Dalitz decays of charmed mesons.

Antimo Palano

INFN and University of Bari, Italy

Summary:

- Introduction.
- Experimental techniques.
- The method of Dalitz plot analysis.
- Issues in Light meson spectroscopy.
- Experimental results.
- Conclusions.

Dalitz Analysis of Charm decays.

• The Dalitz plot analysis of three-body charm decays is the most complete way of analyzing the data.

• It allows to measure decay amplitudes and phases.

• The final state is the result of the interference of all intermediate states.

Charmed mesons decays.

• The lowest order diagrams which contribute to charm decays are:

• External (a_1) :

• Internal (a_2) , color suppressed:

• W-exchange, helicity suppressed:

• W-annihilation, Little evidence yet:

The role of Final State Interactions.

• Factorization models assume weak amplitudes to be real.

• The fact that the observed amplitudes have a relative complex phase is a consequence of the Final State Interaction.

• The effect of color suppression can be obscured by the effects of FSI.

CP violation.

• CP violation is expected to be small in charm decays.

• Need two amplitudes with different phases:

 $Ae^{i\delta_A} + Be^{i\delta_B}$

• In signly Cabibbo-suppressed dacays penguin terms may provide a weak phase.

• Final State Interactions provide a strong phase shift.

• Under CP the weak phases change sign but the strong ones do not.

• Any difference in the Dalitz plot, between D and \overline{D} would be an evidence for CP violation.

Recent experiments (fixed target).

• E791. Data taken during 1990-1991 using 500 GeV/c π^- beam at Fermilab. 2.5 $\times 10^5$ reconstructed charm.

- FOCUS. Successor to E687 which took data in 1990-1991. Data taken during 1996-1997. 170 GeV γ beam. 10^6 reconstructed charm.
- The technique employed here is to have good vertexing and good particle identification.
- Use of the Lorentz boost to separate the charm vertex.

 e^+e^- colliders at the $\Upsilon(4S)$:

• Experiment CLEO: 9 fb^{-1}

• BaBar: 22.0 fb^{-1} at the end of 2000. Much more is coming.

• Belle.

Recent experiments (e^+e^- colliders).

•Charmed mesons are obtained from continuum through a cut in center of mass momentum p^* and the request that they come from a D^* decay.

where $\pi = \pi^{\pm}, \pi^0$

• Example from BaBar: mass distribution for $D_S \to \phi \pi$ and p^* momentum spectrum.

Recent experiments (e^+e^- colliders).

• Example from BaBar: Δm for $D^{*+} \to \pi^+ D^0$, $D^0 \to K^- \pi^+$.

• In the case of D^0 the charge of the slow pion gives the quantum numbers of the D^0 . Example:

$$D^{*+} \rightarrow D^{0}\pi^{+}$$
$$\rightarrow \bar{K}^{0}\pi^{+}\pi^{-}$$
$$D^{*-} \rightarrow \bar{D}^{0}\pi^{-}$$
$$\rightarrow K^{0}\pi^{+}\pi^{-}$$

Dalitz analysis technique.

• Nearly all charmed mesons decays proceed through intermediate resonance production.

• Dalitz plot distributions fitted with a sum of interfering amplitudes.

$$\sum c_i A_i e^{i\phi}$$

• Each amplitude is the product of a Breit-Wigner and a term describing the angular distributions (for example: Zemach tensors).

 $A_i = BW(m)Z(\Omega)$

Dalitz analysis.

• Example:

Dalitz analysis.

• Bare amplitudes are real ($\phi = 0$ or 180^{0}). Asymmetry can only be generated by FSI. • Monte-Carlo. Example from $D^{0} \rightarrow K^{0}\pi^{+}\pi^{-}$. Presence of $K^{(890)}$, $\rho^{0}(770)$ and $f_{0}(1370)$.

• Example from $D^+ \to K^+ K^- \pi^+$ from FOCUS: strong asymmetry between the two K^* lobes.

The puzzle of the scalar mesons.

• The scalar mesons are still a puzzle in Light Meson Spectroscopy.

• The question is relevant, since among the states observed up to now may hide the scalar glueball or 4-quark states.

• Lattice QCD glueballs spectrum:

• The Scalar Glueball is expected at about 1700 MeV.

The multiplet of the scalar mesons.

• We expect 9 states, in PDG we find 15 candidates:

I = 1/2	I = 1	I = 0
		$f_0(400 - 1200)$
	$a_0(980)$	$f_{0}(980)$
$K_{0}^{*}(1430)$	a ₀ (1490)	$egin{aligned} f_0(1370) \ f_0(1500) \ f_0(1710) \end{aligned}$

• Among these, $f_0(1710)/f_2(1710)$ appears with different spins in different experiments.

• What new information is coming from the analysis of charm decays?

The resonance $K_0^*(1430)$

• The actual parameters in PDG are from LASS experiment at SLAC using 11 GeV/c incident K.

 $K^- p \to K^- \pi^+ n$

• Wide resonance, therefore parameters difficult to extract. Presence of an S-wave elastic background.

m = 1.412 GeV $\Gamma = 294 MeV$

1 1

Study of $D^+ \rightarrow K^- \pi^+ \pi^+$ (E791)

• This Dalitz plot analyzed by several other experiments (E691, E687).

• In contrast to all other charmed mesons decays, a large Non Resonant contribution.

• Data from E791, $\approx 23~000$ events

• Strong interferences. Channel dominated by $K^*(890)$ (13 %) and $K^*_0(1430)$ (34 %).

• Need a large Non Resonant contribution (104 %).

Study of $D^+ \to K^- \pi^+ \pi^+$ (E791)

• Data not fitted well. Need to include a new scalar $\kappa(800)$:

 $m = 815 \pm 30 MeV, \qquad \Gamma = 560 \pm 116 MeV$

• In this scenario the Non Resonant contribution goes to (52 %) and that of κ to 21 % with 180⁰ relative phase.

• Two other scalar mesons interfering with the background scalar amplitude: $f_0(980)$ and $f_0(1500)$

• Minkowski and Ochs: σ is the scalar glueball (the *Red Dragon*)

The resonance $\sigma/f_0(400 - 1200)$

• Klempt and Pennington: the σ is a pole in the t-channel.

• A pole in the S channel does not depend on the reaction.

• A pole in the t channel gives rise to shapes which are strongly dependent from the physical process.

Study of $D^+ \rightarrow \pi^- \pi^+ \pi^+$ (E791)

• $\pi^+\pi^+\pi^-$ mass spectrum from E791. (1686 events in D^+ and 937 in D_S^+ .) Signal/Background 2/1.

• D^+ Dalitz plot (symmetrized).

• Need of an extra scalar resonance $\sigma(500)$ to fit the data.

 $m = 478 \pm 24, \qquad \Gamma = 324 \pm 41 \qquad MeV$

• In this hypothesis the dacay $\sigma\pi$ accounts for nearly half (46 %) of D^+ decay.

• In this scenario the $f_0(1370)$ contribution vanishes.

Study of $D^+ \rightarrow \pi^- \pi^+ \pi^+$ (FOCUS)

• Similar results obtained by FOCUS.

The problem of $f_0(980)$ and $a_0(980)$

• Both Considered as candidates for being 4-quark states due to their proximity to $\bar{K}K$ threshold.

• $f_0(980)$ appears as a peak or as a hole in different reactions.

- As a sharp drop in central production.
- As a peak in $J/\psi \to \phi \pi \pi$

The problem of $f_0(980)$ and $a_0(980)$

• In the same experiment it changes as a function of the 4-momentum transfer.

• $\pi^- p \to \pi^0 \pi^0 n$ at 40 GeV/c (GAMS).

• Most likely explanation: $f_0(980)$ interferes with other scalars such as $f_0(1370)$ or σ . When these other scalars are suppressed $f_0(980)$ appears as a peak.

The $f_0(980)$.

• The $f_0(980)$ parameters are usually described by a coupled channel Breit-Wigner to $\pi^+\pi^-$, K^+K^- and $K^0_S K^0_S$ final states:

$$BW_{ch}(f_0)(m) = \frac{F_r}{m_0^2 - m^2 - im_0(\Gamma_{\pi} + \Gamma_K)}$$

where:

$$\Gamma_{\pi} = g_{\pi} (m^2/4 - m_{\pi}^2)^{1/2}$$

$$\Gamma_{K} = \frac{g_{K}}{2} [(m^2/4 - m_{K^+}^2)^{1/2} + (m^2/4 - m_{K^0}^2)^{1/2}]$$

• The f_0 parameters have been measured by CERN/WA76 experiment studying the centrally produced $\pi^+\pi^-$ system.

$$m_0 = 0.979 GeV, \qquad g_\pi = 0.28, \qquad g_K = 0.56$$

• However there was no constraint from $\bar{K}K$ data. Coupling to $\bar{K}K$ poorly known.

• Strong $f_0(980)$ appearing as a narrow peak.

• $f_0(980)$ parameters insensitive to the $\overline{K}K$ coupling.

Study of $D_S^+ \to K^- K^+ \pi^+$ (FOCUS)

• The study of the decay of $D_S^+ \to K^- K^+ \pi^+$ requires a relatively broad scalar meson in the threshold region.

• Presence of both $f_0(980)$ and $a_0(970)$?

The question of the spin of the $\theta/f_j(1710)$

- This state measured with spin 0 or 2 in different experiments.
- Candidate for being the tensor or scalar glueball.
- Observed in J/ψ decay and central production.

• Evidence for the decay $D_S \to f_j(1700)\pi$

Study of $D_S^+ \to K_S^0 K_S^0 \pi^+$ (BaBar)

• Dalitz plot analysis in progress.

Conclusions.

• A new chapter in physics has been open: the hight statistics Dalitz analysis of charmed mesons decays. These studies will give information on:

• The different diagrams which originate charm decays.

• Possible signs of CP violation in the charm sector.

• Possibly solve several questions left open in light meson spectroscopy.

Conclusions.

Near Future will be dominated by B-factories.

Present available data on Dalitz decays from fixed target and B-factories:

- Cabibbo allowed 1-5 $\times 10^4$ events
- Cabibbo suppressed 1-10 $\times 10^3$ events.
- Doubly Cabibbo suppressed 50 300 events.

Expected integrated luminosity from BaBar.

• In the next few years we expect an increase of these yields by a factor 20.