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Gallium data, SFP and KamLAND

Time modulation of the solar neutrino flux is probably
the most important issue after LMA has been asserted
as the dominant solution for the �ν problem.

Many efforts have been recently undertaken to look
into modulation (SK, SNO collabs., Stanford Group,
Calcutta Group, ...)

If confirmed it will probably imply the existence of
a sizable neutrino magnetic moment µν and hence a
wealth of new physics.

VVO (1986) explained the claimed periodicity of the
Chlorine event rate but the effect remained inconclu-
sive. In summary it works as follows:

Active neutrinos can be converted to sterile ones owing
to the interaction of µν with the solar field B�.
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At times of intense solar activity

Strong B� → large µνB� → large conversion

with little or no conversion otherwise. Hence a neu-
trino flux anticorrelated to solar activity.

OUR CLAIM

Striking fact: Gallium data have been consistently de-
creasing. This may be the effect of a long term period-
icity. In fact

Period 1991-97 1998-03
SAGE+Ga/GNO 77.8 ± 5.0 63.3 ± 3.6

Ga/GNO only 77.5 ± 7.7 62.9 ± 6.0
av. no. of suspots 52 100

(Table 1)

Notice a 2.4σ discrepancy in the combined results over
the two periods: possible anticorrelation of Ga event
rate with the 11-year solar cycle.
September, 2006 João Pulido et al.



Gallium data, SFP and KamLAND

Ga are the only experiments with a significant contri-
bution of pp, 7Be neutrinos (together they account for
' 80% of event rate and > 99% of total �ν flux). No
other experiments show such a variational effect, so
the time dependence of these fluxes becomes an open
possibility.

We propose an alternative to the conventional so-
lar+KamLAND fit:

DO NOT completely average over time: it may erase
important information. Instead attempt at two separate
fits to the two Ga data sets consistent with all other
solar and KamLAND data.
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THE MODEL

Introduce sterile neutrinos. In the vacuum they do not
mix with the active ones
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while in matter active neutrinos communicate to sterile
ones through the magnetic moment
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The parameter ∆m2
10 = m2

1 − m2
0 dictates the location

of the active → sterile transition. (∆m2
21 = m2

2 − m2
1

defines the location of the conventional LMA transi-
tion).
Bpeak = 220kG, ∆m2

10 = −6.0 × 10−9eV 2

E =< Epp >= 0.33MeV
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Why sterile neutrinos? Because we need

∆m2
10 = O(10−8eV 2)

which excludes conversion to active neutrinos for
which both known values of the mass square differ-
ences are larger.

The large order of magnitude discrepancy between the
two mass square differences

∆m2
21 = O(10−4)eV 2 ∆m2

10 = O(10−8)eV 2

(Table 2)

implies the two resonances to be located far apart
(LMA in the core and SFP at the bottom of the con-
vective zone) so that they do not interfere.

In all our calculations µν = 10−12µB.
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FIELD PROFILE (normalized) - peaks near the bot-
tom of the convective zone [Bpeak = (200 − 300)kG]
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∆m2
10 = O(10−8eV 2) → pp, 7Be resonances located

near Bpeak.

Field time dependence (possibly in connection to so-
lar activity) leads to a modulation of the low energy
neutrino flux

→ mainly pp and 7Be

September, 2006 João Pulido et al.



Gallium data, SFP and KamLAND

RESULTS

For the global best fit we obtain

Ga Cl K (SK) SNONC SNOCC SNOES
Set (I) 71.7 2.66 2.29
Set (II) 69.6 2.18 5.53 1.54 2.16
LMA 64.8 2.74 2.30 5.10 1.75 2.28

(Table 3)

Set (I): period 1991-97. Only 3 experiments were
available: Ga, Cl, Kamiokande
Set (II): period 1998-03. Cl not available and
Kamiokande → SuperK

Parameters (χ2/d.o.f. = 18.4/13, 107.9/94, 104.3/95)

∆m2
21 = 8.2 × 10−5eV 2 (7.9), tan2θ = 0.31 (0.46)

∆m2
10 = −6.5 × 10−8eV 2
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However:
Global b.f. is not a good measure for the investigation
of the time variability of low energy neutrinos, as its
information is dissimulated within the wealth of solar
and KamLAND data.

A slight change in the parameters:

∆m2
21 = 8.4 × 10−5eV 2, tan2θ = 0.27

∆m2
10 = −1.7 × 10−8eV 2

yields (χ2/d.o.f. = 18.7/13, 121.1/94)

Ga Cl K (SK) SNONC SNOCC SNOES
Set (I) 74.7 2.63 2.28
Set (II) 60.5 2.28 5.82 1.53 2.24

(Table 4)

Recall: for LMA (KamLAND only),

∆m2
21 = 7.9±0.6

0.5 ×10−5eV 2, tan2θ = 0.46±4.5
0.25 (2σ)
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Solar+KamLAND analyses (Standard and ours)
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Table 4 parameters
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Consistency of solution with KamLAND data

(I) KamLAND e+ spectrum

2 3 4 5 6 7 8 9
E

Prompt
(MeV)

0

10

20

30

40

50

60

70

E
ve

nt
s 

/ 0
.4

25
M

eV

no-oscillation
LMA best-fit (table 3)
data  points
LMA+SFP (table 4)
background

The two fits are equally comparable in quality

LMA best fit χ2 = 15.0/11d.o.f.

Table 4 fit χ2 = 16.5/11d.o.f.
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Consistency ... (continued)

(II) Antineutrino survival probability
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PLMA = 0.576, PBF = 0.623, PTable 4 = 0.651

Compare with data: P = 0.658 ± 0.064

Best of 3 fits is for the parameter choice of table 4

∆m2
21 = 8.4 × 10−5eV 2, tan2θ = 0.27

Recall that this parameter choice is the one leading to
the Ga data sets which lie the furthest apart: 74.7 and
60.5 SNU.

A clear distinction between Table 4 scenario and LMA
one will only be possible either with data improvement
or average distances below 110-120km or both.

New reactors may come into operation while others
cease and fluxes almost constantly change.
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CONCLUSIONS

Investigating variability of � ν flux is the most impor-
tant challenge facing us in � ν physics, now that LMA
is known to play a major role for the solution to the
SNP.

Variability of LE � ν flux is hinted by Ga data, pos-
sibly in connection to � activity, hence the impor-
tance of forthcoming LE experiments: KamLAND (�
mode), LENS, Borexino, ...

KamLAND (reactor ν̄ mode) will no doubt help telling
’pure LMA type’ solution from ’LMA+SFP type’ both
through improvement of data accuracy and shift of ef-
fective reactor-detector distance.
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