Many-Body Theory of the Electroweak Nuclear Response

Omar Benhar

INFN and Dept. of Physics, Università "La Sapienza", Roma

work done in collaboration with N. Farina, D. Meloni, H. Nakamura, M. Sakuda, R. Seki PRD 72 (2005) 053005, hep-ph/0604071 (submitted to PRL) nucl-ex/0603029 (to appear in RMP)

Outline

• Motivation

- Many body theory of electroweak interactions with nuclei
- Results for (e, e') and comparison to data
- Results for (ν, ℓ)
- Conclusions and prospects

Motivation

- Neutrino experiments use nuclei as detectors
- Quantitative understanding of the weak nuclear response at $E_{\nu} \sim 0.5 3$ GeV required for data analysis
- Need to develop a theoretical framework
 - able to explain electron scattering data
 - applicable to a wide range of kinematical conditions and targets
 - easily implementable in Monte Carlo simulations

Many-body theory of $e + A \rightarrow e' + X$

In the Impulse Approximation scheme (IA) the scattering process off a nucleus reduces to the incoherent sum of the elementary processes involving individual nucleons:

Cross section can be written:

$$\frac{d\sigma_A}{d\Omega_{e'}dE_{e'}} = \int d^4p P(p) \left(\frac{d\sigma_N}{d\Omega_{e'}dE_{e'}}\right)$$

Ingredients of IA calculations

• $e + N \rightarrow e' + X$ elementary cross-section

$$\frac{d\sigma_{eN}}{d\Omega_{e'}dE_{e'}} = \frac{\alpha^2}{Q^4} \frac{E'_e}{E_e} \frac{m}{E_p} L_{\mu\nu} w_N^{\mu\nu}$$
$$w_N^{\mu\nu} = w_1^N \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + \frac{w_2^N}{m^2} \left(p^{\mu} - \frac{(pq)}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{(pq)}{q^2} q^{\nu} \right)$$
$$w_1^N, w_2^N \text{ from data}$$

Target spectral function P(p, E) : probability of removing a nucleon of momentum p from the target, leaving the residual spectator system with excitation energy E

 $P(\mathbf{p}, E)$ obtained from non-relativistic nuclear many-body theory, using as *only* input the *bare* NN interaction (fitted to the properties of the NN system).

- no theoretical bias on the determination of the dynamics
- no adjustable parameters involved
- exact or highly accurate calculations feasible for A=2,3,4 and ∞
- spectral functions for Carbon, Oxygen, Iron and Gold obtained using Local Density Approximation (LDA)

Local Density Approximation (LDA) $P(\mathbf{p}, E)$ for oxygen

$$P(\mathbf{p}, E) = P_{MF}(\mathbf{p}, E) + P_{corr}(\mathbf{p}, E)$$

 $P_{MF}(\mathbf{p}, E) \to \text{from } (e, e'p) \text{ data}$

 $P_{corr}(\mathbf{p}, E) \rightarrow$ from uniform nuclear matter calculation at different densities

$$P_{MF}(\mathbf{p}, E) = \sum_{n} Z_{n} |\phi_{n}(\mathbf{p})|^{2} F_{n}(E - E_{n})$$

$$P_{corr}(\mathbf{p}, E) = \int d^3r \ \rho_A(r) \ P_{corr}^{NM}(\mathbf{p}, E; \rho = \rho_A(r))$$

- the shell model contribution P_{MF}(**p**, E) accounts for ~ 80% of the strenght;
- the remaining ~ 20%, accounted for by P_{corr}(**p**, E), is located at high momentum and large removal energy (**p** ≫ p_F, E ≫ e_F)

$$\underline{e+N \to e'+X}$$

$$\frac{d\sigma_{eN}}{d\Omega_{e'}dE_{e'}} = \frac{\alpha^2}{Q^4} \frac{E'_e}{E_e} \frac{m}{E_p} L_{\mu\nu} w_N^{\mu\nu}$$

$$w_i^{\mu\nu} = \sum_x \langle \mathbf{p}, \mathbf{N} | j_i^{\mu} | x, \mathbf{p} + \mathbf{q} \rangle \langle \mathbf{p} + \mathbf{q}, x | j_i^{\nu} | \mathbf{N}, \mathbf{p} \rangle$$
$$\times \quad \delta(\tilde{\nu} + \sqrt{\mathbf{p}^2 + m^2} - E_x) .$$

Binding of the struck nucleon is taken into account by replacing:

$$\begin{array}{ll} q & \equiv & (\nu, \mathbf{q}) \to \widetilde{q} \equiv (\widetilde{\nu}, \mathbf{q}) \\ \\ \widetilde{\nu} & = & \nu - E + m - \sqrt{\mathbf{p}^2 + m^2} = \nu - \delta\nu \end{array}$$

- Going beyond the IA: FSI (Final State Interactions)
 - A) energy shift \rightarrow mean field of the spectators
 - B) redistributions of the strenght \rightarrow coupling of 1p1h final state to np nh
- High energy approximation:
 - i) the struck nucleon moves along a straight trajectory with constant velocity;
 - ii) the fast struck nucleon "sees" the spectator system as a collection of fixed scattering centers.

FSI described by:

$$\bar{U}_{\mathbf{p}+\mathbf{q}}^{FSI}(t) = \langle 0 | \frac{1}{A} \sum_{i=1}^{A} e^{i \sum_{j \neq i} \int_{0}^{t} dt' \Gamma_{\mathbf{p}+\mathbf{q}}(|\mathbf{r}_{ij}+\mathbf{v}t'|)} | 0 \rangle ,$$

 Γ_{if} is the Fourier Transform of NN scattering amplitude. **A**) \rightarrow Re Γ_{ij} **B**) \rightarrow Im Γ_{ij} At high energy **B**) dominates.

$$\frac{d\sigma}{d\Omega_{e'}d\nu} = \int d\nu' f_{\mathbf{q}}(\nu - \nu') \left(\frac{d\sigma}{d\Omega_{e'}d\nu'}\right)_{IA}$$
$$f_{\mathbf{q}}(\nu) = \delta(\nu)\sqrt{T_A} + \int \frac{dt}{2\pi} e^{i\nu t} \left[U_{\mathbf{q}}^{FSI}(t) - \sqrt{T_A}\right]$$

$$T_A = \lim_{t \to \infty} \langle 0 || U_{\mathbf{q}}^{FSI}(R;t)|^2 |0\rangle$$

Calculated transparency compared to MIT-Bates, SLAC and JLAB data (D. Rohe et al., (JLAB E97-006) - nucl-ex/0506007)

Going beyond IA (continued): statistical FSI \rightarrow Pauli blocking A rather crude prescription: modify the spectral function

$$P(\mathbf{p}, E) \rightarrow P(\mathbf{p}, E) \ \theta(|\mathbf{p} + \mathbf{q}| - \overline{p}_F)$$

Average nuclear Fermi momentum \overline{p}_F defined as:

$$\overline{p}_F = \int d^3r \ \rho_A(\mathbf{r}) p_F(\mathbf{r}) \quad , \quad p_F(\mathbf{r}) = \frac{3}{2} \pi^2 \rho_A(\mathbf{r})$$

Inclusion of Pauli blocking is hardly visible in the lepton energy distribution at a fixed angle, but becomes dominant in the Q^2 distribution in the low Q^2 region.

Comparison to Frascati ¹⁶**O** (e, e') **data**

- OK in the region of quasi elastic peak
- data significantly underestimated above π production threshold
- deficiencies of the SF unlikely

• low Q^2 nucleon structure functions in the Δ production region poorly known. For example, the Bodeck & Ritchie fit does only inlcudes data @ $Q^2 > 2 \text{ GeV}^2$.

W_2^n from data @ $E_e = 2.445$ GeV and $\theta_e = 20^\circ$

Nuclear cross sections

SLAC data (Sealock *et al* (1989))

LNF data (Anghinolfi *et* al (1996))

Results for ${}^{16}O\left(\nu_{e},e\right)$ scattering

Total CC cross section for β -beams of ν_e and $\bar{\nu}_e$ (QE only)

Conclusions and prospects

- Nuclear many-body theory provides quantitative parameter-free predictions of the inclusive cross sections for a broad range of targets and kinematical conditions
- Data in the region of quasi elastic peak reproduced with accuracy better than 10%
- Problems in the region of quasi-free ∆ production, likely to be ascribed to the uncertainty associated with the nucleon structure functions. New data from JLab will certainly help to fix this problem.
- Pauli blocking important at $Q^2 < 0.2 \text{ GeV}^2$
- Extension to semi-inclusive processes and implementation in Monte Carlo simulations is under way