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ABSTRACT:

Moving QCD toward the astroparticle boundary
generates new challenges for perturbation
theory, such as the presence of Large Evolution
Scales.

Fragmentation Regions/Initial state Scaling
Violations at such energies may require -if we
believe in supersymmetry- a better
understanding of the supersymmetric DGLAP
and the Supersymmetric Parton Model.
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Objective:

We try to underline a phenomenological program
in astroparticle physics where standard QCD

tools (evol. egs.) may play a relevant role. Same
tools can be applied for studies of QCD @ LHC

(supersymmetric Jets, Susy Color Ordering etc..)

Context:
Ultra
High

Energy
Cosmic

Rays




Experimental Motivations:

- Cosmic Ray Particles with energies in
excess of 4 x 10! GeV
have been detected
HAVERAH PARK
FLY’s EYE
AKENO GIANT AIR SHOWER ARRAY (AGASA)




Hystorical Note
1966

In the early 1960s, Arno Penzias and Robert
Wilson discovered that low-energy microwaves
permeate the universe. Kenneth Greisen, Vadem
Kuzmin and Georgi Zatsepin pointed out that
high-energy cosmic rays would interact with the
microwave background. The interaction would
reduce their energy, so that particles traveling
long intergalactic distances could not have

energies greater than 5 x 10%° eV.

Mean free Path (MFP) of protons on
the Cosmic Microwave Background
(CMB)

decreases rapidly @3 x 10%%eV.

Even smaller (MFP) for nuclei.
GZK cutoff




1962

John Linsley and collaborators discovered the
first cosmic ray with an energy of about 10%° eV
in the Volcano Ranch array in New Mexico.

1991

The Fly’s Eye cosmic ray research group in the

USA observed a cosmic ray event with an energy
of 3 x 10%° eV. Events with energies of 1020 eV

had been reported in the previous 30 years, but
this was clearly the most energetic.

1994

The AGASA Group in Japan and the Yakutsk
group 1n Russia each reported an event with an
energy of 2 x 1020 eV. The Fly’s Eye event and

these events are higher in energy than any seen
before. Who ordered them?




The Pierre Auger Project will construct two 3000
square kilometer grids of detectors spaced at 1.5

kilometer intervals. One array in the Northern

Hemisphere and a second in the Southern
Hemisphere.
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delta

Production of single and multiple pions
until Ep < FEagzk
after which protons propagate freely.
rom detailed simulations: Primaries are protons.



Integrated Flux well described by a “local” power

law
N(B) = 7 (1

The description is fine in a very large range 1
GeV < E < 5 x 10* GeV. Total flux changes
dramatically

®(E = 100GeV) =~ lparticle/km?*sec  (2)
O(F = 1011 GeV) ~ lparticle/km?century  (3)

up to 1 TeV good discrimination of the various
components through direct detection.
protons — .87
helium — .12
heavier — nuclei .01

- Differences between species understood in

terms of source production and propagation.

- Relative abundances modified by the

interstellar medium (i.e. spallation)



Spectral index:

-z~ 2.5 (10° — 10* GeV) (flattens)

- steepens fairly dramatically above this range
(diffusion of cosmic rays from galaxy, difficult
to contain at these energies)

r ~ 3.08 (107 — 10! GeV)

The composition is difficult to detect directly
(dominated by protons) (flattening/steeping
— knee)

- E < 10!z =~ 3.16 (steeping)
E > 10"z ~ 2.78 (flattening)
(steeping/flattening — ankle)
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Figure 1: AGASA Spectrum
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Two Scales for QCD

A High Energy A fragmentation Scale
~ 10! (decay of a metastable state —

primaries protons)

A collision scale A.,;; due to the interaction

of surviving primaries with air-nuclei
(E ~ 400TeV)

At both scales supersymmetric scaling violations
should be included and the multiplicities of the
spectrum analized. The DGLAP evolution covers
all the regions, starting from the originally
metastable state

I) fragmenting region — primaries (evolution of
the fragmentation functions) II) collision region
(initial state scaling violations (susy pdf’s)
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QCD DGLAP
The evolution equations are of the form

d (Q?)

Q@ e @ @) = o Po@a@) e (@ Q)
d 2
@ omle, @) = Z5EP (@ a(@) 8l @),
(1)
with
Xi(x7 QQ) = ql(+) (l’, Q2) - E]:F—Q(‘*_)(x’ Q2) (2)

for the non-singlet distributions and

(e )= (RS Be)e (ed))

(3)

for the singlet sector.
We have defined, as usual

(4)

We introduce the evolution variable

po 2 (@)

n

Bo  a(Qp)
which replaces Q2. The evolution equations
are then rewritten in the form

(5)

1




@) = (PO + P RG0 + ) o 0

@ . @) = (PO + 2R (0)) @ xlr, @)
d (¢P(tz)) aft) ) (z,1)
~ ( qG(w,t) ) = (PO(z) + 5 R(@) + ) ® ( qG(x’t) ) .
(6)

QCD Fragmentation
The equations for the fragmentation func-
tions in QCD are given by

d h 2y _ a(QZ) h h
dlog(Q2)in($’Q) - Ton (P ®D +—P‘1®D9)

2n
d h 2 (QZ) h h h
WDg(%Q) = o qu@Z(D +D)+P99®D
(7)
The evolution of the fragmentation func-
tions is also decomposed into a non singlet
and in a singlet sector
@20 @) = U p e a@) 0 Dl (@, @)
dQ2 o MY % ’
(8)
for the non-singlet distributions and
d <D2(+)($7Q2)) — (qu qu)®(Dg(+)($>Q2)>
dlog(Q?) Dg(a:, Q% Py Py, Dg(x, Q%
(9)



for the singlet sector, where

DZ§->(33, Q% =D} — D} (10)




1 The Supersymmetric DGLAP Evo-
lution

The evolution equations can be separated in
two non-singlet sectors and a singlet one.
The non-singlet are

2
@ wre @) = T P ow+ o)

L

d 2
Qz'd——Q—Q—(jV(xaQ2) = -—_(2_7_{_—)(qu ®QV+PQQ®QA{/) )
(11)

and the singlet, which mix gy and §y with
the gluons and the gluinos are

G(z,Q Pee Par Paq Pog G
Q2 d | M2,Q%) | _ | Pec Pu Py Py % A
d@Q? q+(93,Q2) Pic Py Py Pis q
i*(z, Q% P,¢ Py Py Py g

(12)



2 Timelike Evolution

The equations for the timelike evolution are
given by

d

h 2y h h h h
dlog(QQ)Dg(x’Q) - P99®Dg+P)\9®DA+PQQ®%:(D%+D®)

+P @ 3 (Gir + Gir + @iz + dir)

d
W”W Q%) = Pp®D!+Pu®Dy+Pp® z (D! + D)
+P\ ® Z (Gir + Gir + Gir, + GR)
d  DM2,QY) = —~P,®D'+ - P,®D:+ P, ® (D} + D! )
W qi(il?a ) = 2n; 90 ® Dy I A ® D 9 Gir 4ir
+P, ® D}
4 p (z,Q% = -—1~P~®Dh+iPx®D’;+lP~®Dh
dlog(Qz) GiL ’ 4nf 9q g 4nf q 2 q qi
+F5 ® Dgu,
d 1 1 1
— D" Y = —pP.@D'+ —P,D'+-P;® D"
dlog(Qz) QiR(w’Q) 4nf Q(I® g +4nf As @ X T 2 qq® q;
+Pf§f§ ® Dt?m
(13)
Notation
Di(x,@%) = D}, + D}, (14

to denote the fragmentation functions of squarks
of flavour i at a fractional energy =z and mo-
mentum Q).



It is also convenient to separate the equa-
tions, as usual, into singlet and non singlet
sectors

Dl (2,Q%) = é(DZ(%Q2)—Dg(az,Q2)),
Dy
D! (2,Q) = é(Dg<w,Q2>—Dg(as,Q2>)

Dh

gNs

nf

Dq+(£C,Q2) = Z (in($7Q2) + D‘ji(x?Qz))

1=
ny

Djr(@, Q%) = ¥ (Dg(2, Q") + Df (2,Q%).
(15)

The non singlet equations are

d a(Q?)
deQ2 DgV(w) Qz) = o (qu & -D;,;V + qu X D(fv)
d o Q2) A B
Q2dQ2D@'v($7Q2) = o (PQ6®DQV+P@®D(1?/)’

(16)

and the singlet matrix equations, which
mix gy and gy with the gluons and the gluinos



T
Dk(z,Q?) FPeag Pox Paq Pag D%(ﬂf, Q;
Qz D! (z, Q%) _ | Pxe P Py Py % Dy (z,Q
dQ2 Dh+ (CU, Q2) PqG Pq/\ qu qu Dh(+) ($, Q
( Qz) P{jG P[j/\ P(jq Pq”zj Dq’(+)($aQ
(17)
To solve for all the flavours, it is convenient
to introduce the linear combinations
1
2 _ Pk h
xi(2,Q%) = Dy — _ﬁ;Dq(H
- 1
Xi(z, Q% = D%H - n—ngm
(18)
and the additional singlet equations
a(@?)
deQQ (@.QY) = =5 (P ® Do + Fia ® Dy
(@)
Q dQQ o(@Q) = — (qu ® D)) + Py ® D%—>)
(19)
and
d a(Q?)
Q2E§§Dh (z, Qz) = o (qu ® D’;i + Py ® D}%i)
a(@?)
QQszDh (z, Q’ ) = o (qu@Dh + Py ®D2i)'
(20)




The general flavour decomposition is obtained
by solving the singlet equations for ng and

Dh+), then solving the non-singlet equations
for D( and D @ and for Dh and Dh At

a second step We solve the smglet equations
for DZ+ and Df; and use the relations

1 1
h h h h
D(h‘ - 5 (Dqg_) + DXi + ;{;Dq(”)
1 1
h _ h h
D‘jz _ __2— (qu(_) o DXz nfDq(+))
(21)
and
1
Dgl = 5 (Dh )+Dh + Dq(+))
D} = -3 (Do~ D~ Db
(22)

to identify the various flavor components.



3 The Spacelike Kernels

Py, 0 Py, O
0O 00 O
S _
Pir = Py 0 Py 0 (23)
0O 00 O
ng PgA qu 0
P/\ P)\)\ P,\ 0
Piip=|,Y ‘ 24
AP qu qu\ qu 0 ( )
0 O 0 O
ng sz\ qu Pgs
Pyy P Py P
Posup=1," ? 25
BoAp qu Pq/\ qu qu ( )
Psq Ps/\ Psq Pss
Their LO expressions are given by
2
1 l—z ),
0
P (2) = Piygys
Pq(g)(x) = 2Tgny (:v2 + (1 - 33)2)
1+ (1—2)?
0 _
Pg(q)(£) - CF -
PO (z) = 2N, LT z(l—z)] + @5(1 {26)
99 (1—-2z)y = 2
The SAP kernels are given by
1 1 B3
PO = 90, | —— + = —2+2(1— PU5(1 —
s CA[(1_$)++$ +z(l1—2)| + 5 (1—x)
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c, [1 + (1 - m)2]

x

2
PO =Cp|= -2
o Pl +

n) [1 — 2+ 2x2]

2
CA[_C _1_x+§5(1_m)]:ck(1”)
2 z)) .,

= Pq(g) =Ny [:1:2 + (1 — x)z]

ng(l—z) 2
o [(<11+—fc>>]+
2

= Cr (m—l—m+g6(1—x))

(27)
The ESAP kernels are given by
P = ny[2z-1]
2 3 T

Py —1- (—C ~—R>51—

PY = C\(1-2)

PO = cp
POS = PO =n;[z"+ (1 - 2z)?]

PY = nsi(1-x)

2

05 _ (A+2z9)) 1o,

R = or| () -0

+

10
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Sum Rules
The moments are defined by

P(n) = [ dza""'P(a) (29)

<QU(Q2)>1 = <QU(Q3)>13 (30)

valid for Qg < Q < my, where m; > mag,.
For (Q > m4, the ESAP evolution is given

by
iz o] = S [T Al (G0

(Gv)1
The matrix has a zero eigenvalue correspond-
ing to conservation of baryon number

/01 dz (qv(:c’ Q2) + gv(fﬂ; Qz)) =3 (32)

and admits a solution of the form

(02 3Cr/B5°
p—

alO? 3Cr/B5°
@@ = 1- (2% (33)

The first stage of the evolution (QCD in-
terval) involves the sum rule

/Ol dz (azG(g;’ QQ) + xq(+)(:1:, Qz)) -1 (34)
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valid below the my).
Moving above the 2-gluino threshold the
momentum sum rule becomes

/01 dx (CUG(:E, QQ) 4+ IE)\(x, Q2) + xq(+)(:r, Q2)) -1

(35)
oy 3n 5 3n a(Q?) 7 (16/9+n;/3)
0@ = g+ (@ - 4 (5)
9 _ 16 0 3n a(Q?) % (16/9+n;/3)

(36)

At extremely large (), in the asymptotic
limit, the general partition of momentum

due to the partial supersymmetric evolution
(SAP) are given by

. 3 (16 (G(m3)))2 + 37y (g(m3)))2)
48+ 9ns +4mny
48 ((G(m3y))2 + (g(m3)))2)
48 +9nys +4ny

;L 4m ({g(m3)))2 + (G(m3,))2)
48 +9ns +4ny

/01 dz zq(z, QQ)

/01 dz zG(z, Q%) —

/01 dz zA(z, Q*
(37)

If we assume that at the lower boundary
all the momentum is carried by the quarks,
and neglect the gluonic contribution, then

13




the equations above have the asymptotic lim-
its

9nf

48 4+ 9ns + 4n)
48

483 +9n;+4n)
47?,)\

48+ 9nf+4ny

/01 dz zq(z, QQ) —

/01 dr ©G(z,Q%) —

1
| dz 2A\(@,Q%) — (38)
The asymptotic (Q — oo) values of the
distribution of momentum are easily derived
(we set ¢ (mg) = 0 at the susy threshold)

[ s 56(e,q?) — 6Cr2(00m) + Xomd) + a*(m)

Tr 53 Cr + Tr)
[ doo\@ @) - 335" (G(m%%(; g;n -%g)wm%))
[de aqe, @) — HETBLE N T (mh)
[ de zi(z, Q) — 2 (G(m%ﬂ[; A(,S? -%: z_r:)ﬁm%))

(39)
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Figure 1: Feynman Rules for SQCD
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Figure 2: (q(z, @?)), for 3 different matching scales
Qo = mg  The 3 scales are chosen to be
100, 300, 800 GeV respectively. The final evolution
scale is 3700 GeV

16

4000



-~~~ Up (regular) (ML=200 GeV)

I

Up (initial)

Up (susy)

Figure 3: Up quark fragmentation function for m) =
200 GeV, Q¢ = 1000 TeV
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Figure 4: squark fragmentation function for

200 GeV, Qs = 1000 TeV
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1.0 — ‘ 1
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\ — — - Gluon (susy)
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Figure 5: gluon fragmentation function for my = 200
GeV, @5 = 1000 TeV
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Figure 6: Fig. 1. zu,(z), G(z) and z¢)(z)
Q? =4 GeV
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Figure 7: Fig. 2. zu,(x) evaluated for 4 iterations

with Q; = 4.0 GeV and Q5 = 100 GeV with m) = 2
GeV in the standard (non-susy) and susy evolution

21




X UV{X)

1.5 |

05

y(r
v

gular) x G'(x)
usy) x uv(x)

0.8

0.2

0.6

Figure 8: Fig. 3. Gluon distributions with Q? = 4.0
GeV and Q?c = 100 GeV with intermediate my = 2
GeV. The regular and the susy evolution are shown
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X uv(x)

l(regular) xl uv(x)
(susy) x uv(x) -------
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Figure 9: Fig. 4. zu,(z) evaluated with Q; = 4.0 GeV and
Qs = 200 GeV with my = 5 GeV in the standard (non-susy)

and susy evolution
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Figure 10: Fig. 5. Gluon distributions with Q% = 4.0
GeV and ch = 200 GeV with intermediate m) = 5
GeV. The regular and the susy evolution are shown
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x Sigma(x)

(regular) x Sligma(x)
(susy) x Sigma(x) -------
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0 1 | i
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Figure 11: Fig. 6. zX(z) evaluated with Q? = 4.0

GeV and Q% = 200 GeV with m) = 5 GeV in the
standard (non-susy) and susy evolution

25
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I(regular) xI uv(x)
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Figure 12: Fig. 7. zu,(z) evaluated for with Q; = 4.0
GeV and Q5 = 200 GeV with my = 10 GeV in the
standard (non-susy) and susy evolution
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Figure 13: Fig. 8. Gluon distributions with Q% = 4.0
GeV and Q% = 200 GeV with intermediate my =
10 GeV. The regular and the susy evolution are
shown
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Figure 14: Dependence of the singlet squark distri-
bution on the squark mass for mgy = 20 GeV and
m; = 70,90, 200, 300 and 400 GeV. We have chosen
Qf = 500 TeV
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Figure 15: 3 gluino distributions according to the 3
possible evolution models,shown for moy = 40 GeV
and my=100 GeV, and 1 gluon distribution. We
have chosen Q5 = 500 GeV.
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Figure 16: Gluino distribution zA(z) for mgy = 40
GeV and myz = 100 GeV and Q¢ = 500,800 Gev
and 2 TeV respectively
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