XV Workshop on Statistical Mechanics and Nonperturbative Field Theory

Bari

21 – 23 September 2011

### UNIVERSAL RESULTS FOR TWO-DIMENSIONAL PERCOLATION

Gesualdo Delfino

SISSA

#### Percolation and conformal field theory

- Exact results of conformal field theory (CFT) can be used to determine universal critical properties in 2D
- Complete results for magnetic critical points from "minimal models" of CFT. Correlators satisfy differential equations
- Percolative critical points are not minimal models. However, differential equations are known for *boundary* connectivities → Cardy's crossing probabilities, relation with SLE

Recently we obtained results for *bulk* connectivities (critical and off-critical)

#### Percolative universality classes

- $\bullet$  Random percolation : a site is occupied with probability p
- Correlated percolation : occupation is determined by interaction

Ising: 
$$-\mathcal{H} = \frac{1}{T} \sum_{\langle ij \rangle} \sigma_i \sigma_j + H \sum_i \sigma_i, \quad \sigma_i = \pm 1, \qquad Z = \sum_{\{\sigma_i\}} e^{-\mathcal{H}}$$

nearest neighbors with spin + are in the same cluster with probability:

1, geometric clusters

 $1 - e^{-1/T}$ , Fortuin-Kasteleyn (or Coniglio-Klein) clusters (or droplets)



 $(T, H) = (T_c, 0)$  fixed point for both geometric and FK clusters

cluster size  $\sim$  (linear extension)<sup>D</sup> D fractal dimension

$$D = \begin{cases} 91/48 = 1.89.. & \text{random (den Nijs '83; Nienhuis '84)} \\ 187/96 = 1.94.. & \text{Ising geometric (Stella, Vanderzande '89)} \\ 15/8 = 1.87.. & \text{Ising FK (Coniglio, Klein '80)} \end{cases}$$





Ising geom

#### Percolation as the $(q \rightarrow 1)$ -state Potts model

$$\mathcal{H}_{Potts} = -J \sum_{\langle x,y \rangle} \delta_{s(x),s(y)}, \quad s(x) = 1, \dots, q \qquad S_q \text{ invariance}$$

$$Z_{Potts} = \sum_{\{s(x)\}} e^{-\mathcal{H}_{Potts}} = \text{(Kasteleyn, Fortuin, '69)}$$
$$= \sum_{\{s(x)\}} p^{\# bonds} (1-p)^{\# absent bonds} q^{\# clusters}, \qquad p = 1 - e^{-J}$$
bond configs

 $P = \partial_q (\text{Potts magnetization})|_{q=1}$ 

cluster connectivities  $\longleftrightarrow$  Potts spin correlators  $\stackrel{2D}{\longleftrightarrow}$  kink field correlators

kink fields  $\mu(x)$  create domain walls in the Potts broken phase:  $\mu = (GD, Viti, '11)$ 

#### Critical three-point connectivity (GD, Viti, '10)

 $P_n(x_1,\ldots,x_n) \equiv$  probability  $x_1,\ldots,x_n$  in the same cluster

 $P_2 \propto r_{12}^{-2X}$ ,  $P_3 \propto (r_{12}r_{13}r_{23})^{-X}$   $r_{ij} \equiv |x_i - x_j|$ , X = 2 - D

$$R = \frac{P_3(x_1, x_2, x_3)}{\sqrt{P_2(x_1, x_2)P_2(x_1, x_3)P_2(x_2, x_3)}}$$
 universal constant at a fixed point

$$\begin{cases} P_2(x_1, x_2) = \lim_{q \to 1} \langle \phi(x_1) \phi(x_2) \rangle \\ P_3(x_1, x_2, x_3) = \lim_{q \to 1} \sqrt{2} \langle \phi(x_1) \phi(x_2) \phi(x_3) \rangle \end{cases} \qquad \phi = \frac{\mu + \bar{\mu}}{\sqrt{2}}, \quad \mu = \text{Potts kink field} \end{cases}$$

$$R = \sqrt{2} \lim_{c \to c_{perc}} \lim_{X_{\phi} \to X} C_{\phi\phi\phi}(c, X_{\phi})$$

 $C_{\phi\phi\phi}$  from "analytic continuation" of minimal models (Zamolodchikov, '05)

| R      | fixed point     |  |
|--------|-----------------|--|
| 1.0220 | random          |  |
| 1.3767 | Ising geometric |  |
| 1.0524 | Ising FK        |  |

Monte Carlo determination for random percolation (Ziff, Simmons, Kleban, '10)

Equilateral triangle of side  $\Delta$  on  $L \times L$  lattice with periodic b.c. at  $p_c$ 



#### **Off-critical universality**

Critical behavior as  $p \rightarrow p_c^{\pm}$ :



One can construct universal critical amplitude combinations, e.g.

$$\frac{\Gamma_{-}}{\Gamma_{+}} = \frac{\int d^2 x P_2(x,0)|_{p \to p_c^-}}{\int d^2 x P_2(x,0)|_{p \to p_c^+}}$$

The scaling Potts model is integrable

• Exact S-matrix (Chim, A.Zamolodchikov, '92)

q degenerate vacua at  $J > J_c$ ; elementary excitations are domain walls

Scattering amplitudes:

$$S_{0} = \sum_{n=1}^{\infty} S_{1} = \sum_{n=1}^{\infty} S_{2} = \sum_{n=1}^{\infty} S_{3} = \sum_{n=1}^{\infty} S_{3} = \sum_{n=1}^{\infty} S_{n} = \sum_{n=1}^{\infty} S_{n$$

$$\sqrt{q} = 2\sin\frac{\pi\lambda}{3} \qquad \qquad \Pi\left(\frac{\lambda\theta}{i\pi}\right) = \frac{\sinh\lambda\left(\theta + i\frac{\pi}{3}\right)}{\sinh\lambda\left(\theta - i\pi\right)} \exp\left(\int_0^\infty \frac{dx}{x} \frac{\sinh\frac{x}{2}\left(1 - \frac{1}{\lambda}\right) - \sinh\frac{x}{2}\left(\frac{1}{\lambda} - \frac{5}{3}\right)}{\sinh\frac{x}{2\lambda}\cosh\frac{x}{2}} \sinh\frac{x\theta}{i\pi}\right)$$

 $\boldsymbol{\theta}$  parameterizes the center of mass energy

• Spectral series for Potts correlators (GD, Cardy, '98)

Example: susceptibility amplitude ratio, two-particle approximation :

| q | Field Theory | Lattice              |
|---|--------------|----------------------|
| 2 | 37.699       | 37.6936 <sup>a</sup> |
| 3 | 13.848       | $13.83(8)^{b,c}$     |
| 4 | 4.01         | $3.9(1)^{d}$         |

- [a] Wu, McCoy, Tracy, Barouch, '76
- [b] Enting, Guttmann, '03
- [c] Shchur, Berche, Butera, '08
- [d] Shchur, Janke, '10 (Baxter-Wu model)

# **Universal amplitude ratios for random percolation** (GD, Viti, Cardy, '10)

$$P_2(x_1, x_2)|_{p \to p_c^-} = \frac{F_\mu^2}{\pi} K_0(r_{12}/\xi) + O(e^{-2r_{12}/\xi})$$

$$P_2(x_1, x_2)|_{p \to p_c^+} = \frac{F_\sigma}{\pi^2} \int_0^\infty d\theta \, |f(2\theta)\Omega(2\theta)|^2 \, K_0\left(2\frac{r_{12}}{\xi}\cosh\theta\right) + O(e^{-3r_{12}/\xi})$$

$$f(\theta) = -i\sinh\frac{\theta}{2}\exp\left\{-2\int_0^\infty \frac{dx}{x}\frac{\sinh\frac{x}{3}\cosh\frac{x}{6}}{\sinh^2 x\cosh\frac{x}{2}}\sin^2\frac{(i\pi-\theta)x}{2\pi}\right\}$$

$$\Omega(\theta) = \mathcal{C} \int_{-\infty}^{+\infty} \frac{dx}{2\pi} W\left(-x - \frac{\theta}{2} + i\pi\right) W\left(-x + \frac{\theta}{2} + i\pi\right) e^{-x/6}$$

$$\mathcal{C} = \exp\left[\int_0^\infty \frac{dt}{t} \frac{4\sinh^2 \frac{t}{4}\sinh \frac{t}{2}}{\sinh^2 t}\right], \qquad W(\theta) = \frac{1}{\cosh \theta} \exp\left[\int_0^\infty \frac{dt}{t} \frac{2\sinh \frac{t}{2}}{\sinh^2 t}\sin^2\left(\frac{t}{2\pi}(i\pi - \theta)\right)\right]$$

$$F_{\mu}^{2} = F_{\sigma} \lim_{\theta \to \infty} |f(\theta)\Omega(\theta)|$$

| Amplitude Ratio                               | Field Theory | Lattice               |
|-----------------------------------------------|--------------|-----------------------|
| $A^{-}/A^{+}$                                 | 1            | $1^a$                 |
| $f^-/f^+$                                     | 2            | -                     |
| $f_{2nd}^{-}/f^{-}$                           | 1.001        | -                     |
| $f_{2nd}^{-}/f_{2nd}^{+}$                     | 3.73         | $4.0\pm0.5^{c}$       |
| $4B^2(f_{2nd}^-)^2/\Gamma^-$                  | 2.22         | $2.23\pm0.10^d$       |
| $(-80/\overline{27} A^{-})^{1/2} f_{2nd}^{-}$ | 0.926        | $pprox$ 0.93 $^{a+b}$ |
| $\Gamma^{-}/\Gamma^{+}$                       | 160.2        | $162.5\pm2^e$         |

- [a] Domb, Pearce, '76
- [b] Aharony, Stauffer, '97
- [c] Corsten, Jan, Jerrard, '89
- [d] Daboul, Aharony, Stauffer, '00
- [e] Jensen, Ziff, '06

30 years of efforts by the numerical community,  $\Gamma^-/\Gamma^+$  most elusive

## Numerical estimates for $\Gamma^-/\Gamma^+$ in random percolation $% \Gamma^+$ (from Ziff, '11)

| year | author                    | system, method                   | $\Gamma^{-}/\Gamma^{+}$ |
|------|---------------------------|----------------------------------|-------------------------|
| 1976 | Sykes, Gaunt, Glen        | lattice, series (12-20 order)    | 1.3-2.0                 |
| 1976 | Stauffer                  | lattice, series analysis         | pprox 100               |
| 1978 | Nakanishi, Stanley        | lattice, MC                      | 25(10)                  |
| 1978 | Wolff, Stauffer           | lattice, series, fit to gaussian | 180(36)                 |
| 1979 | Hoshen et al              | lattice, MC                      | 196(40)                 |
| 1980 | Nakanishi, Stanley        | lattice, MC (reanalyze)          | 219(25)                 |
| 1981 | Gawlinsky, Stanley        | overlapping disks, MC            | 50(26)                  |
| 1985 | Rushton, Family, Herrmann | additive polymerization, MC      | 140(45)                 |
| 1987 | Meir                      | lattice, series                  | 210(10)                 |
| 1987 | Kim, Herrmann, Landau     | continuum model, MC              | 14(10)                  |
| 1987 | Nakanishi                 | AB percolation, MC               | 139(24)                 |
| 1988 | Balberg                   | widthless sticks, MC             | $\approx$ 3             |
| 1988 | Ottavi                    | approx. theory (gaussian fit)    | 193.9                   |
| 1989 | Corsten, Jan, Jerrard     | lattice, MC                      | 75(+40, -25)            |
| 1990 | S. B. Lee, Torquato       | penetrable conc. shell           | 1050(32)                |
| 1990 | S. B. Lee                 | disks, MC                        | 192(20)                 |
| 1991 | Hund                      | random contour model, MC         | pprox 200               |
| 1993 | Zhang, De'Bell            | Penrose quasi-lattice, series    | 310(60)                 |
| 1995 | Conway, Guttmann          | lattice, series (26-33 order)    | 45(+20,-10)             |
| 1996 | S. B. Lee                 | penetrable conc. shell, disks    | 175(50)                 |
| 1997 | S. B. Lee, Jeon           | kinetic gelation, MC             | 170(20)                 |
| 2006 | Jensen, Ziff              | lattice, MC, series              | 162.5(2.0)              |

Field theory of Ising clusters (GD, '09)

Geometric clusters:



1,2 and 1,3 CFT perturbations are integrable

Particles on 2nd order surface:

- $q = 1 + \epsilon$ :  $\epsilon$  massless, 1 massive with lifetime  $\sim 1/\epsilon \implies \xi_{perc} = \infty$
- q = 1: 0 massless, one stable massive  $\implies \xi_{magn} < \infty$

#### Universal amplitude ratios for Ising clusters (GD, Viti, '10)

| Amplitude Ratio                      | geometric clusters                                       | FK clusters                                     |  |
|--------------------------------------|----------------------------------------------------------|-------------------------------------------------|--|
| $\Gamma_a/\Gamma_b^+$                | not defined                                              | 40.3                                            |  |
| $f_{2nd,a}/f_a$                      | "                                                        | 0.99959                                         |  |
| $f_a/f_b^+$                          | "                                                        | 2                                               |  |
| $f_a/\widehat{f}_a$                  | "                                                        | 1                                               |  |
| $A_{k,a}/A_{k,b}^+$ ; $k=0,-1$       | "                                                        | 1                                               |  |
| $\Gamma_b^+/\Gamma_b^-$              | -                                                        | 1                                               |  |
| $f_b^+/f_b^-$                        | 1/2                                                      | 1                                               |  |
| $f_{2nd,b}^{-}/f_{b}^{-}$            | 0.6799                                                   | 0.61                                            |  |
| $f_{2nd,b}^{+}/f_{2nd,b}^{-}$        | -                                                        | 1                                               |  |
| $f_b^+/\hat{f}_b^\pm$                | 1/2                                                      | 1                                               |  |
| $U_b$                                | 24.72                                                    | 15.2                                            |  |
| $A_{k,b}^+/A_{k,b}^-$ ; $k = 0, -1$  | 1                                                        | 1                                               |  |
| $A_{0,b}^{\pm}/A_{-1,b}^{\pm}$       | $-\gamma - \ln \pi = -1.7219$                            | $-\gamma - \ln \pi = -1.7219$                   |  |
| $r_b$                                | $\frac{3\sqrt{3}(\gamma + \ln \pi)}{64\pi^2} = 0.014165$ | $-\frac{\gamma + \ln \pi}{12\pi^2} = -0.014539$ |  |
| $f_c^+/f_c^-$                        | 1/2                                                      | _                                               |  |
| $f_{2nd,c}^-/f_c^-$                  | 1.002                                                    | -                                               |  |
| $f_c^+/\widehat{f}_c^\pm$            | $\sin \frac{\pi}{5} = 0.58778$                           | -                                               |  |
| $A_{kc}^{+}/A_{kc}^{-}$ ; $k = 0, 1$ | 1                                                        | -                                               |  |
| $A_{0c}^{\pm}/A_{1c}^{\pm}$          | -0.42883                                                 | _                                               |  |
| $r_c$                                | $-3.7624	imes 10^{-3}$                                   | -                                               |  |

 $\gamma = 0.5772.$ . Euler-Mascheroni constant