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Abstract
We elaborate on the notion of generalized tomograms, both in the classical and quantum
domains. We construct a scheme of star-products of thick tomographic symbols and obtain in
explicit form the kernels of classical and quantum generalized tomograms. Some of the new
tomograms may have interesting applications in quantum optical tomography.
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1. Introduction

The tomographic probability description of classical and
quantum states [1, 2] is based on the standard Radon trans-
form [3] of positive definite functions and Wigner functions
[4–6], respectively, the latter being actually experimentally
used for the reconstruction of quantum states, through the
determination of the associated density operators [7–10] (see
also [11–14]) .

The use of the Radon transform to associate a probability
distribution (tomogram) with every Wigner function [5, 6]
was shown to be equivalent [15] to the use of a specific
scheme of quantizer–dequantizer procedure to build a star-
product by means of a quantum version of the Radon trans-
form. Specifically, the kernel of the associative star-product of
tomographic symbols of quantum observables and the kernel
of the associative star-product of symbols associated with
classical observables were studied in [1, 2, 15].

The aim of this paper is to further develop the star-pro-
duct scheme by means of the so called thick tomography
approach [16] for the description of quantum states and obtain
in explicit form the star-product kernel for thick tomographic
symbols. We also provide a general approach for the con-
struction of tomographic schemes where different nonlinear

functions (not only linear ones) in position and momentum
are being used, and take the opportunity to better qualify a
statement made in [17].

This article is organized as follows. In section 2, we
review the general scheme for the construction of a star-
product. In section 3, the thick tomographic approach is
considered by following [16], and the kernel for the star-
product is constructed. In section 4, a general scheme to deal
with nonlinear functions of position and momentum is for-
mulated. Perspectives and conclusions are provided in
section 5.

2. General scheme of star-products

The Weyl–Wigner formalism enables one to represent
operators by means of functions on phase space and
vice versa, in a one-to-one correspondence, provided that the
functions satisfy appropriate conditions. By this one-to-one
correspondence it is possible to build a non-local product on
functions which corresponds to the associative operator pro-
duct. As the Weyl map realizes a projectively unitary repre-
sentation of the Abelian vector group (phase-space), the
induced product on functions coincides with a twisted
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convolution product. This construction can be extended and
generalized to any measure space X on which it is possible to
define, for any ∈x X a pair of operators U xˆ ( )1 and D xˆ ( )1

acting on some Hilbert space , called dequantizer and
quantizer respectively, with the property

δ′ = ′( )D x U x xTr ˆ ( ) ˆ ( ), (1)x1 1

where ∈x X . To any operator Â acting on  one can
associate a function called its symbol

=A x AU x( ) Tr ˆ ˆ ( ), (2)1 1

and the reconstruction formula, the inverse map, reads

∫=A A x D x xˆ ( ) ˆ ( )d . (3)1 1

By using this one-to-one map we define the star product of
two symbols associated with Â and B̂ by setting

∫
⋆ =

=
A B x ABU x

K x x x A x B x x x

( ) Tr ˆ ˆ ˆ ( )

( , , ) ( ) ( )d d , (4)

1 1 1

1 1 2 1 1 1 2 1 2

where the kernel of the star product is given by the relation
[15]

= ( )K x x x D x D x U x( , , ) Tr ˆ ( ) ˆ ( ) ˆ ( ) . (5)1 1 2 1 1 1 2 1

Let us assume that there exists another manifold (measure
space) Y with another pair of quantizer and dequantizer
operators D yˆ ( )2 and U yˆ ( )2 with ∈y Y , acting on the same
Hilbert space  on which D xˆ ( )1 andU xˆ ( )1 act. Then, with the
same operator Â it is possible to associate another symbol
function defined on Y, say

=A y AU y( ) Tr ˆ ˆ ( ), (6)2 2

with inverse

∫=A A y D y yˆ ( ) ˆ ( )d . (7)2 2

By using formula (7), we find

∫=A x K x y A y y( ) ( , ) ( )d , (8)
Y

1 12 2

∫=A y K y x A x x( ) ( , ) ( )d , (9)
X

2 21 1

where we have defined the integral transform from symbols
on X to symbols on Y, and vice versa, by means of the
formulae

=K x y U x D y( , ) Tr ˆ ( ) ˆ ( ), (10)12 1 2

=K y x U y D x( , ) Tr ˆ ( ) ˆ ( ). (11)21 2 1

The previous construction raises a natural question: given the
integral relations (8)–(9), is it possible to find their quantum
descriptions, that is, to find two pairs U xˆ ( )1 and D xˆ ( )1 and
U yˆ ( )2 and D yˆ ( )2 such that (10) and (11) hold? This inverse
problem, i.e., to find the quantizer–dequantizer pair corre-
sponding to a given kernel was considered in [2]. Now we
will show how the standard symplectic tomography can be
framed in this context. As a matter of fact, the classical Radon
transform and its inverse play the role of K12 and K21.

To show this explicitly, set μ ν= ∈ !x X( , , ) 3 and
= ∈ !y q p( , ) 2. Then for two functions A x( )1 and A y( )2 one

has

∫μ ν δ μ ν= − −A X A q p X q p q p( , , ) ( , ) ( ) d d , (12)1 2

∫π
μ ν μ ν= μ ν− −A q p A X X( , )

1

4
( , , )e d d d . (13)X q p

2 2 1
i( )

We now have to exhibit two quantizer–dequantizer pairs such
that the kernels of (12) and (13) have the form (10) and (11).
The solution is known and is provided by

μ ν δ μ ν

μ ν
π

μ ν

= − −

= − −

( )

( )

U X X q p

D X X q p

ˆ ( , , ) ˆ ˆ ,

ˆ ( , , )
1

4
expi ˆ ˆ , (14)

1

1 2

and

∫

π

= − +

=

−U q p q
u

q
u

u

D q p U q p

ˆ ( , ) e
2 2

d ,

ˆ ( , )
1
2

ˆ ( , ). (15)

pu
2

i

2 2

The previous formulae show that the standard tomographic
picture may be given a quantum version, indeed the classical
symbols are originated from quantum operators.

3. Thick tomography

One can use for ‘thick’ quantizer and dequantizer for an
arbitrary window function Ξ ⩾Y( ) 0.

μ ν Ξ μ ν= − −( )U X X q pˆ ( , , ) ˆ ˆ , (16)

μ ν
π

= Ξ μ ν− −
D Xˆ ( , , )

4
e , (17)( )X q p

2
i ˆ ˆ

where

∫ Ξ=Ξ
− ( )z z( ) e d . (18)zi
1

The kernel of the star product reads

μ ν μ ν μ ν
μ ν μ ν μ ν

π
Ξ μ ν

=

=

− −

Ξ

Ξ

μ ν μ ν

+

− − − −


{ }

{ }

( )
( ) ( ) ( )

( )

K X X X

D X D X U X

X q p

, , , , , , , ,

Tr ˆ , , ˆ , , ˆ , ,

2
e

Tr e e ˆ ˆ . (19)

X X

q p q p

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

2
i i

i ˆ i ˆ i ˆ i ˆ
3 3 3

1 2

1 1 2 2

⎛
⎝⎜

⎞
⎠⎟

Using the relation

∫Ξ Ξ δ= −X Y X Y Y( ) ( ) ( ) d , (20)

we get

∫
μ ν μ ν μ ν

μ ν μ ν μ ν Ξ= −
Ξ

δ

( )
( )

K X X X

K X X X Y Y Y

, , , , , , , ,

, , , , , , , , ( ) d ,

1 1 1 2 2 2 3 3 3

1 1 1 2 2 2 3 3 3

2
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where δK is the kernel of the star product related to the ideal
symplectic tomogram (formally obtained when Ξ δ= ) [15].

Exactly the same relation takes place for classical com-
mutative tomographic star product. It means that quantum and
classical tomographic products are related by a twist factor,
namely,

= ν μ ν μ−K Ke . (22)qu
( )

cl
i
2 1 2 2 1

4. Generalized tomographic star-product scheme in
classical and quantum pictures

Here we present a general scheme that relates the known
classical tomographic schemes, given e.g. in [16, 18] with
their quantum versions. In fact, we apply the Weyl quanti-
zation map to formulate the integral relations among func-
tions on phase space of a system with n degrees of freedom.
Let us consider two arbitrary functions: q pf ( , ) on phase
space ∈ !q p( , ) n2 , and  x( )f on an m-dimensional manifold

∈x X . Assume that there are two integral relations between
the functions:

∫ φ=
!

q p q p q px f x( ) ( , ) ( , , )d d , (23)f
n2

∫ χ= q p q pf x x x( , ) ( ) ( , , )d , (24)
X

f

with kernels φ and χ that relate the phase-space with the
manifold X. In order to get a quantum version of these
relations, we introduce the operators

∫φ φ=
!

( )q p q p q p q px x Dˆ ˆ, ˆ , ( , , ) ˆ ( , )d d , (25)
n2

∫χ χ=
!

( )q p q p q p q px x Dˆ ˆ, ˆ , ( , , ) ˆ ( , )d d . (26)
n2

The operators act on the Hilbert space of an n-mode system,
e.g. on the space of states of an n-dimensional harmonic
oscillator !L ( )n2 . The components of the operator vectors

=q q q qˆ ( ˆ , ˆ ,..., ˆ )n1 2 and =p p p pˆ ( ˆ , ˆ ,..., ˆ )n1 2 are the standard
position and momentum operators with commutators

=q p[ ˆ , ˆ ] ik k (with units ! = 1). The explicit form of the
operator q pD̂ ( , ) is

α απ= −( )q p a aD Iˆ ( , )
1

exp 2 · ˆ 2 * · ˆ ˆ, (27)
n

†

where α α α α= ∈ "( , ,..., )n n
1 2 , with α = +q p( i ) 2 ,

while =a a a aˆ ( ˆ , ˆ ,..., ˆ )n1 2 and =a a a aˆ ( ˆ , ˆ ,..., ˆ )n†
1
†

2
† † are the

vectors of annihilation and creation operators:
= +a q pˆ ( ˆ i ˆ ) 2 and = −a q pˆ ( ˆ i ˆ ) 2† . The operator Î is

the parity operator with action ψ ψ= −q qÎ ( ) ( ), for
ψ ∈ !L ( )n2 . The operator q pD̂ ( , ) is the Weyl system
displacement operator on the Hilbert space of an n-
dimensional oscillator.

Let us suppose now that for an arbitrary operator Â we
have its Weyl symbol

= ( )q p q pf AU( , ) Tr ˆ ˆ ( , ) , (28)A

where the dequantizer operator q pÛ ( , ) is given by

π=q p q pU Dˆ ( , ) (2 ) ˆ ( , ). (29)n

Then one has a reconstruction formula

∫=
!

q p q p q pA f Dˆ ( , ) ˆ ( , )d d . (30)An2

Moreover, the product of two operators ABˆ ˆ is mapped onto a
star product of their symbols ⋆f fA B whose explicit
expression is

∫⋆ =
!

( ) q p q p q p

q p q p q p q p q p

f f f f

G

( , ) ( , ) ( , )

( , , , , , )d d d d ,

(31)

A B A B1 1 2 2

1 1 2 2 1 1 2 2

n4

where the Groenewald kernel is given by [15]

π

=

= − +

( )
( )

q p q p q p

q p q p q p

q p q p

G

D D U

( , , , , , )

Tr ˆ ( , ) ˆ ( , ) ˆ ( , )

1
exp 2i( · · ) cyc. perms. . (32)

n

1 1 2 2 3 3

1 1 2 2 3 3

2 1 2 2 1

Let us now introduce for any operator Â its symbol as a
function on the manifold X

φ= ( )( )q px A x( ) Tr ˆ ˆ ˆ, ˆ , . (33)A

In view of relations (23)–(24) one can reconstruct the operator
Â using the formula

∫ χ=  ( )q pA x x xˆ ( ) ˆ ˆ, ˆ , d . (34)
X

A

The relations (33) and (34) mean that the operators φ q p xˆ ( ˆ, ˆ , )
and χ q p xˆ ( ˆ, ˆ , ) play the role of dequantizer and quantizer,
respectively. Thus, they determine the star-product of the
symbols of operators Â and B̂ by

∫⋆ =   x x x K x x x x x( ) ( ) ( ) ( , , )d d .

(35)

A B
X

A B1 2 1 2 1 22

Therefore, starting from the classical integral relations (23)–
(24) we constructed a new star-product scheme. In this
scheme the dequantizer and the quantizer are given by (25)
and (26), respectively. By the general theory of star-product
description [15] the kernel of this star-product reads

χ χ ϕ= ( ( ) ( ) ( )q p q p q pK x x x x x x( , , ) Tr ˆ ˆ, ˆ , ˆ ˆ, ˆ , ˆ ˆ, ˆ , .

(36)

1 2 3 1 2 3

By plugging the explicit expression (25) and (26) into (36)
and using the definition of the Groenewald kernel (32), we get

∫ χ χ
φ

=
×
×

!
q p q p

q p q p q p q p

q q p q p

K x x x x x

x G

( , , ) ( , , ) ( , , )

( , , ) ( , , , , , )

d d d d d .

(37)

1 2 3 1 1 1 2 2 2

3 3 3 1 1 2 2 3 3

1 2 2 3 3

n6

One application of formula (37) is the tomographic scheme of
star-product. For example, in the case of symplectic

3
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tomography the classical (Radon) transform and its inverse
provide the functions (for simplicity we consider the single-
mode case)

ϕ ϕ μ ν δ μ ν≡ = − −q p x q p X X q p( , , ) ( , , , , ) ( ), (38)

with μ ν=x X( , , ), and

χ χ μ ν
π

≡ = μ ν− −q p x q p X( , , ) ( , , , , )
1

4
e . (39)X q p

2
(i( ))

Then the dequantizer and the quantizer of the tomographic
star-product scheme read

φ δ μ ν= − −( ) ( )q p x X q pˆ ˆ, ˆ , ˆ ˆ , (40)

and

χ
π

μ ν= − −( )( ) ( )q p x X q pˆ ˆ, ˆ ,
1

4
exp i ˆ ˆ , (41)

2

respectively. Applying the relation (37) with the Groenewald
kernel we find the kernel of the tomographic star-product
obtained in [15].

Now we apply the developed method to find the star-
product kernel of a tomographic scheme based on quadratic
functions [19]. Again we consider the single-mode example.
We have

φ δ μ ν= − − − −( )q p x X q p( , , ) ( ) ( ) , (42)2 2

and

χ π μ ν= − − − −( )( )q p x X q p( , , )
1
exp i ( ) ( ) , (43)2 2

with μ ν=x X( , , ). The kernel of the quantum tomographic
star-product is given by the integral (37), which in this case
reads

∫
μ ν μ ν μ ν

π
δ μ ν

μ ν

μ ν

=

× − − − −

× − − − −

× − − − −

× − + − + −

!

)
( )( )
( )

( )
( )
( )

( )

( ( )

( )

K X X X

q q p q p

X q p

X q p

X q p

q p q p q p q p q p q p

, , , , , , , ,

1
d d d d d

( ) ( )

exp i

exp i ( )

exp 2i

(44)

1 1 1 2 2 2 3 3 3

6 1 2 2 3 3

3 3 3
2

3 3
2

1 1 1
2

1 1
2

2 2 2
2

2 2
2

1 2 2 1 2 3 3 2 3 1 1 3

6

⎜ ⎟⎛
⎝

⎞
⎠

A lengthy but straightforward calculation yields

μ ν μ ν μ ν

π
δ μ μ μ ν ν

ν ν ν μ μ

=

× − + − + −

− + − + −

+ − μ μ ν ν− + −

(
)

( )

( )

( )

K X X X

X

, , , , , , , ,

2

i
e e

4 2

2 . (45)

( )X X

1 1 1 2 2 2 3 3 3

3
i i

3 1 2 3 2 1
2

1 2 3 1 2
2

1 2
( 1 2)2 ( 1 2)2

2

The result is not symmetric with respect to the permutation
↔1 2. This reflects the noncommutativity of the operator

product. The result can be easily generalized to the
multimode case.

5. Conclusions

To conclude we point out the main results of our work. We
have presented a general method to obtain the star-product of
symbols of quantum observables in cases where the classical
functions on phase-space are mapped onto tomographic
symbols by means of different integral transforms. The
method generalizes the Radon transform of functions on
classical phase-space. The Radon transform is based on the
use of a Dirac delta-function of a linear form in position and
momentum. We used Weyl quantization as a tool to map
functions on classical phase-space onto operators acting on a
Hilbert space. By using this map we constructed the explicit
expression of the quantizer and the dequantizer operators,
providing the quantum version of tomography based on the
Dirac delta-function of quadratic forms of position and
momentum. This form might be useful in the analysis of
experiments for photon number measurement statistics. The
explicit expression of the star-product kernel of the general-
ized tomographic symbols was obtained in the case of
quantum tomography determined by quadratic Hamiltonians.
The generic relation of different star-product kernels with the
Groenewald kernel of the symbols of Weyl–Wigner functions
on phase space was established. The application of the
developed tomographic star-product formalism will be the
object of study of future work. It will be also interesting to
consider cases with discrete spectra like the angular
momentum in a cylinder or systems with finite dimensional
Hilbert spaces like qudits where the star-product formalism
can be easily implemented.
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