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Interference is observed when two independent Bose–Einstein condensates expand and overlap.
This phenomenon is typical, in the sense that the overwhelming majority of wave functions of
the condensates, uniformly sampled out of a suitable portion of the total Hilbert space, display
interference with maximal visibility. We focus here on the phases of the condensates and their
(pseudo) randomization, which naturally emerges when two-body scattering processes are
considered. Relationship to typicality is discussed and analyzed.
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1. Introduction

The physical signi¯cance of the phase of a Bose–Einstein condensate (BEC) has
raised a number of interesting foundamental quantum-mechanical questions.1–7 In-
terference is observed even when two condensates are prepared independently.8 This
phenomenon, characteristic of condensates, contrasts with common wisdom on sin-
gle-particle double-slit interference experiments,9,10 where no interference can be
observed unless the relative phase between the two branch waves is kept con-
stant.11,12 In this sense, independent sources do not interfere (at ¯rst order; the
second-order Hanbury Brown and Twiss interference13–15 is a di®erent story).

The most credited explanation of the observation of interference in two-mode
Bose systems relies on the beautiful idea that the relative phase of the condensates is
established by measurement. The phase o®set of each single interference pattern
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changes from run to run, so that no interference persists if many interference patterns
are superimposed: There is thus no contradiction with the standard quantum-me-
chanical interpretation of ¯rst-order interference. This \measurement-induced
interference" was ¯rst proposed in Ref. 16 and then corroborated by a number of
studies.17–21 The interpretation of the experimental results has also been formalized
in terms of positive operator valued measures.22,23 These ideas bear consequences on
our understanding of symmetry breaking phenomena.2,5,7,24

We showed in Ref. 25 that interference is robust with respect to the state prep-
aration. Each time two condensates are experimentally prepared (e.g. out of a single
condensate, by inserting a \wall" between them8,26–30), their wave function is sam-
pled out of a portion of the total Hilbert space that depends on experimental pro-
cedures and details (state preparation). Since we have no access to this information,
we have to look at the typical features of such a wave function, namely those features
that characterize its behavior and properties in the overwhelming majority of cases.
We ¯nd that the very presence of an interference pattern emerges as a typical feature
of the wave function.25

In this paper we will build on this observation and focus on phase randomization
e®ects due to self-interaction within the condensate, to clarify how the phase ran-
domization process can take place. This paper is organized as follows. In Sec. 2, we
introduce the ensemble of initial states and review its properties. In particular, we
de¯ne and analyze the averages and variances of the physical observables. Section 3 is
devoted to the study of the general properties of the observable which are directly
related to interference, in a second-quantization framework. In Sec. 4, we review the
main results on the typicality of interference between two expanding Gaussian
modes, which constitute a realistic model of a BEC interferometry experiment. In
Sec. 5, we consider the role of the interaction among particles and write down a
simple Hamiltonian model, and in Sec. 6, we show how an initial coherent state
evolves under this Hamiltonian. Finally, in Sec. 7, we show how this simple physical
mechanism yields a dynamical randomization of the phases in the two-mode
Fock basis.

2. Distribution of Initial States

We consider a typical experimental setup of BEC interferometry: A condensate is
distributed among two orthogonal modes,  aðrÞ and  bðrÞ, which are usually spa-
tially separated at some initial time. Then the atomic clouds are let to expand,
overlap, and (possibly) interfere.

Let us assume that the total number of bosons N is ¯xed. A useful basis for such a
system is given by two-mode Fock states

j‘i :¼ N
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with %N=2 & ‘ & N=2, in which the two modes  aðrÞ and  bðrÞ are orthonormal,
and have well-de¯ned occupation numbers. We assume that N is even for simplicity.
The mode operators,

â ¼
Z

dr  '
aðrÞ#̂ðrÞ; b̂ ¼

Z
dr  '

bðrÞ#̂ðrÞ; ð2Þ

annihilate the vacuum state j"i and satisfy the canonical commutation relations

½â; â †) ¼ ½b̂; b̂ †) ¼ 1, all the operators of mode a commuting with those of mode b.

Here #̂ðrÞ is the bosonic ¯eld operator, satisfying the canonical commutation rela-

tions ½#̂ðrÞ;#̂ †ðr 0Þ) ¼ !ðr% r 0Þ, etc. The number operators N̂ a ¼ â †â and N̂ b ¼ b̂
†
b̂

count the numbers of particles in the two modes.
The crucial assumption25 is that the initial state of the two-mode system is ran-

domly picked from the subspace spanned by the Fock states with j‘j < n=2,

Hn ¼ spanfj‘i j%n=2 < ‘ < n=2g; ð3Þ

with 0 < n & N þ 1, where n is odd for simplicity, and the microcanonical density
matrix reads

%̂n ¼ 1

n

X

j‘j<n=2
j‘ih‘j: ð4Þ

The case n ¼ 1 was studied by a number of authors,16–18,20,31–34 while we are more
interested in the large-n case. It is not harmful to think of the \natural" situation

n ¼ Oð
ffiffiffiffiffi
N

p
Þ, but we shall work in full generality, with an arbitrary n ¼ oðNÞ. Sur-

prisingly, interference turns out to be robust25 against the stronger scaling n ¼ oðNÞ,
which includes, for example, n * N= logN.

A general pure state j$Ni of the system drawn from the (unit sphere) of the
subspace Hn can be expanded in the Fock basis (1) as:

j$Ni ¼
X

j‘j<n=2
z‘j‘i;

X

j‘j<n=2
jz‘j2 ¼ 1; ð5Þ

since z‘ ¼ 0 for j‘j + n=2. The coe±cients z‘ for j‘j < n=2 are randomly sampled from

the surface of the 2n-dimensional unit sphere
P

‘jz‘j2 ¼ 1.
The assumption of uniform sampling is a simplifying one: the number of

states that are actually involved in the description and their amplitude will
depend on the experimental procedure and the way the two BEC clouds are creat-
ed.35 Due to this assumption, the quadratic statistical average over all experimental
runs (5) reads

z '
‘1
z‘2 ¼

1

n
!‘1;‘2 ; ð6Þ

while the average of the coe±cients themselves, as well as all the quantities that
depend on the phases of the coe±cients, will vanish.
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In a given run, with state j$Ni, a quantum observable Â has expectation value

A$N
¼ h$N jÂj$Ni: ð7Þ

Its statistical average over all experimental runs, described by the uniform ensem-
ble (5), is

A :¼ h$N jÂj$Ni ¼ Trð%̂nÂÞ ¼ A%n : ð8Þ

There are two distinct °uctuations that characterize a given observable: (i) the
statistical °uctuations ofA$N

over the experimental runs, quanti¯ed by the statistical

variance

ð!AÞ2 :¼ A2 % A 2 ¼ h$N jÂj$Ni2 % h$N jÂj$Ni
2
; ð9Þ

(ii) the quantum °uctuations of observable Â in a single run, quanti¯ed by the

observable ð%ÂÞ2 ¼ ðÂ% A$N
Þ2. The statistical average of its expectation value in

state j$Ni reads

ð%AÞ2 :¼ h$N jÂ
2j$Ni % h$N jÂj$Ni2 : ð10Þ

Computations of (9) and (10) both involve the quartic average36 z'
‘1
z'
‘2
z‘3z‘4 . Notice,

however, that their sum involves only quadratic averages, and is in fact given by the

quantum mechanical variance of Â in the microcanonical state %n in (4):

ð%AÞ2 þ ð!AÞ2 ¼ ð%AÞ2%n ¼ Trð%̂nÂ
2Þ % Trð%̂nÂÞ2: ð11Þ

A few comments are in order. If the initial state is sampled from the degenerate
distribution with n ¼ 1 (which is in fact deterministic and concentrated on the single

balanced Fock state), the average quantum variance ð%AÞ2 coincides with the

quantum variance of j‘ ¼ 0i, while, obviously, ð!AÞ2 ¼ 0. In such a case, the same
state is prepared in every run (which requires a very careful preparation procedure
and is a somewhat unrealistic assumption for the experiments performed so far). On

the other hand, if the ensemble is made up of eigenstates of the observable Â, then the

quantum °uctuations vanish, ð%AÞ2 ¼ 0, and the only contribution to (11) comes

from the statistical °uctuations ð!AÞ2, that di®erentiate individual runs. An ob-

servable is typical if ð!AÞ2 ¼ oðA 2Þ, and is stable at each run if ð%AÞ2 ¼ oðA 2Þ.
In general, di®erent °uctuations are present in a given experiment. We analyzed

the interference of a two-mode Bose–Einstein system according to these ideas and
showed that some features of the interference pattern (such as its period and its fringe
contrast) are robust against both the afore-mentioned °uctuations,25 and thus

ð%AÞ2%n ¼ oðA 2Þ. We shall summarize the main results in the following sections and

shall comment on the role of ð%AÞ2%n for an interesting observable, the power spec-

trum of particle density.34

P. Facchi et al.

1560019-4



3. Observables Related to Interference

Since we are interested in the quantities that are related to interference, we will focus
on those observables associated with the spatial distribution of particles.31,34,37–40 In
this section, we will review the relevant averages in the general case, postponing
quantitative considerations to the following section. In the second-quantization for-
malism, the spatial density is represented by the operator

"̂ðrÞ ¼ #̂
†ðrÞ #̂ðrÞ; ð12Þ

whose Fourier transform reads

b~"ðkÞ :¼ F ½"̂)ðkÞ ¼
Z

dr e%ik,r"̂ðrÞ: ð13Þ

Expanding the ¯eld operators and taking the expectation value (8), one ¯nds that the
average density

"ðrÞ ¼ h$N j"̂ðrÞj$Ni ¼
N

2
ð"aðrÞ þ "bðrÞÞ; with "a;bðrÞ :¼ j a;bðrÞj2; ð14Þ

is merely the sum of the particle densities in the two modes, with no interference
between them. Clearly, this property holds also for the Fourier transform. This result
apparently contrasts with experimental observation, as interference is present even if
no phase coherence between the particles in the two modes exists. However, the
average (14) cannot give su±cient information on the result of a single experimental
run, since its °uctuations are very large.

On the other hand, the outcome of a single run can be inferred, within a controlled
degree of approximation, from the study of the density power spectrum, i.e. the
square modulus of its Fourier transform31,34,37–40:

R̂ðkÞ :¼ b~" †ðkÞ b~"ðkÞ ¼ r̂ðkÞ þ N̂ ; ð15Þ

r̂ðkÞ :¼
Z

dr dr 0e%ik,ðr%r 0Þ#̂
†ðrÞ #̂ †ðr 0Þ #̂ðr 0Þ #̂ðrÞ: ð16Þ

Observe that all states j$Ni in (6) are eigenstates of the total number operator N̂
belonging to the eigenvalue N , that is ¯xed, which makes the role of the last ad-

dendum in (15) immaterial. Notice also that the power spectrum R̂ðkÞ is the Fourier
transform of the density autocorrelation function

Ĉ ðrÞ ¼
Z

dr 0"̂ðr 0Þ"̂ðrþ r 0Þ: ð17Þ

Under speci¯c assumptions on the values of N and n in (3), we will show that
°uctuations around the average value

RðkÞ ¼ Trð%̂nR̂ðkÞÞ ð18Þ

are negligible.
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The observable r̂ðkÞ can be expanded in the mode operators as:

r̂ðkÞ ¼ j~"aðkÞj2N̂ aðN̂ a % 1Þ þ j~"bðkÞj2N̂ bðN̂ b % 1Þ
þ ð~" '

aðkÞ~"bðkÞ þ ~" '
bðkÞ~"aðkÞ þ j~"baðkÞj2 þ j~"abðkÞj2ÞN̂ aN̂ b

þ½ð~"bð%kÞ~"baðkÞ þ ~"bðkÞ~"bað%kÞÞN̂ bb̂
†
â

þ ð~"bað%kÞ~"aðkÞ þ ~"baðkÞ~"að%kÞÞb̂ †âN̂ a

þ ~"bað%kÞ~"baðkÞðb̂
†Þ2â 2 þ h:c:) þ other modes; ð19Þ

with ~"baðkÞ :¼ F ½ '
b a)ðkÞ. Due to the uniform sampling (5) inHn, only the ¯rst three

operators in (19), which have diagonal matrix elements in the Fock basis, yield non-

vanishing contributions to the ensemble average of R̂ðkÞ. The ¯nal result reads

RðkÞ ¼ rðkÞ þN ¼ N 2

4
ðj~"aðkÞ þ ~"bðkÞj2 þ j~"baðkÞj2 þ j~"abðkÞj2Þ þOðN ;n2Þ; ð20Þ

in which the Fourier transforms of  '
b a, directly related to interference, appear.

(Remember that we always assume n ¼ oðNÞ.)
We now estimate the °uctuations of R̂ according to the philosophy outlined in the

previous section. In order to estimate the °uctuations of R̂ðkÞ around its average and
prove that they are small in the large-N limit, we shall consider the covariance

ð%RÞ2%nðk;k
0Þ ¼ Trð%̂nR̂ðkÞR̂ðk 0ÞÞ % Trð%̂nR̂ðkÞÞTrð%̂nR̂ðk 0ÞÞ

¼ Trð%̂nR̂ðkÞR̂ðk 0ÞÞ % rðkÞ , rðk 0Þ: ð21Þ

It involves (diagonal) matrix elements of the four-particle correlation function
Q4

i¼1#̂
†ðriÞ

Q4
i¼1#̂ðriÞ. In the following section, we will analyze an experimentally

relevant case in which the distribution of RðkÞ displays sharp peaks that provide
information on the interference pattern in each experimental run, with °uctuations
being negligible in proper ranges of N and n.

4. Typical Interference of Expanding Gaussian Modes

In the light of the general results on the density power spectrum R̂ðkÞ and its
°uctuations, we will review in this section the properties of a realistic model, de-
scribing a physical situation that is close to experimental implementation. The
cold atoms are initially trapped in two Gaussian clouds by an external double-well
potential. The distance between the peaks of the distributions is signi¯cantly
larger than their widths, so that the initial wave packets do not overlap. The trap
is then released and the clouds expand freely until they overlap and interfere.
We will explicitly consider the time evolution of the system in one spatial dimension,
for simplicity: if scattering between the particles in the condensates is neglected,
the time dependence can be evaluated by observing that the correlation functions
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at time t are obtained by replacing the initial modes  a;bðxÞ with their time-evolved

counterparts

 a;bðx; tÞ ¼ exp
i}t
2m

@ 2

@x2

! "
 a;bðxÞ; ð22Þ

with

 aðxÞ ¼
1

#1=4$1=2
e%ðxþ%Þ2=2$2

;  bðxÞ ¼
1

#1=4$1=2
e%ðx%%Þ 2=2$2

; ð23Þ

where $ is the width of the Gaussians and % is the half distance between their maxima,
chosen large enough in order to ensure that  a;b are approximately orthogonal.

A straightforward calculation yields25

ð%RÞ2%nðk; k
0; tÞ ¼ N 3C3;0ðk; k 0; tÞ þNn2C1;2ðk; k 0; tÞ

þ n4C0;4ðk; k 0; tÞ þ n3C0;3ðk; k 0; tÞ þOðN 2Þ; ð24Þ

where the coe±cients Ci;j depend on the structure of the modes, but neither on the

number of particles N , nor on the dimension n of the sampled Hilbert subspace.

Equation (24) shows that °uctuations are oðN 4Þ when n ¼ oðNÞ. This implies

that if n ¼ oðNÞ (i.e. n=N ! 0 for N ! 1) °uctuations around the average R in
(24) in di®erent experimental runs are negligible, and the distribution of the mea-

sured values of R̂ is peaked around its most probable value. These results prove that
interference is typical, and occurs for the overwhelming majority of wave functions of
the condensate when n ¼ oðNÞ.

We observe that similar conclusions are obtained when one deals with plane waves
rather than Gaussian modes,25 the only di®erence being in the coe±cients Ci;j in

Eq. (24). Presumably, the dependence on N and n will not change for a wide range of
mode functions. In this sense, our conclusions are of general validity.

5. The Self-Interacting Gas

The results reviewed in the previous sections were obtained by averaging over an
ensemble of states. It is not immediate to relate these results to an experiment, since
one should introduce a mechanism to sample the random states according to the
desired distribution. We will show in the following that the randomization of the
phases in the Fock basis emerges in a natural and straightforward way, once inter-
particle scattering is considered.

In a classical double-slit experiment, ¯rst-order interference is observable if the
relative phase & between the incident waves at each slit does not vary over time. The
corresponding case for a condensate is that of a two-mode coherent state (see
Eq. (29)–(30) in the following), in which all the N particles are in the same super-
position of mode wave functions. A ¯rst-order interference pattern can be observed in
a coherent state, with the same o®set & at each experimental run.
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It is not obvious that a coherent state is created when two (independent) Bose-
Einstein condensates are prepared. Nevertheless, we shall now scrutinize the evolu-
tion of a coherent state when the Bose gas is self-interacting. In such a case, the
phases in the Fock basis expansion become (pseudo)random after an initial transient,
whose duration vanishes in the N ! 1 limit. We will show that this behavior is
closely related to a loss of coherence between the two modes, which leads to the
disappearence of the ¯rst-order pattern after the initial transient. This is also related
to the general theory of the Josephson e®ect5 and spin squeezing.41 Our previous
results ensure, on the other hand, that an interference pattern can be observed also in
this case, despite its o®set °uctuates over time and experimental runs.

Let us consider a Bose system with particles distributed in two spatially separated
orthonormal modes  a and  b, whose supports Sa and Sb do not overlap. Assume that
the energies of a single particle in each mode be equal, so that we can set them equal
to zero for convenience, and that the tunneling between the two modes is negligible. If
we also assume that other modes are made inaccessible (e.g. by a large energetic
separation), the two-body contact-interaction term in the Hamiltonian reads

Ĥ int ¼
g

2

Z
dr #̂

†ðrÞ #̂ †ðrÞ #̂ðrÞ #̂ðrÞ

’ g

2

Z

Sa

dr"2aðrÞ

 !

N̂ aðN̂ a % 1Þ þ g

2

Z

Sb

dr"2bðrÞ

 !

N̂ bðN̂ b % 1Þ; ð25Þ

where the coupling constant g is determined at the lowest order by the scattering

length as through g ¼ 4#}2as=m, and the products of a and b mode operators do not
appear because the supports of the modes have no overlap. If the integrals appearing
in (25) are equal (e.g. if the mode density pro¯les are related by translation and/or
re°ection), the Hamiltonian reduces to

Ĥ int ¼
~g

2
N̂ a

2 þ N̂ b
2 % ðN̂ a þ N̂ bÞ

( )

¼ ~g

2

ðN̂ a % N̂ bÞ2
2

þ ðN̂ a þ N̂ bÞ2
2

% ðN̂ a þ N̂ bÞ

" #

; ð26Þ

where ~g :¼ g
R
Sa
dr"2aðrÞ. Since N̂ a þ N̂ b ¼ N̂ is a constant of motion and we are going

to consider states with a ¯xed number of particles N , distributed among the two
modes, the only part of the Hamiltonian which is relevant to the evolution of a state
j$Ni is

ĥ ¼ ~gð!N̂Þ2; with !N̂ ¼ N̂ a % N̂ b

2
: ð27Þ

By de¯nition, the N -particle two-mode Fock basis (1) satis¯es

!N̂ j‘i ¼ ‘j‘i: ð28Þ
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6. Dynamics and Typicality

Let us consider an initial coherent state,

j#0i ¼
1ffiffiffiffiffiffi
N !

p â† þ b̂ †ffiffiffi
2

p
 !N

j"i ¼ 1

2N=2

XN=2

‘¼%N=2

N

N=2þ ‘

! " 1
2

j‘i; ð29Þ

in which all the particles are created in the wave function ½ aðrÞ þ  bðrÞ)=
ffiffiffi
2

p
. Once

the initial wave packets are let to expand and overlap, this state, along with all the
states

j’i ¼ 1ffiffiffiffiffiffi
N !

p ei’=2â† þ e%i’=2b̂ †ffiffiffi
2

p
 !N

j"i ¼ 1

2N=2

XN=2

‘¼%N=2

N

N=2þ ‘

! " 1
2

ei‘’j‘i; ð30Þ

displays ¯rst-order interference, appearing in the expectation value h’j"̂ðr; tÞj’i with
maximal visibility, since the relative phase between the two modes is ¯xed and the
modes are equally populated on average. The coherent states (30), called phase
states,7,19,20,24 which are relevant to describe interference, do not form a basis. Their
overlap reads

h’j’ 0i ¼ cos
’% ’ 0

2

! "N

ð31Þ

and is characterized for large N by a sharp peak around ’% ’ 0 ¼ 0, whose width

is OðN%1=2Þ.
Even if all the coe±cients of the states (29) and (30) in the Fock basis are non-

vanishing, the presence of the binomial coe±cient implies that for large N the states

can be very well approximated by truncating the sum at j‘j < ‘max ¼ OðN 1=2Þ: The
approximate states thus belong to H2‘max

(see Eq. (3)). The evolution of the initial

state (29) generated by the Hamiltonian (27) reads

j#ðtÞi ¼
XN=2

‘¼%N=2

N

N=2þ ‘

! " 1
2 e%i‘2 ~gt

2N=2
j‘i: ð32Þ

In general, the evolved state at t > 0 is no longer a coherent state of the form (30): The
delicate phase relation between the amplitudes in theFock basis breaks due to the time-
dependent phase factors, which are quadratic in the imbalance ‘. This behavior pro-
duces a pseudo-randomization for irrational values of ~gt=#, which simulates the ran-
dom phase sampling in the statistical ensemble for a ¯xed distribution of the
imbalances. A detailed analysis of this aspect will be presented in the following.

The loss of relative coherence can be quanti¯ed by studying the squared compo-
nent of the state j#ðtÞi along the general coherent state j’i:

P’ðtÞ ¼ jh’j#ðtÞij2 ¼ 1

2N

#####
XN=2

‘¼%N=2

N

N=2þ ‘

! "
e%i‘’%i‘2 ~gt

#####

2

: ð33Þ
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A peaked distribution around one value of the relative phase ’ indicates a high
degree of coherence, and thus a large visibility in the ¯rst-order interference. On the
other hand, an almost uniform value of (33) in ð%#; #) indicates that very small phase
coherence between the particles in the two modes is present, and the o®set of the
interference fringes randomly °uctuates from run to run, leading to the disappear-
ance of ¯rst-order interference e®ects. The relative phase distribution of the initial
state (29) is peaked around ’ ¼ 0. Notice that the peak has a ¯nite width, since each
coherent state can be expressed as a linear superposition of the others. The peak
becomes sharper as N increases, with a standard deviation

$’ð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ þ#

%#
d’’2P’ð0Þ

*Z þ#

%#
d’P’ð0Þ

s

¼
ffiffiffiffiffi
2

N

r
: ð34Þ

As the system evolves, the initial value of $’ becomes negligible, as the standard

deviation increases linearly in time, like

$’ðtÞ ’
ffiffiffiffiffiffiffiffiffiffi
N=2

p
~gt: ð35Þ

This result can be immediately obtained by a Gaussian approximation of the bino-
mial coe±cients,

1

2N

N

N=2þ ‘

! "
*

ffiffiffiffiffiffiffiffi
2

#N

r
e%

2
N‘

2
; ð36Þ

for N ! 1. At time t' ¼ 2#=~g
ffiffiffiffiffiffiffi
2N

p
, one expects that the state is spread over all

possible values of the relative phase. This does not prevent coherence to be recovered
at a subsequent time: indeed the state is again perfectly coherent at t ¼ #=~g, because
j#ð#=~gÞi ¼ j’ ¼ #i, and returns to the initial state j’ ¼ 0i after the recurrence time
t ¼ tr :¼ 2#=~g.

7. Phase Randomization

Let us now discuss the phase randomization process which involves the coe±cients of
j#ðtÞi in the expansion (32): their phases are

f‘ðtÞ :¼ ~gt‘2 mod 2#: ð37Þ

Can the sequence ff‘gj‘j&N=2 mimic a random sequence, sampled from a uniform

distribution in ½0; 2#), for some time t? To address this question, one can analyze a
quantity which is common in testing pseudorandom numbers, namely the autocor-
relation between nearest phases

CðtÞ ¼ ðN þ 1Þ
P

‘ f‘ðtÞf‘þ1ðtÞ % ½
P

‘ f‘ðtÞ)2
ðN þ 1Þ

P
‘ f

2
‘ ðtÞ % ½

P
‘ f‘ðtÞ)2

; ð38Þ

which is expected to vanish for a truly random sequence of independent phases. At
the initial time, the values of the phases for adjacent ‘'s are strongly correlated, since
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Cð0Þ ¼ 1. The autocorrelation reduces as time increases: for N ¼ 104, its value

typically drops down to jCðtÞj. 0:05 at ~gt ’ 2 , 10%3, with oscillations around zero
(see Fig. 1). An exception to this behavior occurs when ~gt=# is a rational number: in
this case, phases are not uniformly distributed in ½0; 2#), since they can assume only a
¯nite set of values. In Fig. 2, the projection P’ðtÞ of the state j#ðtÞi on the coherent

state with relative phase ’ (see (33)) is plotted as a function of ’, in parallel with a
scatter plot of the phases f‘ðtÞ.

The plot in Fig. 2(a) shows a distribution P’ evaluated at ~gt ¼ 10%6, which is still

peaked around ’ ¼ 0, indicating a good degree of coherence (left panel). On the other
hand, the phases f‘ of adjacent Fock coe±cients are manifestly correlated, with

Cð10%6=~gÞ ¼ 0:997 (right panel).

At time ~gt' ¼
ffiffiffiffiffiffiffiffiffiffi
2=N

p
# ’ 0:044, the function P’ spreads over the whole interval

ð%#; #), as shown in Fig. 2(b) (left panel). No correlations manifestly emerge between
the phases of the coe±cients, which appear to be (almost) uniformly scattered (right
panel). This observation is con¯rmed by the small value of the autocorrelation

Cð0:044=~gÞ ¼ %3:4 , 10%3 (not shown in Fig. 1, where shorter times t & 5 , 10%3=~g
are displayed).

In Figs. 2(c) and 2(d), two di®erent situations that can occur at large times are
presented (both cases are not shown in Fig. 1, that displays times of order

t * 10%3=~g). When ~gt=# is irrational, Fig. 2(c), the phases of the coe±cients are

pseudorandom [Cð1:5=~gÞ ’ 10%2] (left panel), and the relative phase distribution
tends to ¯ll the interval ð%#; #) uniformly (right panel). On the other hand, when
~gt=# ¼ p=q is rational, Fig. 2(d), the phases of the coe±cients become periodic, with

0 1 2 3 4 5

0.10

0.05

0.00

0.05

0.10

t 10 3 g

C
t

Fig. 1. Autocorrelation CðtÞ, de¯ned in (37) and (38), of the sequence of phases f‘ðtÞ in the caseN ¼ 104.
Though very rapidly variating, the function is analytic for all ¯nite N . The spacing between points in the
horizontal axis is t ¼ 10%6=~g. Recall that at the initial time the sequence of coe±cients is perfectly cor-
related (Cð0Þ ¼ 1, not shown in the plot).
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(a) ~gt ¼ 10%6
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(b) ~gt ¼ 0:044
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(c) ~gt ¼ 1:5
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(d) ~gt ¼ 5#=7

Fig. 2. The two columns display in parallel, for di®erent times, the behavior of the squared component
P’ðtÞ of j#ðtÞi along the coherent state de¯ned by phase ’ (left panels), and the distribution of the phases

f‘ðtÞ of the coe±cients in the Fock basis (right panels) (see (33)–(37)). The loss of the initial coherence from
(a) to (b) is due to the randomization of the phases. The last two plots refer to long-time cases in which
(c) there is no coherence and (d) partial coherence is recovered.
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period q if p is even and 2q if p is odd: No randomization occurs in this case, and the
state of the system appears as a superposition of a ¯nite number of coherent states
(left panel). The phases are very correlated (right panel).

Let us ¯nally remark that full correlation among the coe±cients is recovered,
together with coherence, when t ¼ tr=2 (the recurrence time de¯ned at the end of
Sec. 6). Our case study shows how the randomization of the coe±cients and the loss
of coherence between the two modes are strictly correlated. If one observes the state
of the system at a generic time t in ½0; tr), in the vast majority of cases the phases of
the coe±cients behave as if they were sampled from a random distribution. One
can thus expect in this case that the typical properties of the system are captured by
the average over a distribution of states with random phases in the Fock basis
coe±cients.

It should be observed that in the case here considered there is no mechanism that
yields a randomization of the amplitudes of the coe±cients. Of course, it is possible to
conceive several physical situations that do not preserve the imbalance distribution ‘,
and randomize also the amplitudes. However, the results of the previous section
crucially depend only on the randomness of the phases, and seem to indicate that one
should expect only slightly quantitative di®erences if the amplitudes were sampled
di®erently from the uniform sampling (5).

8. Conclusion

Typicality is a fecund concept in modern statistical mechanics. Typical phenomena
characterize physical situations with overwhelming probability. We have shown in
Ref. 25 and in this paper that the interference of two independently prepared BECs is
typical, namely (almost) always occurs when two BECs are created and let to in-
terfere. This interference is not of ¯rst order. We therefore looked at the relative
phase of the condensates in order to elucidate its randomization mechanism.

We showed that self-interaction (accounting for two-body scattering processes)
within the condensates yields such phase randomization and makes ¯rst-order in-
terference vanish. After a certain time, that is inversely proportional to the inter-
action strength, the relative phase is randomized. However, an interference pattern
will still be observed, as a consequence of typicality. The interplay between the
absence of ¯rst-order interference and the (observable and experimentally observed)
presence of second-order interference is an interesting phenomenon, that char-
acterizes the physics of BECs.
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