NOTA! Questo sito utilizza i cookie tecnici.

Se non si modificano le impostazioni del browser, l'utente accetta. Per saperne di più

luna_experiment superkamiokandel177

The Laboratory for Underground Nuclear Astrophysics (LUNA) is an experiment located deep underground at Gran Sasso National Laboratories (LNGS).

Nature dedica la copertina a T2K

Nature dedica la copertina a T2K

superkamiokande

La collaborazione T2K (Tokai to Kamioka), ha pubblicato il 16 aprile 2020 su Nature, che gli dedica la copertina, uno studio che fornisce indicazioni sempre più stringenti sull’esistenza di una differenza nel comportamento dei neutrini e delle loro antiparticelle (gli antineutrini). Questa ricerca apre uno spiraglio nella comprensione di uno dei grandi misteri che riguardano il nostro universo: cioè la netta prevalenza della materia sull’antimateria.  

A Bari un gruppo di colleghi dell’INFN e del dipartimento di Fisica coordinato da dott. Gabriella Catanesi guida da anni la partecipazione italiana a T2K con ruoli di grande responsabilità.

A questa ricerca Nature dedica la copertina dell’ultimo numero che ritrae l’interno del suggestivo rivelatore Super-Kamiokande, equipaggiato con oltre 11.000 occhi elettronici (fotomoltiplicatori) capaci di catturare la luce prodotta dagli elusivi neutrini nelle interazioni con l’acqua purissima (50.000 tonnellate) di cui è riempito.

L’esperimento T2K è una collaborazione internazionale a cui l’Istituto Nazionale di Fisica Nucleare (INFN) partecipa dalle prime fasi di progettazione ricoprendo ruoli di grande responsabilità, e vede contributi delle Sezioni INFN e delle Università Federico II di Napoli, Padova e Roma Sapienza, Università e Politecnico di Bari, e dei Laboratori Nazionali di Legnaro dell’INFN.

“Questo risultato premia i molti anni di sforzi per costruire, mettere in funzione e operare uno degli apparati più complessi mai realizzati nel nostro settore” sottolinea Gabriella Catanesi, responsabile per l’INFN dell’esperimento T2K e componente del comitato esecutivo dell’esperimento. “Siamo molto orgogliosi e soddisfatti. Ma non ci fermiamo certamente qui. Stiamo lavorando per migliorare ancora il nostro apparato per essere in grado di fronteggiare le sfide dei prossimi anni”, conclude Catanesi.

Come funziona

Per misurare questo fenomeno, nell’esperimento T2K, un potente fascio di neutrini (o anti-neutrini) muonici viene prodotto nel complesso di acceleratori per la ricerca (JPARC) presso il villaggio di Tokai sulla costa orientale del Giappone. I neutrini vengono prima misurati vicino al luogo di produzione e poi intercettati dal gigantesco rivelatore sotterraneo Super-Kamiokande, a Kamioka, nei pressi della costa occidentale del Giappone, a 295 kilometri di distanza. Durante questo tragitto, infatti, i neutrini (o gli antineutrini) muonici possono “oscillare”, trasformandosi in neutrini (o antineutrini) di tipo elettronico.

Il risultato

T2K ha trovato che il numero di antineutrini muonici che oscillano in antineutrini elettronici è inferiore rispetto a quello dei neutrini muonici oscillanti in neutrini elettronici. Dopo aver analizzato i dati di nove anni, l'esperimento T2K ha raggiunto un livello di significatività statistica sufficientemente alta da poter fornire un'indicazione abbastanza stringente sull’esistenza della violazione della CP in queste particelle fondamentali. In particolare la probabilità che questo fenomeno non esista è inferiore allo 0,3 %. Misurazioni più precise sono necessarie per confermare queste indicazioni.

Tuttavia questo risultato rafforza le osservazioni precedenti e apre la strada a scoperte future. La nuova generazione di esperimenti attualmente in preparazione (DUNE negli USA e Hyper-Kamiokande in Giappone ) in cui l’INFN è attivamente coinvolto, potrebbe contribuire a dare una risposta al problema dell'antimateria "mancante" nei prossimi dieci anni.

L’esperimento è stato realizzato ed è gestito da una collaborazione internazionale che conta circa 500 scienziati di 67 istituzioni in 12 paesi [Canada, Francia, Germania, Italia, Giappone, Polonia, Russia, Spagna, Svizzera, Regno Unito, Stati Uniti d'America e Vietnam ]. Per le ricerche svolte con il rivelatore Super-Kamiokande, che hanno portato “Alla scoperta delle oscillazioni del neutrino che mostrano che il neutrino ha massa” il fisico giapponese Takaaki Kajita, nel 2015, è stato insignito del Premio Nobel per la Fisica, condiviso con il fisico canadese Arthur McDonald.

Lo stesso anno, per i fondamentali contributi alla scoperta delle oscillazioni dei neutrini nel novembre 2015 i componenti della collaborazione T2K sono stati insigniti del prestigioso premio “Breakthrough Prize for Fundamental Physics”.

La partecipazione italiana a T2K è coordinata dall’INFN e vede contributi delle sezioni INFN e delle Università di Napoli, Padova e Roma Sapienza, Università e Politecnico di Bari, e dei Laboratori Nazionali di Legnaro dell’INFN. In particolare i gruppi dell’INFN hanno attualmente ruoli di primo piano sia nello sviluppo e nell’analisi dei dati che nella realizzazione di rivelatori di nuova generazione che verranno utilizzati (nei prossimi anni) per migliorare i risultati attuali. T2K è sostenuto dal ministero giapponese per la Cultura, Sport, Scienza e Tecnologia, ed è ospitato congiuntamente dall’High Energy Research Accelerator Organization (KEK) e dall’Institute for Cosmic Ray Research (ICRR) dell’Università di Tokyo. La fondamentale importanza di queste ricerche ha recentemente convinto il Giappone ad approvare e finanziare un poderoso upgrade dell'esperimento, chiamato Hyper-Kamiokande, in grado di porre la parola finale alle misure di violazione di CP nei neutrini.

Il gruppo barese di T2K è capofila per questa attività nell’ INFN. In particolare ne fanno parte sia colleghi dell’INFN (Gabriella Catanesi ed Emilio Radicioni) che del Dipartimento di Fisica (Vincenzo Berardi e Lorenzo Magaletti). Il gruppo riveste ruoli di primo piano sia nello sviluppo e nell’analisi dei dati che nella realizzazione di rivelatori di nuova generazione quali TPC con readout a MPGS e photo-sensori innovativi per Water-Cherenkov. Due nuove TPC sono attualmente in fase di realizzazione qui a Bari nei nostri laboratori grazie al supporto dei servizi meccanici e di progettazione dell’INFN e del dipartimento. Tali dispositivi verranno utilizzati (nei prossimi anni) per migliorare i risultati attuali.