\
& f_{3} \approx\left(\begin{array}{ccc}
0.02 & 0.07 & -0.02 \\
\ldots & 0.61 & 0.30 \\
\cdots & \cdots & 1.58
\end{array}\right) \\
& f_{4} \approx\left(\begin{array}{ccc}
0.01 & 0.08 & 0.08 \\
\ldots & 0.60 & 0.25 \\
\ldots & \ldots & -0.19
\end{array}\right) \\
& \hat{f}_{2} \approx\left(\begin{array}{ccc}
0.006 & -0.008 & -0.06 \\
\ldots & -0.004 & 0.01 \\
\ldots & \ldots & 1.44
\end{array}\right) \\
& \hat{f}_{3} \approx\left(\begin{array}{ccc}
-0.02 & 0.03 & -0.08 \\
\cdots & -0.06 & 0.15 \\
\cdots & \cdots & -1.03
\end{array}\right) \\
& \hat{f}_{4} \approx\left(\begin{array}{ccc}
-0.01 & 0.02 & -0.18 \\
\cdots & -0.05 & 0.20 \\
\cdots & \cdots & 0.74
\end{array}\right)
\end{aligned}
$$

Conclusions

- In LR - symmetric models (minimal LR, Pati-Salam, $S O(10) . E_{6}, \ldots$) one naturally has type I + II seesaw mechanism of neutrino mass generation
- Discrete LR symmetry (parity) leads to a relation between type I and type II contributions to m_{ν}, which results in a duality property of the seesaw formula: $f \Longleftrightarrow m_{\nu} / v_{L}-f$
- For given y, there are 2^{n} (8 for three lepton generations) matrices f which result in exactly the same mass matrix of light neutrinos m_{ν}
- A simple analytic method developed for solving the seesaw nonlinear matrix equation. Allows bottom-up reconstraction of the Yukawa coupling matrix f of heavy RH neutrinos
- The results may be used for neutrino mass model building and studies of baryogenesis via leptogenesis. Allow to analytically explore the interplay of type I and II contributions to m_{ν}

Backup slides

RGE issues

The discrete LR (parity) symmetry of the underlying theory must be broken at some scale $v_{L R} \Rightarrow$ renormalization group evolution below this scale may result in a violation of conditions

$$
f_{L}=f_{R} \equiv f, \quad y=y^{T}
$$

at lower energies. Corrections to matrix elements of y and f depend logarithmically on ratios of masses of RH neutrinos and Higgs triplets; are suppressed by loop factors and possibly by small couplings. Numerically checked: If LR-violating corrections to the matr. elements are of the order of percent, reconstruction of the matrix f remains accurate at a percent level.

The stability may be lost if small matrix elements receive corrections proportional to the large elements \Rightarrow a dedicated study necessary

Three lepton generations

Once again go to the basis where $y=\operatorname{diag}\left(y_{1}, y_{2}, y_{3}\right)$.

$$
f^{-1}=\frac{1}{F}\left(\begin{array}{ccc}
f_{22} f_{33}-f_{23}^{2} & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
\ldots & \cdots & \ldots
\end{array}\right)
$$

System of 6 coupled 4th order equations:

$$
x F\left(m_{11}-f_{11}\right)=y_{1}^{2}\left(f_{22} f_{33}-f_{23}^{2}\right)
$$

Simple rescaling would not do! Use similar equations for duals:

$$
x \hat{F}\left(m_{11}-\hat{f}_{11}\right) \equiv x \hat{F} f_{11}=y_{1}^{2}\left(\hat{f}_{22} \hat{f}_{33}-\hat{f}_{23}^{2}\right)
$$

and $\left(\hat{f}_{22} \hat{f}_{33}-\hat{f}_{23}^{2}\right)=\left(m_{22}-f_{22}\right)\left(m_{33}-f_{33}\right)-\left(m_{23}-f_{23}\right)^{2}$
Allows to express quadratic in f terms through linear and f-indep. terms and \hat{F}

Resulting system:

$$
x(F+\hat{F}) f_{11}=y_{1}^{2}\left[\left(m_{22} m_{33}-m_{23}^{2}\right)-\left(m_{22} f_{33}+m_{33} f_{22}-2 m_{23} f_{23}\right)\right]+x F m_{11}
$$

Now one can rescale:

$$
f_{i j}=\lambda^{1 / 3} f_{i j}^{\prime}, \quad m_{i j}=\lambda^{1 / 3} m_{i j}^{\prime}, \quad y_{i j}=\lambda^{1 / 3} y_{i j}^{\prime},
$$

Fix λ by requiring $F^{\prime} \equiv \operatorname{det} f^{\prime}=1$
Determinant condition: $x^{3} F \hat{F}=-y_{1}^{2} y_{2}^{2} y_{3}^{2} \Rightarrow$

$$
x^{3} \hat{F}^{\prime}=-\left(y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime}\right)^{2}
$$

System of 6 linear eqs. for $f_{i j}^{\prime}$ - easily solved. Substitution into $F^{\prime}=1$ $(F=\lambda) \quad \Rightarrow \quad$ 8th order characteristic eq. for λ. Yields 4 pairs of dual solutions for the matrix f.

3 generation case - more details

Equations for the matrix elements of f and its dual \hat{f} :

$$
\begin{align*}
x F\left(f_{i j}-m_{i j}\right) & =y_{i} y_{j} F_{i j}, \tag{1}\\
x \hat{F}\left(\hat{f}_{i j}-m_{i j}\right) & =-x \hat{F} f_{i j}=y_{i} y_{j} \hat{F}_{i j}, \tag{2}
\end{align*}
$$

Here: $F \equiv \operatorname{det} f, \hat{F} \equiv \operatorname{det} \hat{f}$ and

$$
\begin{aligned}
& F_{i j} \equiv \frac{1}{2} \epsilon_{i k l} \epsilon_{j m n} f_{k m} f_{l n}, \\
& \hat{F}_{i j} \equiv \frac{1}{2} \epsilon_{i k l} \epsilon_{j m n} \hat{f}_{k m} \hat{f}_{l n}=M_{i j}-T_{i j}+F_{i j}, \\
& M_{i j} \equiv \frac{1}{2} \epsilon_{i k l} \epsilon_{j m n} m_{k m} m_{l n}, \quad T_{i j} \equiv \epsilon_{i k l} \epsilon_{j m n} f_{k m} m_{l n} .
\end{aligned}
$$

A system of 6 coupled quartic equations for $f_{i j}$. RH sides are quadratic rather than linear in $f_{i j} \Rightarrow$ a simple rescaling would not linearize the system.
But: using the dual system of eqs. gives for these RH sides

$$
y_{i} y_{j} F_{i j}=-x \hat{F} f_{i j}+y_{i} y_{j}\left(T_{i j}-M_{i j}\right)
$$

Linearization: rescaling by a factor $\lambda^{1 / 3}$

Determinant condition: $x^{3} F \hat{F}=-y_{1}^{2} y_{2}^{2} y_{3}^{2}$. Fix λ by requiring $F^{\prime}(\lambda)=1$; $\Rightarrow \quad \hat{F}^{\prime}=-\left(y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime}\right)^{2} / x^{3}$. The linearized system:

$$
\left[x^{3}-\left(y_{1}^{\prime} y_{2}^{\prime} y_{3}^{\prime}\right)^{2}\right] f_{i j}^{\prime}-x^{3} m_{i j}^{\prime}=x^{2} y_{i}^{\prime} y_{j}^{\prime}\left(T_{i j}^{\prime}-M_{i j}^{\prime}\right)
$$

Simplified case: $y_{1} \rightarrow 0$ (physically well motivated). The result:

$$
\begin{gathered}
f_{11}=m_{e e}, \quad f_{12}=m_{e \mu}, \quad f_{13}=m_{e \tau}, \\
f_{23}=\left(m_{\mu \tau}+\frac{y_{2} y_{3} m_{e \mu} m_{e \tau}}{x \lambda}\right) / d_{2}, \\
f_{22}=\left[m_{\mu \mu}+\frac{y_{2}^{2}}{x \lambda}\left(M_{22}-\frac{y_{3}^{2} m_{e e} m_{e \mu}^{2}}{x \lambda}\right)\right] / d_{1}, \\
f_{33}=\left[m_{\tau \tau}+\frac{y_{3}^{2}}{x \lambda}\left(M_{33}-\frac{y_{2}^{2} m_{e e} m_{e \tau}^{2}}{x \lambda}\right)\right] / d_{1},
\end{gathered}
$$

Here:

$$
d_{1}=1-\frac{y_{2}^{2} y_{3}^{2} m_{e e}^{2}}{(x \lambda)^{2}}, \quad d_{2}=1+\frac{y_{2} y_{3} m_{e e}}{x \lambda}
$$

Characteristic equation for λ :

$$
\begin{array}{r}
\lambda^{4}\left\{\left[(x \lambda)^{2}-m_{e e}^{2} y_{2}^{2} y_{3}^{2}\right]^{2}-x\left[\operatorname{det} m\left(x \lambda-m_{e e} y_{2} y_{3}\right)^{2} x \lambda\right.\right. \\
\left.\left.+\left(M_{22} y_{2}+M_{33} y_{3}\right)^{2}(x \lambda)^{2}\right]\right\}=0
\end{array}
$$

If a solution λ of general charact. eq. $\neq 0$ in the limit $y_{1} \rightarrow 0$, then $\hat{\lambda}=-y_{1}^{2} y_{2}^{2} y_{3}^{2} /\left(x^{3} \lambda\right) \rightarrow 0 \Rightarrow$ determinant of \hat{f} vanishes. \Rightarrow The dual of any solution that is finite for $y_{1} \rightarrow 0$ becomes singular and must be discarded.
$\Rightarrow \quad$ For $y_{1} \rightarrow 0$ there are only 4 (rather than 8) solutions with no duals. The corresp. values of λ are zeros of the factor in curly brackets (which is quartic in λ).

A strong connection with the pure 2 -g case

- A different duality among the 4 remaining solutions:

If λ satisfies the charact. equation, so does

$$
\tilde{\lambda} \equiv y_{2}^{2} y_{3}^{2} m_{e e}^{2} /\left(x^{2} \lambda\right),
$$

and it corresponds to

$$
\tilde{f} \equiv \tilde{m}-f,
$$

where

$$
\tilde{m}_{\alpha \beta}=m_{\alpha \beta}+m_{e \alpha} m_{e \beta} / m_{e e}
$$

There are two pairs of such solutions.

