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Why are neutrinos so light ?

♦ A simple and elegant explanation – The seesaw mechanism

(Minkowski, 1977; Gell-Mann, Ramond & Slansky, 1979; Yanagida, 1979;
Glashow, 1979; Mohapatra & Senjanović, 1980)

In addition:

Seesaw has a built-in mechanism for generating the baryon asymmetry of the
Universe – Baryogenesis via Leptogenesis

(Fukugita & Yanagida, 1986; Luty, 1992; Covi et al., 1996; Buchmüller &
Plümacher, 1996; ...)

The simplest version: Add 3 RH ν’s NRi yo the minimal SM
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HeavyNRi’s make νLi’s light :

−LY +m = Yν l̄L NR H +
1

2
MRNRNR + h.c.,

Neutrino mass matrix in the (νL, (NR)c) basis:

Mν =





0 mD

mT
D MR





NRi are EW singlets ⇒ MR ∼ MGUT (MI) ≫ mD ∼ v.

Block diagonalization: MN ≃ MR ,

♦ mνL
≃ −mD M−1

R mT
D ⇒ mν ∼ (174 GeV)2

MR

For mν . 0.05 eV ⇒ MR & 1015 GeV∼ MGUT ∼ 1016 GeV !
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Type II seesaw
Type I seesaw: Neutrino mass generated through exchage of a heavy RH ν’s
NR; in type II – through exchage of a heavy SU(2)L - triplet scalars ∆L:

Type II seesaw: Magg & Wetterich, 1980; Lazarides et al., 1981; Schechter & Valle, 1980;
Mohapatra & Senjanović, 1981,. . .

In the SM, RH neutrinos NR are singlets of the gauge group – “aliens”.
They are more natural in Left-Right symmetric extensions of the SM:
SU(2)L × SU(2)R × U(1)B−L , SU(2)L × SU(2)R × SU(4)PS , SO(10), ...

LR symmetric models explain in a nice way maximal P- and C-violation in
low-E weak interactions as a spontaneous symmetry breaking phenomenon
– likely to be present in the final theory
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In LR - symmetric models:
In general, both type I and type II seesaw contributions to mν are present :

Mν =





mL mD

mT
D MR





Block diagonalization of Mν :

♦ mν ≃ mL − mD M−1
R mT

D , mL = fLvL

mD comes from Yukawa interactions with the bi-doublet Higgs Φ:

Y1 l̄L Φ lR + Y2 l̄L Φ̃ lR , Φ̃ ≡ τ2Φ
∗τ2 ⇒ mD = yv

mL and MR – from Yukawa couplings with triplet Higgses ∆L and ∆R

⇒ mν ≃ fLvL − v2 y (fRvR)−1 yT

In general: mν , fL and fR – complex symmetric, y – complex matrix
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Discrete LR symmetry
Discrete LR symmetry in LR-symm. models – two possible implementations
(P or C):

(1) lLi ↔ lRi , ∆L ↔ ∆∗
R , Φ ↔ Φ†

Yields

fL = f∗
R , y = y† ,

(2) lLi ↔ lcLi ≡ (lRi)
c , ∆L ↔ ∆R , Φ ↔ ΦT

Yields

fL = fR ≡ f , y = yT .

Both implementations possible. Implem. (2) is more natural in SO(10) GUTs
(is an automatic gauge symmetry)
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Adhere to the second implementation ⇒

mν = fvL − v2 y (vRf)−1 y

For realization (1) (parity): type I term contains (f∗)−1 instead of f−1.

NR, ∆R, ∆L are all at very high scale (∼ 1012 − 1016 GeV) ⇒ no direct
way of probing this sector of the theory.

♦ Neutrinos may provide a low-energy window into new physics at very high
energy scales !

Bottom-up approach:

Take mν from experiment

Take y from data + theoretical assumptions (quark-lepton symm., GUTs)

Solve the seesaw relation for f

E.A. and M. Frigerio, PRL 96 (2006) 061802 and hep-ph/0609046
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What would we like to know?

Try to learn as much as possible about the heavy neutrino sector

What are the masses of heavy RH neutrinos?

What are the mixing and CP violation in the heavy RH neutrino sector?

Can all this give us a hint of the underlying theory?

Is the solution that we found unique?

Is type I or type II contribution in the light neutrino mass dominant
or are they equally important?
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Inverting the seesaw formula
Pure type I (c0 ≡ v2/vR):

mν = − c0

(

y f−1 yT
)

⇒ f = − c0

(

yT m−1
ν y

)
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Inverting the seesaw formula
Pure type I (c0 ≡ v2/vR):

mν = − c0

(

y f−1 yT
)

⇒ f = − c0

(

yT m−1
ν y

)

Pure type II:
mν = f vL ⇒ f = mν/vL
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Inverting the seesaw formula
Pure type I (c0 ≡ v2/vR):

mν = − c0

(

y f−1 yT
)

⇒ f = − c0

(

yT m−1
ν y

)

Pure type II:
mν = f vL ⇒ f = mν/vL

General LR-symmetric type I + II seesaw:

mν = fvL − v2

vR

(

y f−1 y
)

– a nonlinear matrix equation for f . Yet can be readily solved analytically !
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Inverting the seesaw formula
Pure type I (c0 ≡ v2/vR):

mν = − c0

(

y f−1 yT
)

⇒ f = − c0

(

yT m−1
ν y

)

Pure type II:
mν = f vL ⇒ f = mν/vL

General LR-symmetric type I + II seesaw:

mν = fvL − v2

vR

(

y f−1 y
)

– a nonlinear matrix equation for f . Yet can be readily solved analytically !

Important point: A duality property of LR-symmetric seesaw

♦ If f is a solution, so is f̂ ≡ (mν/vL − f)
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Inverting the seesaw formula
Pure type I (c0 ≡ v2/vR):

mν = − c0

(

y f−1 yT
)

⇒ f = − c0

(

yT m−1
ν y

)

Pure type II:
mν = f vL ⇒ f = mν/vL

General LR-symmetric type I + II seesaw:

mν = fvL − v2

vR

(

y f−1 y
)

– a nonlinear matrix equation for f . Yet can be readily solved analytically !

Important point: A duality property of LR-symmetric seesaw

♦ If f is a solution, so is f̂ ≡ (mν/vL − f)

⇒ There is always an even number of solutions! (#sol. = 2n)
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LR symmetry important for duality!
It was important that fL = fR and yT = y.

♦ For the other realization of parity symmetry (fL = f∗
R and y = y†)

exactly the same duality holds !

Two-generation case

f−1 =
1

F





f22 −f12

−f12 f11



 , y =





ye1 ye2

yµ1 yµ2



 ,

F ≡ detf , yµ1 = ye2. Define: x ≡ vLvR/v2 and m ≡ mν/vL ⇒

xF (f11 − mee) = f22 y2
e1 − 2f12 ye1 ye2 + f11 y2

e2 ,

xF (f22 − mµµ) = f22 y2
e2 − 2f12 ye2 yµ2 + f11 y2

µ2 ,

xF (f12 − meµ) = f22 ye1ye2 − f12 (ye1 yµ2 + y2
e2)

+ f11 ye2 yµ2 ,
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A system of coupled 3rd order equations
Admits a simple exact analytic solution !

Go to the basis where y is diagonal: y = diag(y1, y2) (no loss of generality)

xF (f11 − mee) = f22 y2
1

xF (f22 − mµµ) = f11 y2
2

xF (f12 − meµ) = − f12 y1 y2

Rescaling:

fij =
√

λ f ′
ij , mij =

√
λm′

ij , yij =
√

λ y′
ij ,

λ - arbitrary; fix it by requiring F ′ ≡ detf ′ = 1. The system of eqs. for f ′
ij

becomes linear

Express f ′
ij back through unprimed mij , y1,2 and subst. into F ′ = 1 ⇒

4th order characteristic equation for λ
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The solution:

f =
xλ

(xλ)2 − y2
1y2

2





xλmee + y2
1mµµ meµ(xλ − y1y2)

. . . xλmµµ + y2
2mee





λ has to be found from

[

(xλ)2 − y2
1y

2
2

]2 − x
[

detm(xλ − y1y2)
2xλ

+(meey2 + mµµy1)
2(xλ)2

]

= 0

Has 4 complex solutions ⇒ 4 solutions for f which form 2 dual pairs

Determinant of the seesaw relation xf̂ = −yf−1y ⇒ x2FF̂ = y2
1y

2
2

F ′ = 1 ⇒ F = λ; therefore

x2λλ̂ = y2
1y2

2

Allows to express the four solutions for λ in a simple closed form
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Which seesaw type dominates ?
If |mαβmγδ| ≫ 4|yiyj/x|, one of the solutions λi satisfies |xλ1| ≫ |yiyj |

⇒ f1 ≃ m (type II seesaw)
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Which seesaw type dominates ?
If |mαβmγδ| ≫ 4|yiyj/x|, one of the solutions λi satisfies |xλ1| ≫ |yiyj |

⇒ f1 ≃ m (type II seesaw)

Then for the dual solution λ2: |xλ2| ≪ |yiyj |

⇒ f2 = f̂1 corresponds to type I seesaw

The remaining 2 solutions are of mixed type.
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Which seesaw type dominates ?
If |mαβmγδ| ≫ 4|yiyj/x|, one of the solutions λi satisfies |xλ1| ≫ |yiyj |

⇒ f1 ≃ m (type II seesaw)

Then for the dual solution λ2: |xλ2| ≪ |yiyj |

⇒ f2 = f̂1 corresponds to type I seesaw

The remaining 2 solutions are of mixed type.

If |mαβmγδ| . 4|yiyj/x|, all 4 solutions are of mixed type.

Similar situation in 3-generation case
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Which seesaw type dominates ?
If |mαβmγδ| ≫ 4|yiyj/x|, one of the solutions λi satisfies |xλ1| ≫ |yiyj |

⇒ f1 ≃ m (type II seesaw)

Then for the dual solution λ2: |xλ2| ≪ |yiyj |

⇒ f2 = f̂1 corresponds to type I seesaw

The remaining 2 solutions are of mixed type.

If |mαβmγδ| . 4|yiyj/x|, all 4 solutions are of mixed type.

Similar situation in 3-generation case

In general, if there is a solution with seesaw type I dominance, there is always
also a solution with type II sessaw dominance and vice versa.
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Which seesaw type dominates ?
If |mαβmγδ| ≫ 4|yiyj/x|, one of the solutions λi satisfies |xλ1| ≫ |yiyj |

⇒ f1 ≃ m (type II seesaw)

Then for the dual solution λ2: |xλ2| ≪ |yiyj |

⇒ f2 = f̂1 corresponds to type I seesaw

The remaining 2 solutions are of mixed type.

If |mαβmγδ| . 4|yiyj/x|, all 4 solutions are of mixed type.

Similar situation in 3-generation case

In general, if there is a solution with seesaw type I dominance, there is always
also a solution with type II sessaw dominance and vice versa.

Using low-energy data (and vR) only, it is impossible to say which seesaw type
dominataes (if any) – additional criteria necessary (leptogenesis?)
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Three lepton generations

A system of six coupled 4th order equations – can be readily solved
analytically by making use of the same trick as in 2-g case plus duality.

Characteristic equation for the rescaling factor λ is of 8th order ⇒
8 solutions λi ⇒ 8 solutions fi (i = 1, . . . , 8).

Form 4 pairs of mutually dual solutions

For given y (i.e. mD), all 8 solutions result in exactly the same mass matrix
of light neutrinos mν !

Analysis of solutions recently done: Hosteins et al. (hep-ph/0606078);
EA & Frigerio (hep-ph/0609046)

Study of some stability and leptogenesis issues under way (Stockholm group)
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A realistic numerical example

Take: normal hierarchy, tri-by-maxial mixing, no �
�CP ,

m1 = 0.005 eV, ∆m2
21/∆m2

31 = 0.031, vL ≃ 0.05 eV, vR ≃ 6×1014 GeV

Also: VCKM ≈ 1, y1 = 0.01, y2 = 0.1, y3 = 1

⇓

m ≡ mν

vL
=









0 0.1 −0.1

0.1 0.55 0.45

−0.1 0.45 0.55









Now solve the seesaw equation for f
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Solutions:

f1 ≈









−0.001 0.10 −0.14

. . . 0.56 0.49

. . . . . . 0.88









f̂1 ≈









0.001 −0.005 0.04

. . . −0.006 −0.04

. . . . . . −0.33









f2 ≈









−0.01 0.11 −0.04

. . . 0.55 0.44

. . . . . . −0.88









f̂2 ≈









0.006 −0.008 −0.06

. . . −0.004 0.01

. . . . . . 1.44









f3 ≈









0.02 0.07 −0.02

. . . 0.61 0.30

. . . . . . 1.58









f̂3 ≈









−0.02 0.03 −0.08

. . . −0.06 0.15

. . . . . . −1.03









f4 ≈









0.01 0.08 0.08

. . . 0.60 0.25

. . . . . . −0.19









f̂4 ≈









−0.01 0.02 −0.18

. . . −0.05 0.20

. . . . . . 0.74









(Rounding off to leading or leading + subleading digit)
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Conclusions

In LR - symmetric models (minimal LR, Pati-Salam, SO(10). E6,...) one
naturally has type I + II seesaw mechanism of neutrino mass generation

Discrete LR symmetry (parity) leads to a relation between type I and type
II contributions to mν , which results in a duality property of the seesaw
formula: f ⇐⇒ mν/vL − f

For given y, there are 2n (8 for three lepton generations) matrices f

which result in exactly the same mass matrix of light neutrinos mν

A simple analytic method developed for solving the seesaw nonlinear
matrix equation. Allows bottom-up reconstraction of the Yukawa coupling
matrix f of heavy RH neutrinos

The results may be used for neutrino mass model building and studies of
baryogenesis via leptogenesis. Allow to analytically explore the interplay
of type I and II contributions to mν
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Backup slides
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RGE issues
The discrete LR (parity) symmetry of the underlying theory must be broken at
some scale vLR ⇒ renormalization group evolution below this scale may
result in a violation of conditions

fL = fR ≡ f , y = yT

at lower energies. Corrections to matrix elements of y and f depend
logarithmically on ratios of masses of RH neutrinos and Higgs triplets; are
suppressed by loop factors and possibly by small couplings. Numerically
checked: If LR-violating corrections to the matr. elements are of the order of
percent, reconstruction of the matrix f remains accurate at a percent level.

The stability may be lost if small matrix elements receive corrections
proportional to the large elements ⇒ a dedicated study necessary
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Three lepton generations
Once again go to the basis where y = diag(y1, y2, y3).

f−1 =
1

F









f22f33 − f2
23 . . . . . .

. . . . . . . . .

. . . . . . . . .









System of 6 coupled 4th order equations:

xF (m11 − f11) = y2
1 (f22f33 − f2

23)

. . . . . . . . . . . .

Simple rescaling would not do! Use similar equations for duals:

x F̂ (m11 − f̂11) ≡ x F̂ f11 = y2
1 (f̂22f̂33 − f̂2

23)

and (f̂22f̂33 − f̂2
23) = (m22 − f22)(m33 − f33) − (m23 − f23)

2

Allows to express quadratic in f terms through linear and f -indep. terms and F̂
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Resulting system:

x (F+F̂ ) f11 = y2
1 [(m22 m33 − m2

23) − (m22f33 + m33f22−2m23 f23)] + xF m11

. . . . . . . . . . . .

Now one can rescale:

fij = λ1/3 f ′
ij , mij = λ1/3 m′

ij , yij = λ1/3 y′
ij ,

Fix λ by requiring F ′ ≡ detf ′ = 1

Determinant condition: x3FF̂ = − y2
1 y2

2 y2
3 ⇒

x3F̂ ′ = − (y′
1 y′

2 y′
3)

2

System of 6 linear eqs. for f ′
ij – easily solved. Substitution into F ′ = 1

(F = λ) ⇒ 8th order characteristic eq. for λ. Yields 4 pairs of dual
solutions for the matrix f .
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3 generation case – more details

Equations for the matrix elements of f and its dual f̂ :

xF (fij − mij) = yiyjFij , (1)

xF̂ (f̂ij − mij) = −xF̂ fij = yiyjF̂ij , (2)

Here: F ≡ det f , F̂ ≡ det f̂ and

Fij ≡ 1
2ǫiklǫjmnfkmfln ,

F̂ij ≡ 1
2ǫiklǫjmnf̂kmf̂ln = Mij − Tij + Fij ,

Mij ≡ 1
2ǫiklǫjmnmkmmln , Tij ≡ ǫiklǫjmnfkmmln .

A system of 6 coupled quartic equations for fij . RH sides are quadratic rather
than linear in fij ⇒ a simple rescaling would not linearize the system.
But: using the dual system of eqs. gives for these RH sides

yiyjFij = −xF̂ fij + yiyj(Tij − Mij)

linearized by a rescaling as before, except that the scaling factor is now λ1/3
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Linearization: rescaling by a factor λ1/3

Determinant condition: x3FF̂ = − y2
1 y2

2 y2
3 . Fix λ by requiring F ′(λ) = 1;

⇒ F̂ ′ = −(y′
1y

′
2y

′
3)

2/x3. The linearized system:

[x3 − (y′
1y

′
2y

′
3)

2]f ′
ij − x3m′

ij = x2y′
iy

′
j(T

′
ij − M ′

ij) .

—————————————-
Simplified case: y1 → 0 (physically well motivated). The result:

f11 = mee , f12 = meµ , f13 = meτ ,

f23 =
(

mµτ +
y2y3meµmeτ

xλ

)

/d2 ,

f22 =

[

mµµ +
y2
2

xλ

(

M22 −
y2
3meem

2
eµ

xλ

)]

/d1 ,

f33 =

[

mττ +
y2
3

xλ

(

M33 −
y2
2meem

2
eτ

xλ

)]

/d1 ,
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Here:

d1 = 1 − y2
2y2

3m2
ee

(xλ)2
, d2 = 1 +

y2y3mee

xλ
.

Characteristic equation for λ:

λ4
{

[(xλ)2 − m2
eey

2
2y

2
3 ]2 − x

[

detm(xλ − meey2y3)
2xλ

+(M22y2 + M33y3)
2(xλ)2

]}

= 0 .

If a solution λ of general charact. eq. 6= 0 in the limit y1 → 0, then
λ̂ = −y2

1y
2
2y2

3/(x3λ) → 0 ⇒ determinant of f̂ vanishes. ⇒ The dual of
any solution that is finite for y1 → 0 becomes singular and must be discarded.

⇒ For y1 → 0 there are only 4 (rather than 8) solutions with no duals. The
corresp. values of λ are zeros of the factor in curly brackets (which is quartic
in λ).
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A strong connection with the pure 2-g case

– A different duality among the 4 remaining solutions:

If λ satisfies the charact. equation, so does

λ̃ ≡ y2
2y2

3m
2
ee/(x

2λ) ,

and it corresponds to

f̃ ≡ m̃ − f ,

where

m̃αβ = mαβ + meαmeβ/mee .

There are two pairs of such solutions.
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