Neutrino factory

Patrick Huber

University of Wisconsin, Madison

based on hep-ph/0606119

NOW 2006 September 9-16, 2006 Conca Specchiulla, Otranto, Italy

Outline

- take "existing" NF and repeat L-E optimization
- add a second baseline
- add new final states silver and platinum
 - discuss improved detectors
 - for the golden channel
 - for the additional channels
- compare

'Existing' NF

- 10²¹ muons per year
- $E_{\mu} = 50 \,\mathrm{GeV}$
- 5 years μ^- and 5 years of μ^+ running
- 50 kt magnetized iron calorimeter
- efficiency for golden events rises linearly from 0 at 4 GeV to asymptotic value at 20 GeV
- background $5 \cdot 10^{-5}$ of all NC events and $5 \cdot 10^{-5}$ of all right sign events
- for ν_{μ} disappearance we use a threshold of $1 \, \mathrm{GeV}$ (no need for CID)
- energy resolution is $0.15E_{\nu}$

$\sin^2 2\theta_{13}$ sensitivity

CP discovery reach

CP discovery reach – L vs E

Mass hierarchy discovery reach

Large θ_{13} – L vs E

Summary – 'existing' NF

different L and E for different measurements

- $L \sim 2000 4000 \,\mathrm{km}, E_{\mu} \simeq 30 \,\mathrm{GeV}$ for CPV
- $L \sim 7500 \,\mathrm{km}, E_{\mu} \simeq 20 \,\mathrm{GeV}$ for θ_{13}
- $L \sim 7500 \,\mathrm{km}, E_{\mu} \simeq 30 \,\mathrm{GeV} \,\mathrm{for} \,\mathrm{sgn} \Delta m_{31}^2$

 $E_{\mu}=30\,{\rm GeV}$ and two baselines $4000\,{\rm km}$ and $7500\,{\rm km}$

Silver channel

Silver

• 5 kt ECC

• OPERA-like performance (Auterio *et al.*) Silver*

- 10 kt ECC
- 5 times as efficient as Silver
- 3 times the background

Which baseline for Silver?

Platinum channel

Platinum

- 15 kt LAr TPC
- 20% signal efficiency
- 1% charge confusion
- CID up to $7.5 \,\mathrm{GeV}$

Platinum*

- 50 kt (maybe same than improved golden detector)
- CID up to 50 GeV

same baseline as golden detector

How useful are those channels?

P. Huber – p.13/26

Summary for channels

Within a 3 flavor oscillation only framework

- Channels are of limited use
- at large θ_{13} : reduce correlation
- at intermediate θ_{13} : reduction of intrinsic degeneracy

Second baseline works better (even relative to channel*)!

Improved golden channel

- 50 kt
- 50% efficiency at 1(3), GeV
- $10^{-3} (E_{\nu} \,[{\rm GeV}])^{-2}$ of all NC events as background (factor 10 more is no problem)
- $10^{-3} (E_{\nu} \,[{\rm GeV}])^{-2}$ of all right sign events as background (factor 10 more is no problem)
- Energy resolution $0.15\sqrt{(E)} + 0.085$

Comparison CP. Single

P. Huber – p.16/26

Comparison

P. Huber – p.17/26

Comparison

P. Huber – p.18/26

Conclusion

- lower muon energy possible 30 GeV oscillation physics
- lower threshold for golden channel
 - $E_{\mu} = 20 \,\mathrm{GeV}$
 - vastly increased performance
 - detector cost?
- two baselines correlations and degeneracies

Backup slides

Atmospheric parameters

Impact of CID threshold

50

Rates – I

$\sin^2 2\theta_{13} = 10^{-1}$	Signal	Background	S/\sqrt{B}
Golden	31000 (6000)	39 (73)	5000 (700)
Silver	210 (-)	32 (-)	37 (-)
Silver@732km	260 (-)	110 (-)	25 (-)
Silver*	2100 (-)	190 (-)	150 (-)
Silver*@732km	2600 (-)	670 (-)	100 (-)
Platinum	4 (120)	140 (110)	0.3 (11)
Platinum*	6700 (27000)	190000 (160000)	15 (68)
$(Golden)_{MB}$	5100 (340)	9 (17)	1700 (83)

Rates – II

$\sin^2 2\theta_{13} = 10^{-2.5}$	Signal	Background	S/\sqrt{B}
Golden	1900 (450)	39 (72)	300 (53)
Silver	3 (-)	33 (-)	0.5 (-)
Silver@732km	1.7 (-)	110 (-)	0.2 (-)
Silver*	29 (-)	200 (-)	2.1 (-)
Silver*@732km	17 (-)	680 (-)	0.7 (-)
Platinum	1 (5)	170 (110)	0.08 (0.5)
Platinum*	500 (1600)	190000 (160000)	1.1 (4)
$(Golden)_{MB}$	200 (10)	9 (17)	67 (2.4)

Systematics & backgrounds

P. Huber – p.25/26

Threshold vs resolution

