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A method is proposed to characterize and quantify multipartite entanglement in terms
of the probability density function of bipartite entanglement over all possible balanced
bipartitions of an ensemble of qubits. The method is tested on a class of random pure
states.
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The quantification of multipartite entanglement is an open and very challenging
problem. An exhaustive definition of bipartite entanglement exists and hinges upon
the von Neumann entropy and the entanglement of formation,'? but the problem of
defining multipartite entanglement is more difficult® and no unique definition exists:
different definitions tend indeed to focus on different aspects of the problem, cap-
turing different features of entanglement,* ¢ that do not necessarily agree with each
other. Moreover, as the size of the system increases, the number of measures (i.e.
real numbers) needed to quantify multipartite entanglement grows exponentially.
This work is motivated by the idea that a good definition of multipartite entan-
glement should stem from some statistical information about the system.” We shall
therefore look at the distribution of the purity of a subsystem over all bipartitions
of the total system. As a measure of multipartite entanglement we will take a whole
function: the probability density of bipartite entanglement between any two parts
of the total system. According to our definition multipartite entanglement is large
when bipartite entanglement (i) is large and (ii) does not depend on the bipartition,
namely, when (i) and (ii) the probability density of bipartite entanglement is a nar-
row function centered at a large value. This definition will be tested on two class of
states that are known to be characterized by a large entanglement. We emphasize
that the idea that complicated phenomena cannot be “summarized” in a single (or
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a few) number(s) was already proposed in the context of complex systems® and has
been also considered in relation to quantum entanglement.”

We shall focus on a collection of n qubits and consider a partition in two sub-
systems A and B, made up of n4 and np qubits (na +np = n), respectively. For
definiteness we assume n4 < np. The total Hilbert space is the tensor product
'H =Ha ® Hp and the dimensions are dim’H = N = 2", dimH4 = Ny = 24 and
dimHp = Np = 25 respectively (NaNg = N).

We shall consider pure states. Their expression adapted to the bipartition reads

N—1 Ns—1Np—1
Wy =D alk) = > > zaslia)@lls), (1)
k=0 ja=0 Ip=0

where |k) = |ja)®|lp), with a bijection between k and (j4,(5). Think of the binary
expressions of an integer k in terms of the binary expression of (ja,lp).

As a measure of bipartite entanglement between A and B we consider the par-
ticipation number

Nap =m,p, wap(|¥) =traph, pa=trap, (2)

where p = |[¢)(¢| and tra (trp) is the partial trace over the subsystem A (B). Nap
measures the effective rank of the matrix p4, namely the effective Schmidt
number.'® We note that

1 < Nagp = Npa <min(Na, Np), (3)

with the maximum (minimum) value attained for a completely mixed (pure) state
pa. Therefore, a larger value of Nyp corresponds to a more entangled bipartition
(A, B), the maximum value being attainable for a balanced bipartition, i.e. when
na = [n/2] (and np = [(n + 1)/2]), where [z] is the integer part of the real x,
that is the largest integer not exceeding x. The maximum possible entanglement is
Nap = Ny = 2™4. The quantity nap = log, Nap represents the effective number
of entangled qubits, given the bipartition (namely, the number of bipartite entan-
glement “links” that are “severed” when the system is bipartitioned).

Clearly, the quantity N4p will depend on the bipartition, as in general entan-
glement will be distributed in a different way among all possible bipartitions. As
explained in the introduction, we are motivated by the idea that the distribution
p(Nap) of Nap yields information about multipartite entanglement.

Let us therefore study the typical form of our measure of multipartite entan-
glement p(Nap) for a very large class of pure states, sampled according to a given
symmetric distribution on the projective Hilbert space {¢ € H, ||¢|| = 1} (e.g. the
unitarily invariant Haar measure). By plugging (1) into (2), one gets

Na—1 Np—1

TAB = E E ZjZjnzin Zit (4)

J,3'=0 L,I'=0
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and it can be shown” that, in the thermodynamical limit (that is practically attained
for n > 5), independently of the distribution of the coefficients, the mean and the
standard deviation of (4) over all possible balanced bipartitions read

Njy+ Np—1 o 2
HAB = - N VN’ 0,243 - Nz (N large) (5)

respectively, where o = 8/2 (o = 9/2) for even (odd) n. Moreover, the probability
density of Nap in Eq. (2) reads

1

p(Nap) = T o2 ijz OXP <_

B (Nap — MAB)Q)
N3p(2mo%p)

2
2095

(6)

It is interesting to compare the features of these generic random states with those of
other states studied in the literature. Table 1 displays the average value of N4p for
GHZ states,'t W states,'?13 cluster states'* and the generic states (1), for n = 5 +
12. While the entanglement of the GHZ and W states is essentially independent of
n, the situation is drastically different for cluster and random states. In both cases,
the average entanglement increases with n; for n > 8, the average entanglement
is higher for random states. However, the mean (Nap) yields poor information on
multipartite entanglement. For this reason, it is useful to analyze the distribution
of bipartite entanglement over all possible balanced bipartitions.

The results for the cluster and random states are shown in Fig. 1, for n rang-
ing between 5 and 12. Notice that the distribution function of the random state is
always peaked around (Nap) =~ u, given by (5). Notice also that the cluster state
can reach higher values of Nyp (the maximum possible value being 2ln/ 2]), how-
ever, the fraction of bipartitions yielding this result becomes smaller for higher n.
This is immediately understood if one realizes that the cluster states are designed
for optimized applications and therefore perform better in terms of specific biparti-
tions. On the other hand, according to the measure we propose, the random states
are characterized by a large value of multipartite entanglement, that is roughly
independent of the bipartition.

Table 1. Mean bipartite entanglement (N4 ) for different
states and different number of qubits n.

n GHZ W Cluster Random
5 2 1.923 3.6 2.909
6 2 2 5.4 4.267
7 2 1.96 6.171 5.565
8 2 2 8.743 8.258
9 2 1.976 10.349 10.894

10 2 2 14.206 16.254

11 2 1.984 17.176 21.558

12 2 2 23.156 32.252
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Fig. 1. Number of balanced bipartitions versus Nag; np = n!/nalnpg! is the number of bipar-
titions. The light-gray bars represent cluster states, the dark-gray ones random states; the solid
line is the distribution (5) and (6); the black arrows indicate the average (Nap)cluster- FOr even
n (n = 12 in particular) the distribution of the random state partially hides a peak of the corre-
sponding cluster state distribution, centered at Ngp = 274~ 1 = 2ln/21-1
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In Fig. 2, we compare the number of balanced bipartitions versus Nap for the
random states and increasing n. The related probability density functions (6) are
displayed in Fig. 3. Notice that as the number of spins increases from n = 5 to
n = 12, the mean increases and the distribution becomes relatively narrower. As
we emphasized, these are both signatures of a very high degree of multipartite
entanglement, whose features become (as n increases) practically independent of
the bipartition. In Fig. 3, it is interesting to observe the difference between the
distributions for odd and even n.

In Fig. 4(a), we plot the value of (Nap) for the cluster and random states (see
Table 1). We notice that, for n = 9, (Nap)random becomes larger than (N4 p)cluster-
Figure 4(b) displays the behavior of the standard deviation of Nap,

o= JAB/M%B' (7)
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Fig. 2. Number of balanced bipartitions versus N 4p; the histograms are numerically obtained
for the typical states; the solid line represents their distribution. The value of n (total number of
spins) is always indicated and ranges (a) from 5 to 8; (b) from 9 to 12; n, = n!/nalnpg! is the
number of bipartitions.
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Fig. 3. Probability densities functions (6) versus Nap. Each curve is labeled with the corre-
sponding value of n (number of qubits). The standard deviation o quickly becomes independent
of n [see Fig. 4(b)] and depends only on the parity of the latter.
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Fig. 4. Comparison between typical and cluster states: (a) expectation value (Nap) and (b)
standard deviation o of the distributions in Fig. 3 versus n (number of qubits).

o
14 ¢

12 "

10

o

8 3 * typical

6 o cluster

4 o

2 00

*0* * * * * * *

5 10 15 20 25 30 (Nag)

Fig. 5. Standard deviation o versus expectation value (N 4p) of the distributions in Fig. 3.

For the cluster states this quantity tends to diverge when the size of the system
increases. By contrast, from Eq. (5), ¢ = v/2/« is constant for the typical states.
This means that the ratio o /(N4p) tends to 0. Finally, Fig. 5 displays a parametric
plot of o versus (Nap). Clearly, for the random states o is independent of (N4p).

We emphasize that our analysis should by no means be taken as an argument
against the performance of the cluster states. As we stressed before, cluster states are
tailored for specific purposes in quantum information processing, and in that respect
are very well suited. We compared the generic states to the cluster states specifically
because the latter are also known to be characterized by a large entanglement.

An efficient way to generate states endowed with random features is by means

20723 or at the onset of a quantum phase transition.?* 27

of a chaotic dynamics,
In particular, the random states describe quite well states with support on chaotic
regions of phase space, before dynamical localization has taken place. These features
make these states rather appealing, from a practical point of view, in that they are
easily generated. The introduction of a probability density function as a measure of

multipartite entanglement paves the way to further investigations of the intimate
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relation between entanglement and randomness and their behavior across a phase
transition.
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