Unbound Neutrino Roadmaps

MARCO LAVEDER

Università di Padova e INFN NOW 2006 - 11 September 2006

Experimental Data : 2006

Experiment	Observable (# Data)	Measured/SM
Chlorine	Average Rate (1)	$[CC]=0.30\pm0.03$
SAGE+GALLEX/GNO	Average Rate (1)	$[CC]=0.52\pm0.03$
Super-Kamiokande	Zenith Spectrum (44)	$[{\rm ES}]{=}0.406\pm0.013$
SNO (pure $D_2 \text{O}$ phase)	Day-night Spectrum (34)	$[CC]=0.30\pm0.02$
		$[\text{ES}]=0.41\pm0.05$
		$[NC]=0.88\pm0.11$
SNO (salt phase)	Average Rates (3)	$[CC]=0.29\pm0.02$
		$[{\rm ES}]{=}0.41\pm0.05$
		$[NC]=0.85\pm0.08$
KamLAND	Spectrum (13)	$[CC] = 0.66 \pm 0.06$
CHOOZ	Spectrum (14)	$[\mathrm{CC}]\text{=}~1.01\pm0.04$
K2K	Spectrum (15)	$[\mathrm{CC}](\nu_{\mu}) = 0.70^{+0.11}_{-0.10}$
MINOS	Spectrum (15)	$[\rm{CC}](\nu_{\mu}) = 0.64^{+0.08}_{-0.08}$
Atmospheric	Zenith Angle (55)	[0.5-1.0]

2 ν Oscillation Interpretation

"The data of the atmospheric SK and K2K/MINOS experiments are perfectly described if we assume that ν_{μ} ($\bar{\nu}_{\mu}$) survival probability has the standard two-neutrino form

$$P(\nu_{\mu} \to \nu_{\mu}) = P(\bar{\nu}_{\mu} \to \bar{\nu}_{\mu}) = 1 - \frac{1}{2} \sin^2 2\theta_{23} \left(1 - \cos\frac{\Delta m_{32}^2 L}{2E}\right),\tag{1}$$

where E is the neutrino energy, L is the distance between neutrino source and neutrino detector and $\Delta m_{ik}^2 = m_i^2 - m_k^2$ (m_i, m_k are neutrino masses, $m_1 < m_2 < m_3$).

The data of the reactor KamLAND experiment are well described if we assume that oscillations of the reactor $\bar{\nu}_e$'s are driven by Δm_{21}^2 and $\bar{\nu}_e$ survival probability has the two-neutrino form

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \frac{1}{2} \sin^2 2\theta_{12} \left(1 - \cos\frac{\Delta m_{21}^2 L}{2E}\right).$$
(2)

Let us notice that there are the following two reasons, why existing neutrino oscillations data are described by the two-neutrino expressions (1) and (2) :

1.

$$\Delta m_{21}^2 \ll \Delta m_{32}^2. \tag{3}$$

2.

$$|U_{e3}| \ll 1 \tag{4}$$

This last inequality follows from the negative result of the reactor CHOOZ experiment ."

hep-ph/0411117

parameter	best fit	2σ	3σ
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	7.9	7.3–8.5	7.1–8.9
$\Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2 \right]$	2.6	2.2–3.0	2.0–3.2
$\sin^2 \theta_{12}$	0.30	0.26-0.36	0.24-0.40
$\sin^2 \theta_{23}$	0.50	0.38–0.63	0.34–0.68
$\sin^2 \theta_{13}$	0.000	\leq 0.025	\leq 0.040

Some warnings on proposed LBL ν roadmaps

experiment	status	name	start	cost in Meuro
Reactor LBL	approved	Daya Bay	2010	40
Reactor LBL	proposal	Double-CHOOZ	2009	10
Long baseline	approved	T2K	2009	130
Long baseline	proposal	Nova	2011?	160
Long baseline	proposals	super-beam	2010?	500?
WČ (1000 kton)	proposals	HyperK, UNO?	2015?	500?
Long baseline	discussions	u factory	2020?	2000?

Table 1: adapted from hep-ph/0606054

- time scale are long (order of 10 yr) and costs are high : difficult approval !
- "precision measurements" in a ν theoretical framework which is not well understood : Why mixing angles are large ? Why lepton mixing is differet from quark mixing ?

add more data : SBL experiments

Experiment	Oscillation Channels		
Bugey	$\bar{\nu}_e \rightarrow \bar{\nu}_e$		
CDHS	$ \overset{(-)}{\nu}_{\mu} \rightarrow \overset{(-)}{\nu}_{\mu} $		
CCFR	$ \stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{\mu}, \stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e}, \stackrel{(-)}{\nu}_{e} \rightarrow \stackrel{(-)}{\nu}_{\tau}, \stackrel{(-)}{\nu}_{e} \rightarrow \stackrel{(-)}{\nu}_{e} $		
LSND	$ar u_\mu o ar u_e, u_\mu o u_e$		
KARMEN	$\bar{ u}_{\mu} ightarrow \bar{ u}_{e}$		
NOMAD	$ u_{\mu} ightarrow u_{e}, u_{\mu} ightarrow u_{ au}, u_{e} ightarrow u_{ au}$		
CHORUS	$ u_{\mu} \rightarrow \nu_{\tau}, \nu_{e} \rightarrow \nu_{\tau} $		
NuTeV	$ \stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{e} $		

One possible global explanation of the three anomalies (solar - atmospheric - LSND) is that an extra light sterile neutrino generates one of them.

3+1 ν Interpretation

model and number of free parameters		$\Delta\chi^2$	mainly incompatible with	main future test
ideal fit		0		?
$3+1: \Delta m_{\text{sterile}}^2 = \Delta m_{\text{LSND}}^2$	9	6 + 9?	BUGEY + cosmology?	MiniBoone
$3+2: \Delta m_{\text{sterile}}^2 = \Delta m_{\text{LSND}}^2$	14	4 + 9 + ?	BUGEY + cosmology?	MiniBoone
$\Delta L=2~{ m decay}~ar{\mu} ightarrowar{e}ar{ u}_{\mu}ar{ u}_{e}$	6	12 + 6	KARMEN + TWIST	
3 $ u$ and CPT (no $\Delta ar{m}_{ m atm}^2$)	10	20	SK atmospheric	$ar{ u}_{\mu}$ LBL?
3 $ u$ and CPT (no $\Delta ar{m}_{ m sun}^2$)	10	25	KamLAND	KamLAND
normal 3 neutrinos	5	25	LSND	MiniBoone
$2+2: \Delta m_{\rm sterile}^2 = \Delta m_{ m sun}^2$	9	40	SNO	SNO
$2+2: \Delta m_{ m sterile}^2 = \Delta m_{ m atm}^2$	9	50	SK atmospheric	$ u_{\mu}$ LBL

Table 2: Interpretations of solar, atmospheric and LSND data, ordered according to the quality of their global fit. A $\Delta \chi^2 = n^2$ roughly signals an incompatibility at n standard deviations.

The relatively better global fit is obtained with a 3+1 spectrum (sterile LSND oscillations).

hep-ph/0606054

Allowed regions for LSND+KARMEN (solid) and SBL disappearance+atmospheric neutrino experiments (dashed) at 99% CL, and the combination of these data (shaded regions) at 90% and 99% CL. (hep-ph/0505216)

Bugey : 2 detector limits

B. Achkar et al. / Nuclear Physics B 434 (1995) 503-532

527

Fig. 16. 90% C.L. exclusion contours obtained from the ratios of the positron energy spectra measured at 40/15 and 95/15 meters.

2 detectors Bugey 90 % C.L. (raster scan) limits do not exclude active-sterile mixing with $\delta m^2 > 5 \, {\rm eV}^2$

B. Achkar et al./Nuclear Physics B 434 (1995) 503–532

Fig. 18. The 90% C.L. exclusion contour obtained from the positron energy spectra measured at 40, 15 and 95 meters. Also shown is the hitherto excluded area in earlier reactor experiments with the region for a possible $\nu_e - \nu_\mu$ oscillation put forward by the KAMIOKANDE collaboration.

Bugey 90 % C.L. high δm^2 (raster scan) limit do not exclude active-sterile mixing with $\sin^2 2\theta \lesssim 0.15$ if the neutrino flux is known with 2.8 % error

530

Bugey : $\bar{\nu}_e$ flux predictions

If "The ultimate check of the accuracy of the prediction consists in comparing the results in terms of $\bar{\nu}_e$ energy spectrum with the measurements performed in SBL reactor oscillation experiments." (hep-ph/0107277) then:

In a) the calculations of Klapdor and Metzinger are rejected because either show an

"apparent oscillatory" shape or have bigger systematic errors.

In **b**) the predictions obtained using the β spectra measurements of Schreckenbach and Hahn are preferred.

The dashed envelopes are estimates of the overall systematics.

SBL : another 2σ discrepancy

nucl-ex/0512041

combined Ge production rate : $\frac{\text{measured}}{\text{predicted}} = 0.88 \pm 0.05(1\sigma)$ radioactive source exp. at SAGE/GALLEX are consistent with active-sterile mixing and $\sin^2 2\theta \sim 0.2$

WHICH NEUTRINO MIXING ?

Experimental ν mixing angles between active ν are BI-LARGE:

$$\theta_{12} \sim 32^o \qquad \theta_{23} \sim 45^o \qquad \theta_{13} \le 13^o$$

Authors	Maki Nakagawa Sakata	
	(1962)	
Type of oscillation	$ u_{\mu} ightarrow u_{e}$	
Neutrino Mixing	$\left(\begin{array}{c}\nu_e\\\nu_\mu\end{array}\right) = \left(\begin{array}{cc}c&s\\-s&c\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$	
Reference is Quark Mixing	$\begin{pmatrix} d'\\ s' \end{pmatrix} = \begin{pmatrix} c & s\\ -s & c \end{pmatrix} \begin{pmatrix} d\\ s \end{pmatrix}$	
Particles	fermions - elementary particles	
Mixing angle	Cabibbo angle ($\theta_C = 13^o \leftrightarrow s = 0.22 = \sqrt{\frac{m_d}{m_s}}$)	
Mass	real	
expected ν mixing angle	small	

Author	B. Pontecorvo	
	(1968)	
Type of oscillation	$ u_e ightarrow u_s$	
Neutrino Mixing	$\left(\begin{array}{c}\nu_e\\\nu_s\end{array}\right) = \left(\begin{array}{cc}c&s\\-s&c\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$	
Reference Mixing	$\begin{pmatrix} K^{o} \\ \bar{K}^{o} \end{pmatrix} = \begin{pmatrix} c & s \\ -s & c \end{pmatrix} \begin{pmatrix} K_{1}^{o} \\ K_{2}^{o} \end{pmatrix}$	
Particles	bosons - composite particles	
Mixing angle	maximun ($ heta=rac{\pi}{4}$)	
Mass	complex	
expected ν mixing angle	MAXIMUM	

ACTIVE - (light)STERILE ν_e MIXING analogous to Cabibbo mixing?

Type of oscillation	$ u_e \rightarrow \nu_s $	
Neutrino Mixing	$\left(\begin{array}{c}\nu_e\\\nu_s\end{array}\right) = \left(\begin{array}{cc}c&s\\-s&c\end{array}\right) \left(\begin{array}{c}\nu_1\\\nu_2\end{array}\right)$	
Reference is Quark Mixing	$\begin{pmatrix} d'\\ s' \end{pmatrix} = \begin{pmatrix} c & s\\ -s & c \end{pmatrix} \begin{pmatrix} d\\ s \end{pmatrix}$	
Particles	fermions - elementary particles	
Mixing angle	$(\theta_{es} \sim \theta_C = 13^o \leftrightarrow \tan \theta_{es} = \sqrt{\frac{m_1}{m_2}})$?	
Mass	real	
expected ν mixing angle	small	

COMPLEMENTARITY relation :

 $\theta_{12} \sim 32^o \qquad \theta_{es} \sim 13^o \qquad \theta_{12} + \theta_{es} = 45^o$

Future ? Add SBL ν roadmaps !

experiment	status	name	start
Reactor SBL	approved	Daya Bay	2009
Reactor SBL	proposal	Double-CHOOZ	2009
Short baseline	proposal	Boone	2009?
Short baseline	approved	T2K-280 m	2009
Short baseline	approved	T2K-2km	2012
Short baseline	proposal	Nova	2011?
Short baseline	discussions	beta-beam	2015?

- SBL searches profit of NEAR detectors of LBL studies !
- active-sterile neutrino mixing analogous to Cabibbo quark mixing ?

90% C.L. Sensitivity of T2K 2km water \check{C} detector

Globes result with $\sigma(syst)=5\%$ (courtesy from M. Mezzetto)

Se son rose fioriranno ...

... GOOD LUCK to MINIBOONE !!!

Backup slides

CHOOZ high δm^2 limits

90% C.L. limit : $\sin^2 2\theta < 0.1$

FC limit: $\sin^2 2\theta < 0.16$

hep-ex/0301017

The situation with Ga cross-section renormalization (0.88±0.05 at LE), is that:

- 1) Ga and SNO data are no longer in good agreement with predictions for $\theta_{13}=0$ (Ga prefers lower sin² θ_{12})
- 2) The disagreement becomes rapidly worse for increasing θ_{13} , since the Ga and SNO allowed regions become even more separated in sin² θ_{12} .
- 3) Thus, there is never a very good agreement between Ga and SNO constraints, in particular for nonzero $\theta_{\rm 13}.$

"Neutrino Oscillations in Venice"

SN 1987A

Time delay of massive neutrinos:

Let us look now at the time delay in the arrival time of a non-zero mass neutrino in comparison to that of a massless one. If the mass is exactly zero, the time of flight for arriving on the Earth from the Supernova is the same for all the neutrinos. It is

$$T_0 = L_{SN}/c = 1.7 \cdot 10^5 \quad years$$

where L_{SN} is the distance of the Supernova from the Earth, and c is the light speed in vacuum. However if the mass m is not zero, then the time of flight is

$$T_m = \frac{L_{SN}}{c \cdot \sqrt{1 - (m/E)^2}} \sim \frac{L_{SN}}{c} \cdot \{1 + 1/2 \cdot (m/E)^2\}$$

SN 1987A

The difference of these two values, *i.e.* the delay in the arrival of a neutrino with mass m in comparison to a massless one, is

$$\Delta T_m = T_m - T_0 \approx 1/2 \cdot T_0 \cdot m^2 / E^2$$

Numerically, a neutrino of energy 5 MeV should delay about one second if the mass is 3 eV and about 10 seconds if the mass is 10 eV.

 $m_1 = 3.4 \pm 0.6 \,\mathrm{eV}$ $m_2 = 22.7 \pm 3.7 \,\mathrm{eV}$

hep-ph/0212337 H. Huzita

hep-ex/0410083

"Beta Beams have been introduced by Piero Zucchelli in 2001 . The idea is to generate pure, well collimated and intense ν_e and $\bar{\nu}_e$ beams by producing, collecting, accelerating radioactive ions and storing them in a decay ring. The best candidates so far are ${}^{18}Ne~$ and ${}^{6}He~$ for ν_e and $\bar{\nu}_e$ respectively. A baseline study for such a BetaBeam complex has been produced at CERN .

"If the MiniBoone experiment validates the LSND oscillation claim, a beta-beam experiment looking to $\bar{\nu}_e \rightarrow \bar{\nu}_\mu$ oscillation could allow unprecedented measurements of oscillations in the region of Δm^2 relevant to astrophysics and cosmology. At the moment, no pure sources of ν_μ or ν_e are available to appearance experiments which have to explore the region characterized by $sen^2 2\theta \approx 10^{-4}$. The technology developed for the ICARUS experiment would probably be suitable for this domain of investigation."

3+1 & CPT violation

hep-ph/0308299