

Fernando Ferroni

Universita' di Roma "La Sapienza" e I.N.F.N. Roma

CP Violation in the SM

CP violation expected in the S.M. due to the existence of three quark families

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

The scale of the elements has suggested the "Wolfenstein Parameterization"

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4).$$

China [1/5]

Inst. of High Energy Physics, Beijing

Germany [3/23]

Ruhr U Bochum TU Dresden U Rostock

France

[5/51]

LAPP, Annecy LAL Orsay LPNHE des Universités Paris 6/7 Ecole Polytechnique CEA, DAPNIA, CE-Saclay

United Kingdom [10/71]

U of Birmingham U of Bristol Brunel University U of Edinburgh U of Liverpool Imperial College Queen Mary & Westfield Royal Holloway, Universit London U of Manchester Rutherford Appleton Labo

Italy [12/89]

INFN Bari **INFN Padova INFN** Pavia **INFN** Ferrara **INFN** Pisa **INFN Frascati INFN Roma INFN** Genova **INFN** Torino **INFN Milano INFN** Napoli **INFN** Trieste

Canada [4/15]

U of British Columbia U of Bergen McGill U U de Montréal U of Victoria

Norway [1/2]

Budker Inst., Novosibirsk

USA [36/253]

Caltech, Pasadena UC, Irvine UC, Los Angeles UC, San Diego UC, Santa Barbara UC, Santa Cruz U of Cincinnati U of Colorado Colorado State Elon College Florida A&M U of Iowa Iowa State U LBNL LLNL U of Louisville U of Maryland U of Massachusets MIT U of Mississippi Mount Holyoke College Northern Kentucky U U of Notre Dame ORNL/Y-12 U of Oregon U of Pennsylvania Prairie View A&M Princeton SLAC U of South Carolina Stanford U U of Tennessee U of Texas at Dallas Vanderbilt U of Wisconsin Yale U

- Asymmetric Rings
 - 8.0GeV(HER)
 - 3.5GeV(LER)
- $E_{cm} = 10.58 \text{GeV} = M(\Upsilon(4S))$
- Target Luminosity: 10³⁴s⁻¹cm⁻²
- Circumference: 3016m
- Crossing angle: ±11mr
- RF Buckets: 5120
- ⇒ 2ns crossing time

- 20.7 fb⁻¹ on-resonance N(Y(4S)) = 22.74 ±0.36 million
- 2.6 fb⁻¹ off-resonance

2000/10/27 11.25

All luminosity records belong now to Belle. 2001 Run extremely succesfull.

Peak luminosity in excess of **4.0** nb⁻¹/s and performances over a day in excess of **200** pb⁻¹/d have been achieved.

Looking forward for a great competition.

Calibration with $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$

Pion-Kaon separation at high momenta

one more pion...

bean

penguin diagrams

Charmless decays

$$\pi^{+}\pi^{-}, K^{+}\pi^{-}, K^{+}K^{-}(h^{+}h^{-})$$

$$\pi^{0}\pi^{+}, \pi^{0}K^{+} (\pi^{0}h^{+})$$

$$K^{0}\pi^{+}, K^{0}K^{+} (K^{0}h^{+})$$

$$K^{0}\pi^{0}$$

$$K^{0} as K_{s} to \pi^{+}\pi^{-}$$
Fully reconstructed decays
Efficiency (with daughter BF)

$$K^{0}\pi^{0}, h^{+}\pi^{0}, h^{+}K^{0}, h^{+}h: 10-45\%$$

Use an extended *global likelihood fit* to extract different signal yields (N_S) in each topology

 m_{ES} , ΔE, Fisher(cos θ_{Th}), (ϕ mass), θ_C

Independent control sample to study Probability Density Function for both BKG and SIG

$$T(m_{\rm ES}) \propto m_{\rm ES} \sqrt{1 - x^2} \exp\left[-\xi(1 - x^2)\right]$$

 $X = m_{ES}/E^*_{beam}$

 $h+h-\Delta E$ sideband

 $B^{-} \rightarrow D^{0}\pi^{-}$

23 fb⁻¹ (i.e. BaBar) are ~ 120 ML events

Using topological cuts (background is mostly qqbar):

Two particles with an invariant mass between 5.2 and 5.3 GeV and whose energy sum is consistent with machine energy at 420 MeV level

 $|\cos\Theta_{s}|$ < 0.9 : angle between sphericity axis of B candidate and the rest of the event

We are left with 26000 events, and after requiring a PID measurement on both tracks only 16000

Signal (expect 200) has been reduced by a factor 2, Background by 7000.

Now we need another factor 100.

 $\cos(\theta_S)$ cosine of angle between sphericity axes of B and rest of the event

Background udsc

Control sample: $D^{*+} \rightarrow D^0\pi^+ \rightarrow K^-\pi^+$

Mode	ϵ (%)	N_S	$S (\sigma)$	$B(10^{-6})$	\mathcal{A}
$\pi^+\pi^-$	45	$41\pm10\pm7$	4.7	$4.1\pm1.0\pm0.7$	
$K^+\pi^-$	45	$169 \pm 17 \pm 13$	15.8	$16.7 \pm 1.6 \pm 1.3$	$-0.19 \pm 0.10 \pm 0.03$
K^+K^-	43	$8.2^{+7.8}_{-6.4}\pm3.5$	1.3	< 2.5 (90% C.L.)	
${\pi^+\pi^0\over K^+\pi^0}$	32 31	$37 \pm 14 \pm 6$ $75 \pm 14 \pm 7$	$3.4 \\ 8.0$	$\begin{array}{c} < 9.6 \ (90\% \ {\rm C.L.}) \\ 10.8^{+2.1}_{-1.9} \pm 1.0 \end{array}$	$0.00 \pm 0.18 \pm 0.04$
${K^0\pi^+\over \overline{K}{}^0K^+}$	14 14	$\begin{array}{c} 59^{+11}_{-10}\pm 6\\ -4.1^{+4.5}_{-3.8}\pm 2.3\end{array}$	9.8 —	$\begin{array}{c} 18.2^{+3.3}_{-3.0}\pm2.0\\<2.4~(90\%~{\rm C.L.})\end{array}$	$-0.21 \pm 0.18 \pm 0.03$
$K^0\pi^0$	10	$17.9^{+6.8}_{-5.8}\pm1.9$	4.5	$8.2^{+3.1}_{-2.7} \pm 1.2$	

Vary PDF parametersalternative PDF

Variation in %

Parameter	$N_{\pi\pi}$	$N_{K\pi}$	N_{KK}
bkg M_{ES}	± 5.3	± 1.6	± 11
$\mathrm{bkg}\ \Delta E$	± 0.2	± 0.2	± 1.3
bkg Fisher	± 13	± 3.0	± 34
$egin{aligned} &\langle m_{ES} angle \ &\sigma(m_{ES}) \ &\langle \Delta E angle \ &\sigma(\Delta E) \ &\mathcal{F}\left(D^{0}\pi ight) \end{aligned}$	$^{+0.0}_{-2.2}$ +0.7 $^{-1.2}$ ± 4.2 +5.9 $^{-6.4}$ ± 3.7	$+0.3 \\ -1.4 \\ \pm 0.5 \\ +0.5 \\ -1.4 \\ +6.3 \\ -9.2 \\ 0$	$^{+10}_{-8.9}$ +5.1 -3.8 +7.6 -8.9 +10 -8.9 ±3.8
θ_c	$^{+5.0}_{-5.5}$	± 1.3	± 17
Total	± 17	$+7.3 \\ -10$	± 43

Likelihood visualization onto m_{ES}

$K\pi/\pi\pi/KK$ Separation with PID

Belle results

Mode	N_s	Σ	e [%]	\mathcal{B} [×10 ⁻⁵]	U.L. $[\times 10^{-5}]$
$B^{0} \rightarrow \pi^{+}\pi^{-}$	$17.7 \substack{+7.1 & +0.3 \\ -6.4 & -1.1 \end{array}$	3.1	28.1	$0.56 {}^{+0.23}_{-0.20} \pm 0.04$	_
$B^+ \to \pi^+ \pi^0$	$10.4 \begin{array}{c} +5.1 \\ -4.3 \end{array} \begin{array}{c} +1.2 \\ -1.6 \end{array}$	2.7	12.0	$0.78 \stackrel{+0.38}{-0.32} \stackrel{+0.08}{-0.12}$	1.34
$B^0 \to K^+\pi^-$	$60.3 \begin{array}{c} +10.6 \\ -9.9 \end{array} \begin{array}{c} +2.7 \\ -1.1 \end{array}$	7.8	28.0	$1.93 \begin{array}{r} +0.34 \\ -0.32 \end{array} \begin{array}{r} +0.15 \\ -0.06 \end{array}$	-
$B^+ \to K^+ \pi^0$	$34.9 \ \substack{+7.6 \\ -7.0 \ -2.0} \ \substack{+0.6 \\ -2.0 \ }$	7.2	19.2	$1.63 \ {}^{+0.35}_{-0.33} \ {}^{+0.16}_{-0.18}$	-
$B^+ \to K^0 \pi^+$	$10.3 \ \substack{+4.3 \ -0.4 \\ -3.6 \ -0.1}$	3.5	13.5	$1.37 \stackrel{+0.57}{-0.48} \stackrel{+0.19}{-0.18}$	_
$B^0\to K^0\pi^0$	$8.4 \begin{array}{r} +3.8 \\ -3.1 \end{array} \begin{array}{r} +0.4 \\ -0.6 \end{array}$	3.9	9.4	$1.60 \ {}^{+0.72}_{-0.59} \ {}^{+0.25}_{-0.27}$	-
$B^0 \rightarrow K^+ K^-$	$0.2 \stackrel{+3.8}{-0.2}$	_	24.0	_	0.27
$B^+ \to K^+ \overline{K}{}^0$	$0.0 \stackrel{+0.9}{-0.0}$	_	12.1	-	0.50

Modes	Ratio
$\mathcal{B}(B^+ \to \pi^+ \pi^0)/\mathcal{B}(B^0 \to \pi^+ \pi^-)$	< 2.67
$2\mathcal{B}(B^+\to K^+\pi^0)/\mathcal{B}(B^0\to K^+\pi^-)$	$1.69 \ {}^{+0.46}_{-0.45} \ {}^{+0.17}_{-0.19}$
$\mathcal{B}(B^0\to\pi^+\pi^-)/\mathcal{B}(B^0\to K^+\pi^-)$	$0.29 \ {}^{+0.13}_{-0.12} \ {}^{+0.01}_{-0.02}$
$\mathcal{B}(B^0\to K^+\pi^-)/2\mathcal{B}(B^0\to K^0\pi^0)$	$0.60 {}^{+0.25}_{-0.29} {}^{+0.11}_{-0.16}$
$2\mathcal{B}(B^+\to K^+\pi^0)/\mathcal{B}(B^+\to K^0\pi^+)$	$2.38 \begin{array}{c} +0.98 \\ -1.10 \end{array} \begin{array}{c} +0.39 \\ -0.26 \end{array}$
$\mathcal{B}(B^0\to K^+\pi^-)/\mathcal{B}(B^+\to K^0\pi^+)$	$1.41 \stackrel{+0.55}{_{-0.63}} \stackrel{+0.22}{_{-0.20}}$

Belle results

Our detectors are made of matter...

Tracking effects studied in

e⁺e⁻ -> ττ events ('3+1 prong')

Negligible effects (<1%)

PID effects studied in $D^0 \rightarrow K\pi$

Negligible effects (<1%)

Averages (strictly my responsibility)

	CLEO	Belle	BaBar	<> BR
$\pi^+\pi^-$	4.3+/-1.7	5.6+/-2.3	4.1+/-1.2	4.4+/-0.9
$K^+\pi^-$	17.2+/-2.8	19.3+/-3.7	16.7+/-2.1	7.3+/-1.5
$K^0\pi^+$	18.2+/-4.9	13.7+/-6.0	18.2+/-3.9	7.3+/-2.7
$K^+\pi^0$	11.6+/-3.3	16.3+/-3.8	10.8+/-2.3	2.1+/-1.7
$\pi^+\pi^0$	5.6+/-3.1	7.8+/-3.9	5.1+/-2.2	5.7+/-1.6
$K^0\pi^0$	14.6+/-6.4	16.0+/-7.6	8.2+/-3.3	0.4+/-2.7

	CLEO	Belle	BaBar	<> ACP
K ⁺ π ⁻	-0.04+/-0.16	0.04+/-0.18	-0.19+/-0.10	-0.11+/-0.08
$\mathrm{K}^{0}\pi^{+}$	0.18+/-0.24		-0.21+/0.18	-0.07+/-0.14
$K^+\pi^0$	-0.29+/-0.23	0.02+/-0.22	0.00+/0.18	-0.07+/-0.12

A_{CP} sign convention $\frac{\Gamma(b \rightarrow f) - \Gamma(\overline{b} \rightarrow \overline{f})}{\Gamma(b \rightarrow f) + \Gamma(\overline{b} \rightarrow \overline{f})}$

Hope to eventually measure:

α and γ

Supply by now theorists with data that shall allow to refine the model phase space

Elimination of Penguin Contributions to CP Asymmetries in B Decays through Isospin Analysis

Michael Gronau Technion – Israel Institute of Technology 32000 Haifa, Israel

ABSTRACT

Isospin symmetry in $B_d^0 \to \pi^+\pi^-$, $B_d^0 \to \pi^0\pi^0$, $B^+ \to \pi^+\pi^0$ has been shown to remove the theoretical uncertainty due to penguin diagrams in the predictions for CP asymmetries in these decays.

Gluon is I=0, so b \rightarrow d penguin is pure $\Delta I = 1/2$ while the tree amplitude has both $\Delta I = 1/2$ and 3/2 components. The key point is in isolating $\Delta I = 3/2$

 $\pi\pi$

$$A(B^+ \to \pi^+ \pi^0) = \frac{\sqrt{3}}{2} A_{3/2,2}$$

$$\frac{1}{\sqrt{2}} A(B^0 \to \pi^+ \pi^-) = \frac{1}{\sqrt{12}} A_{3/2,2} - \sqrt{\frac{1}{6}} A_{1/2,0}$$

$$A(B^0 \to \pi^0 \pi^0) = \frac{1}{\sqrt{3}} A_{3/2,2} + \sqrt{\frac{1}{6}} A_{1/2,0}$$

$$\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$$

$$\frac{1}{\sqrt{2}}\overline{A}^{+-} + \overline{A}^{00} = A^{-0}$$

Require the measurement of :____

BR (B⁺-> $\pi^{+}\pi^{0}$), BR(B⁰-> $\pi^{0}\pi^{0}$), BR(B⁰-> $\pi^{0}\pi^{0}$) and the time evolution B⁰(t)-> $\pi^{+}\pi^{-}$

Determination of α (Neubert's way)

$$A_{\rm CP}^{\pi\pi}(t) = \frac{{\rm Br}(B^{0}(t) \to \pi^{+}\pi^{-}) - {\rm Br}(\bar{B}^{0}(t) \to \pi^{+}\pi^{-})}{{\rm Br}(B^{0}(t) \to \pi^{+}\pi^{-}) + {\rm Br}(\bar{B}^{0}(t) \to \pi^{+}\pi^{-})}$$
$$= -S_{\pi\pi}\sin(\Delta m_{B} t) + C_{\pi\pi}\cos(\Delta m_{B} t),$$

$$S_{\pi\pi} = \frac{2 \operatorname{Im} \lambda_{\pi\pi}}{1 + |\lambda_{\pi\pi}|^2}, \quad C_{\pi\pi} = \frac{1 - |\lambda_{\pi\pi}|^2}{1 + |\lambda_{\pi\pi}|^2}, \quad \lambda_{\pi\pi} = e^{-2i\beta} \frac{e^{-i\gamma} + P_{\pi\pi}/T_{\pi\pi}}{e^{i\gamma} + P_{\pi\pi}/T_{\pi\pi}}$$

A couple of %

Possibly big

Expect to have 40fb⁻¹ more by the end of the run II\ Similar perspectives for Belle. Extrapolation

	CLEO	Belle	BaBar	<> BR
$\pi^+\pi^-$	4.3+/-1.7	5.6+/-2.3	4.1+/-1.2	4.4+/-0.9
$K^+\pi^-$	17.2+/-2.8	19.3+/-3.7	16.7+/-2.1	7.3+/-1.5
$K^0\pi^+$	18.2+/-4.9	13.7+/-6.0	18.2+/-3.9	7.3+/-2.7
$K^+\pi^0$	11.6+/-3.3	16.3+/-3.8	10.8+/-2.3	2.1+/-1.7
$\pi^+\pi^0$	5.6+/-3.1	7.8+/-3.9	5.1+/-2.2	5.7+/-1.6
$\mathrm{K}^{0}\pi^{0}$	14.6+/-6.4	16.0+/-7.6	8.2+/-3.3	0.4+/-2.7
	CLEO	Belle	BaBar	<> ACP
$K^+\pi^-$	-0.04+/-0.16	0.04+/-0.18	-0.19+/-0.10	-0.11+/-0.08
$K^0\pi^+$	0.18+/-0.24		-0.21+/0.18	-0.07+/-0.14
$K^+\pi^0$	-0.29+/-0.23	0.02+/-0.22	0.00+/0.18	-0.07+/-0.12

Rule of thumb: normalize to BaBar error (20fb⁻¹) The combined Belle+BaBar harvest will give: 2001: divide by 2 2002: divide by 3+/- 0.5 2005: divide by 6+/-1

All the 2-body charmless B decays are potentially accessible to B-factories.

Soon (two years) $\pi + \pi$ – will be known at 10%.

Direct CP Asymmetries will be determined at 1-2% in the next four years.

 $\pi^0\pi^0$ and KK are indeed difficult. BR less than 10⁻⁶ are almost impossible.

A combined effort of experiment and theory might allow the determination of α and γ .