Lattice Planar QED in external magnetic field

P.Cea ${ }^{1}$, L.Cosmai ${ }^{2}$, Pietro Giudice ${ }^{3}$, A.Papa ${ }^{4}$

paolo.cea@ba.infn.it, leonardo.cosmai@ba.infn.it, p.giudice@swan.ac.uk, papa@cs.infn.it
${ }^{1}$ Dipartimento di Fisica dell'Universita' di Bari, Italy; INFN, Sezione di Bari, Italy
${ }^{2}$ INFN, Sezione di Bari, Italy
${ }^{3}$ Department of Physics, College of Science, Swansea University, UK
${ }^{4}$ Dipartimento di Fisica dell'Universita' della Calabria and INFN, Gruppo collegato di Cosenza, Italy

Introduction (I)

- The vacuum structure of lattice gauge theories can be understood probing it by an external background field $\vec{A} \overrightarrow{\mathrm{ext}}^{\text {xt }}$
- This can be done defining on the lattice a gauge invariant effective action $\Gamma\left(\vec{A}^{\text {ext }}\right)$ by using the Schrodinger Functional (SF) [P. Cea, L. Cosmai, Phys. Rev. D60 (1999) 094506. [hep-lat/9903005]]
- The Euclidean SF in Yang-Mills theories without matter is defined by:

$$
Z\left[A^{f}, A^{i}\right]=\left\langle A^{f}\right| e^{-H T} \mathcal{P}\left|A^{i}\right\rangle
$$

- NOTE: it is the propagation kernel for going from some field configuration A^{i} at time $x_{4}=0$ to some other configuration A^{f} at $x_{4}=T$
- The lattice SF is given by $Z\left[U^{f}, U^{i}\right]=\int D U e^{-S}$
- S is the Wilson action modified to take in account the boundaries:

$$
U(x)_{x_{4}=0}=U^{i}, \quad U(x)_{x_{4}=T}=U^{f}
$$

Introduction (II)

- We define the lattice effective action for a background field $\vec{A}^{\text {ext }}$: $\Gamma\left(\vec{A}^{\mathrm{ext}}\right)=-\frac{1}{T} \ln \left(\frac{\tilde{Z}\left[U^{\mathrm{ext}}\right]}{\tilde{Z}[0]}\right), \quad$ where $\tilde{Z}\left[U^{\mathrm{ext}}\right]=Z\left[U^{\mathrm{ext}}, U^{\mathrm{ext}}\right]$
- $\Gamma\left(\vec{A}^{\text {ext }}\right)$ turns out to be invariant under lattice gauge transformation of the external link $U^{\text {ext }}$
- Since in this definition $U^{f}=U^{i}$, we have periodic condition in the time direction and the lattice action is now the familiar Wilson action
- It is possible to show that: $\Gamma\left(\vec{A}^{\text {ext }}\right) \rightarrow E_{0}\left(\vec{A}^{\text {ext }}\right)-E_{0}(\overrightarrow{0})$, [when $T \rightarrow \infty$] $E_{0}\left(\vec{A}^{\mathrm{ext}}\right)$ is the vacuum energy in presence of the external background
- Therefore $\Gamma\left(\vec{A}^{\text {ext }}\right)$ is the lattice gauge invariant effective action for the background field $\overrightarrow{A^{\text {ext }}}$
- In other words to study a theory with an external background field we have to simulate on the lattice the "standard" action (without any external field) but introducing proper constraints

U(1) in a uniform external magnetic field

- We impose spatial and temporal boundary conditions
- We constrain the spatial lattice links belonging to a fixed time slice to:

$$
U_{1}^{\mathrm{ext}}(\vec{x})=1 \text { and } U_{2}^{\mathrm{ext}}(\vec{x})=\cos \left(g H x_{1}\right)+i \sin \left(g H x_{1}\right) \quad\left(x_{4}=0\right)
$$

- The same constraints are imposed at the spatial boundaries of the other time slices (fluctuations over the background field vanish at infinity)
- The temporal links are not constrained because this is coeherent with the definition of the correct thermal partition functional
- Because the lattice has the topology of a torus, the magnetic field turns out to be quantized:

$$
a^{2} g H=\frac{2 \pi}{L_{t}} n_{\mathrm{ext}}, \quad\left(n_{\mathrm{ext}}=0,1, \ldots\right)
$$

- A different approach to introduce the external magnetic field: [J.Alexandre, K.Farakos, S.J.Hands, G.Koutsoumbas, S.E.Morrison, Phys.Rev. D64 (2001) 034502 [hep-lat/0101011]]

QED in 3d

- The continuum Lagrangian density describing QED3 is given in Minkowski metric by: $\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{2}+\bar{\psi}_{i} i D_{\mu} \gamma^{\mu} \psi_{i}-m_{0} \bar{\psi}_{i} \psi_{i}$
- $\psi_{i}\left(i=1, \ldots, N_{f}\right)$ are 4-component spinors
- QED3 is a super-renormalizable theory, $\operatorname{dim}[e]=+1 / 2$
- A convenient representation for the γ_{μ} is the reducible 4×4 representation of the Dirac algebra in three dimensions:
$\gamma^{0}=\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & -\sigma_{3}\end{array}\right) \quad, \quad \gamma^{1}=\left(\begin{array}{cc}i \sigma_{1} & 0 \\ 0 & -i \sigma_{1}\end{array}\right), \quad \gamma^{2}=\left(\begin{array}{cc}i \sigma_{2} & 0 \\ 0 & -i \sigma_{2}\end{array}\right)$
- We define also two more matrices anticommuting with them:

$$
\gamma^{3}=i\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma^{5}=i\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

QED in 3d

- The massless theory will therefore be invariant under the chiral transformations: $\psi \rightarrow e^{i \alpha \gamma^{3}} \psi, \quad \psi \rightarrow e^{i \beta \gamma^{5}} \psi$
- If we write the 4-component spinor as 2-component spinors: $\psi=\binom{\psi_{1}}{\psi_{2}}$
- Then the mass term becomes: $m \bar{\psi} \psi=m \psi_{1}^{\dagger} \sigma_{3} \psi_{1}-m \psi_{2}^{\dagger} \sigma_{3} \psi_{2}$
- Since in three dimensions the parity transformation reads:

$$
\begin{aligned}
& \psi_{1}\left(x_{0}, x_{1}, x_{2}\right) \rightarrow \sigma_{1} \psi_{2}\left(x_{0},-x_{1}, x_{2}\right) \\
& \psi_{2}\left(x_{0}, x_{1}, x_{2}\right) \rightarrow \sigma_{1} \psi_{1}\left(x_{0},-x_{1}, x_{2}\right)
\end{aligned}
$$

- Then $m \bar{\psi} \psi$ is parity conserving

Our model

- We want to study QED3 with $N_{f}=2$ flavours of 4-component fermions using the staggered fermion approach
- We need to simulate $N=1$ staggered fermions fields $\chi, \bar{\chi}$ with the Euclidean action:

$$
S=S_{G}+\sum_{i=1}^{N} \sum_{n, k} \bar{\chi}_{i}(n) M_{n, k} \chi_{i}(k)
$$

- The fermion matrix is given by $\left(\eta_{\nu}(n)=(-1)^{n_{1}+\ldots+n_{\nu-1}}\right)$:

$$
M_{n, k}[U]=\sum_{\nu=1,2,3} \frac{\eta_{\nu}(n)}{2}\left\{\left[U_{\nu}(n)\right] \delta_{k, n+\hat{\nu}}-\left[U_{\nu}^{\dagger}(k)\right] \delta_{k, n-\hat{\nu}}\right\}+m \delta_{n, k}
$$

- We choose the compact formulation of QED:

$$
S_{G}[U]=\beta \sum_{n, \mu<\nu}\left[1-\frac{1}{2}\left(U_{\mu \nu}(n)+U_{\mu \nu}^{\dagger}(n)\right)\right]
$$

- $\beta=1 /\left(e^{2} a\right)$
- The introduction of the fermions in the theory does not change anything about the way we introduce the external field $\vec{A}^{\text {ext }}$

Dynamical symmetry breaking

- It is a general result that a constant magnetic field leads to the generation of a fermion dynamical mass: "magnetic catalysis" [P.Cea, L.Tedesco, J.Phys.G \{26\} (2000) 411 [hep-th/9909029]] [V.P.Gusynin, V.A.Miransky, I.A.Shovkovy, Phys.Rev.Lett. \{73\} (1994) 3499-3502 [hep-ph/9405262]]
- It is possible to evaluate the chiral condensate in the one-loop approximation [P.Cea, [arXiv:1101.5703 [cond-mat.mes-hall]]]:

$$
\langle\bar{\Psi} \Psi\rangle=-2 N_{f}|m| c^{2} \frac{\hbar c e H}{2 \pi} \sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n \hbar c e H+m^{2} c^{4}}} \quad \Delta_{0}=m c^{2}
$$

- After regularization of the integral and for $\frac{\Delta_{0}}{\sqrt{H(T)}} \ll \sqrt{2 \hbar v_{F}^{2} e / c} \approx 420 \mathrm{~K} \times k_{B}$

$$
\langle\bar{\Psi} \Psi\rangle \simeq-\frac{\hbar c e H}{2 \pi} N_{f} \frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{\pi}} \frac{\Delta_{0}}{\sqrt{\frac{\hbar c e H}{2 \pi}}} \Rightarrow \frac{\langle\bar{\Psi} \Psi\rangle}{\frac{e H}{2 \pi}}, \quad \frac{m}{\sqrt{\frac{e H}{2 \pi}}} \quad[\text { cgs }]
$$

Numerical results (I)

- The choice of β is based on [R.Fiore, P.Giudice, D.Giuliano, D.Marmottini, A.Papa, P.Sodano, Phys.Rev.\{D72 \} (2005) 094508]

-Only one value: 2.0 -In progress: 2.5

Numerical results (II)

- Simulations with $\beta=2.0, \mathrm{~L}=12,16,24$; $\mathrm{next}=1,2,3 ; \mathrm{m}=0.005-0.05$;

- $x=\frac{m_{0}}{\sqrt{e H / 2 \pi}}$
- Scaling law for $x \lesssim 0.04$
- In the chiral limit ($x \rightarrow 0$):
$\frac{\langle\bar{\Psi} \Psi\rangle}{\frac{e H}{2 \pi}}=a_{0}+a_{1} x$
- $a_{0}=0.07668 \pm 0.00930$
$a_{1}=11.20 \pm 0.48$

$$
\langle\bar{\Psi} \Psi\rangle=\frac{\hbar c e H}{2 \pi}(0.07668 \pm 0.00930)
$$

Graphene, introduction

- Graphene is a honeycomb (hexagonal) lattice made of carbon atoms:

- It has one valence electron per atomic site
- It is a semi-metal or zerogap semiconductor
- $v_{F} \approx 1.0 \times 10^{8} \mathrm{~cm} / \mathrm{s}$
- $a_{0} \approx 1.42 \times 10^{-8} \mathrm{~cm}$

Graphene, real space lattice

- The theory of graphene was first explored by [P.R.Wallace,"The Band Theory of Graphite", Phys.Rev. 71 (9) (1947) 622]

Graphene, reciprocal lattice

- The Brillouin zone is an hexagon
- The reciprocal lattice basis vectors are: $\vec{K}_{1}, \vec{K}_{2} ; \quad\left[\vec{K}_{i} \vec{a}_{j}=2 \pi \delta_{i j}\right]$
- There are two special, non-equivalent (i.e. not connected by a reciprocal lattice vector) corners of the BZ , termed K and K^{\prime}

Tight-binding model (I)

- If we conside only the nearest-neighbor interaction between electrons $H=-t \sum_{\vec{A}, i}\left[U^{\dagger}(\vec{A}) V\left(\vec{A}+\vec{\alpha}_{i}\right)+V^{\dagger}\left(\vec{A}+\vec{\alpha}_{i}\right) U(\vec{A})\right]$
- The hopping parameter (related to the probability amplitude for electron transfer between neighboring sites) is $t \approx 2.7 \mathrm{eV}$
- Diagonalising H , we get the energy eigenvalues:
$E\left(k_{1}, k_{2}\right)= \pm t \sqrt{1+4 \cos \left(\sqrt{3} k_{1} a_{0} / 2\right) \cos \left(k_{2} a_{0} / 2\right)+4 \cos ^{2}\left(k_{2} a_{0} / 2\right)}$
- There are two bands, one at negative energies (hole/valence band) and the other at positive ones (a particle/conduction band)
- $E(\vec{k}) \rightarrow 0$, at the corners of the BZ (where also the Fermi energy lies: a finite number of Fermi points is quite unusual!)

Tight-binding model (II)

- In the continuum limit, $a_{0} \rightarrow 0$ (low energy) only the electron states near K and K^{\prime} partecipate in the dynamics and the energy dispersion relation is linear: $E(\vec{k})= \pm v_{F} \hbar|\vec{k}|$, where $v_{F}=3 t a_{0} / 2$
- Correspondly, $H=v_{F} \vec{\sigma} \vec{k}$: a field theory of 2 massless Dirac spinors in 2 dimensions [G.W.Semenoff, Phys.Rev.Lett. 53 (1984) (26) 5449]

> electrons and holes are called Dirac fermions
the six corners of the BZ are called the Dirac points
$\stackrel{\nu}{ }$ valley" degeneracy in the spectrum because K and K^{\prime}

Graphene in a magnetic field

- If H is applied perpendicularly to a conventional 2 d electron gas, we have the Landau levels: $E_{n}=\hbar \omega_{c}(n+1 / 2)$, where $\omega_{c}=e H / m c$
- Every LL has a degeneracy density: $g=e H / h c$
- In graphene, because the relativistic massless dispersion relation, we have non-equidistant Landau levels: $E_{n}=\operatorname{sign}(\mathrm{n}) \sqrt{2 \hbar e H|n| \frac{v_{F}^{2}}{c}}, n=0, \pm 1, \ldots$ Hall Effect (HE):
- Conductance: $\sigma_{x y}=\frac{e^{2}}{h} \nu, \quad \nu$ filling factor

- Integer QHE: $\nu=0, \pm 1, \pm 2, \ldots$
- In Graphene, anomalous QHE (because $E=0$):

$$
\nu= \pm 4\left(N+\frac{1}{2}\right)= \pm 2, \pm 6, \pm 10, \ldots
$$

(the factor 4 because spin and valley degeneracy)

A new discovery (\mathbf{I})

- In a very strong magnetic field (up to 45T) a new set of QH states at filling $\nu=0, \pm 1, \pm 4 \quad$ [Y.Zhang et al, Phys.Rev.Lett. \{96\}, 136806 (2006)]
- This implies that the 4-fold degeneracy is now lifted:

- n=0 degeneracy: fully lifted
- $\mathrm{n}=1$ degeneracy: partially lifted
- What is the ORIGIN of the lifting of these degeneracies?
- (Zeeman) spin splitting
- Valley symmetry breaking and GAP formation
- $\nu=0, \pm 4$ it is belived that they are spin states
- $\quad \nu= \pm 1$ is therefore related to the valley symmetry breaking and consequently to the generation of a GAP $\Delta_{0}(H)$

A new discovery (II)

[Z.Jiang et al, Phys.Rev.Lett. \{99\}, 106802 (2007)]

- We fitted these data by (using $\left.\Delta_{0}(H) \propto \sqrt{H}\right)$:

$$
\Delta E(\nu=1)=2\left(\Delta_{0}(H)-\frac{g}{2} \mu_{B} H\right)
$$

- We get: $\Delta_{0}(H)=(13.57 \pm 0.28) K \times k_{B} \sqrt{H}$
- It is belived that the generation of the gap is driven by the electronelectron interaction (in a magnetic field) [V.N.Kotov et al, arXiv:1012.3484]
- In this picture: $\Delta_{0}(H) \approx \frac{e^{2}}{\epsilon} \sqrt{\frac{e H}{\hbar c}} \approx 163 K \times k_{B} \sqrt{H}$
" [P.Cea, [arXiv:1101.5703 [cond-mat.mes-hall]]] shows that, in the graphene, a dynamical gap is energetically convenient and $\Delta_{0}(H) \propto \sqrt{H}$
- Moreover, the proposal is that the GAP is generated by spontaneous symmetry breaking

Our approach (I)

- We think that it is possible to use our QED3 result to estimate correctly the value of the GAP
- Usually QED3 is not used in the graphene context because:
- fermions 2d, photons 3d (3d coulomb interaction)
- relativistic invariance is broken (at $m=0$: fermions v_{F}, photons c)
- How we circunvent these problems:
- We think that the Coulomb interaction can be neglected for our purpose: in fact in 2d we would have: $\Delta_{0} \propto e^{2} \ln (H)$ but, at posteriori, we see that $\Delta_{0} \propto \sqrt{H}$: so in such a way it is not important that we consider 2d or 3d
- We get the relevant result with the substitution: $c \rightarrow v_{F}^{2} / c$

Our approach (II)

- Combining:
$\langle\bar{\Psi} \Psi\rangle \simeq-\frac{\hbar c e H}{2 \pi} N_{f} \frac{\zeta\left(\frac{1}{2}\right)}{\sqrt{\pi}} \frac{\Delta_{0}}{\sqrt{\frac{\hbar c e H}{2 \pi}}}$ and $\langle\bar{\Psi} \Psi\rangle=\frac{\hbar c e H}{2 \pi}(0.07668 \pm 0.00930)$
- We get:

$$
\Delta_{0} \simeq-\frac{\sqrt{\pi}}{N_{f} \zeta\left(\frac{1}{2}\right)} \sqrt{\frac{\hbar c e H}{2 \pi}}(0.07668 \pm 0.00930) .
$$

- To restore the correct asymmetry between fermions and photons:

$$
\Delta_{0} \simeq-\frac{\sqrt{\pi}}{N_{f} \zeta\left(\frac{1}{2}\right)} \sqrt{\frac{\hbar \frac{v_{F}^{2}}{c} e H}{2 \pi}}(0.07668 \pm 0.00930)
$$

- Finally: $\quad \Delta_{0}(H)=(5.52 \pm 0.67) \mathrm{K} \times k_{B} \sqrt{H(T)} \ll 420 \mathrm{~K} \times k_{B} \sqrt{H(T)}$ compare with the experimental value: $\quad \Delta_{0}(H)=(13.57 \pm 0.28) K \times k_{B} \sqrt{H}$
- Is it good? 1) 1-loop formula; 2) small GAP hypothesis; 3) v_{F} error

Conclusion

- We have verified that in QED3, in the chiral limit, with a magnetic background, there is a dynamical symmetry breaking and:

$$
\langle\bar{\Psi} \Psi\rangle=\frac{\hbar c e H}{2 \pi}(0.07668 \pm 0.00930)
$$

- We applied our numerical result to determine the value of the GAP that explains the observed new quantum Hall states for n=0 Landau level under very strong magnetic field:

$$
\Delta_{0}(H)=(5.52 \pm 0.67) \mathrm{K} \times k_{B} \sqrt{H(T)}
$$

