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Radon transform on the cylinder and tomography of a particle on the circle
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The tomographic probability distribution on the phase space (cylinder) related to a circle or an interval is
introduced. The explicit relations of the tomographic probability densities and the probability densities on the
phase space for the particle motion on a torus are obtained, and the relation of the suggested map to the Radon
transform on the plane is elucidated. The generalization to the case of a multidimensional torus is elaborated,
and the geometrical meaning of the tomographic probability densities as marginal distributions on the helix

discussed.
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I. INTRODUCTION

The Radon transform [1] is the key mathematical tool
used to reconstruct the tomographic map of both the Wigner
quasidistribution [2-4] of a quantum state [5-7] and the
probability distribution on the phase space of a classical par-
ticle [8,9]. In the quantum case, this subject has motivated
not only refined theoretical approaches based on the maxi-
mum likelihood estimation, in order to extract the maximum
reliable information [10], but also interesting experiments
with photonic states [11], photon number distributions [12],
and (helium) atoms [13], focusing in particular on the recon-
struction of the transversal motional states. A scheme has
been also proposed to obtain the tomographic map associated
with the longitudinal motion of a neutron wave packet [14].
Recent progress on the quantum aspects has been driven by
modern experimental techniques, and good reviews on these
topics can be found in [15].

The tomographic map provides the symplectic tomogra-
phy [16] of quantum states connected with the symplectic
transform on the phase space (the plane R? for one degree of
freedom) and this map can be considered as a specific to-
mographic version of the star-product quantization [17,18].
Notice that this interpretation of the Radon transform differs
from the original motivation for the Radon transform in an
essential way. The genuine Radon transform was introduced
as an integral transform defined over submanifolds of the
configuration space, more specifically geodesics (i.e.,
straight lines in R?), whereas in symplectic tomography it is
rather associated with Lagrangian submanifolds of phase
space. Therefore, although we consider motion, which is in-
strumental for the identification of the relevant phase space,
the actual motions (the solutions of the associated Hamilton
equations) do not appear in the definition of the Radon trans-
form.

If we consider the classical motion of a particle on a circle
and its trajectory in phase space (a cylinder of radius R), the
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motion is described by the time dependence of the coordinate
q(t)=R (1), where (1) is the angle defining the point on the
circle. The angular momentum J is the longitudinal coordi-
nate of this motion in the phase space. In the presence of
fluctuations, the particle state is not determined by the two
coordinates ¢ and p (or ¢ and J), but rather by their prob-
ability distribution function f(q,p) [or f(¢,J)] on the phase
space. The invertible tomographic map of this distribution
onto the tomographic probability distribution enables one to
determine the state of the classical particle by means of the
probability density wAX, u,v), which depends on a random
variable X and two parameters u and v. The parameters u
and v label the reference frame in the phase space, when the
random position X of the particle is measured. The reference
frame is obtained from the initial one by first squeezing the
axis g—¢q’'=sq, p—p'=s"'p, and then performing the rota-
tion q'—q"=q' cos 0+p’ sin 6, p'—p'=-q' sin 6
+p’ cos 6 (see the formulas below). Thus the real parameters
p and v are expressed in terms of the squeezing s and rota-
tion A as u=s cos A and v=s""sin . The tomographic Radon
transform maps the probability density, which depends on
two random variables—position and momentum—onto the
tomographic probability distribution of only one random
variable.

The case of motion on a circle can be viewed in the lim-
iting case R— ¢ as motion on a line. Since the tomographic
map for classical motion on the line is known (and it is very
similar to the standard Radon transform), it is interesting to
address the question of whether it is possible to describe the
classical motion on the circle by an analogous probability
density distribution depending on one random variable and
some extra parameters. The motion that we consider is
purely instrumental in order to identify the phase space, and
does not provide us with specific trajectories on which we
integrate to perform a Radon transform. In fact, not only will
we discuss the Radon transform of functions depending on
points on the cylinder (which, to the best of our knowledge,
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has never been presented in the literature), but we also intend
to study how to construct the map of the positive probability
density distributions living on the phase space onto the fam-
ily of positive probability distributions of random variables
living on helices. We will address only the classical motion
since the quantized version of the map, which is known for
motion on the line, needs additional consideration for motion
on the circle, due to specific properties of compactification in
one dimension when one goes from the plane to the cylinder.
The analysis carried out in this paper might therefore be very
relevant for tomography in quantum mechanics, where we
would like to integrate on Lagrangian submanifolds to have
marginals on the transversal Lagrangian leaf, and therefore it
becomes relevant for us to understand what is the space of all
Lagrangian submanifolds and the transversal ones.

The aim of this work is to introduce an invertible tomog-
raphic map of probability distributions on phase space of a
particle moving on the circle onto the probability marginal
distributions on the helix of the cylinder (tomograms). The
paper is organized as follows. In Sec. II we review the sym-
plectic tomographic approach for a free particle moving on
the line. Section III introduces the tomographic map for
functions on the phase space (cylinder) of the free particle
moving on the circle. We consider an explicit example in
Sec. I'V. The multidimensional generalization is considered in
Sec. V. In Sec. VI we look at the limit of the tomographic
map for the particle moving on the torus when the radii of
the circles tend to infinity, and show that in this limit we get
the symplectic tomographic map corresponding to the stan-
dard Radon transform. Perspectives and conclusions are pre-
sented in Sec. VIIL.

II. SYMPLECTIC TOMOGRAPHY

Let us consider a function f(q,p) on the phase space
(g.p) € R? of a particle moving on the line ¢ € R. The Radon
transform as originally formulated solves the following prob-
lem: reconstruction of a function of two variables, say
f(p,q), if its integrals over arbitrary lines are given.

In the (¢,p) plane, a line is given by the equation

X—pqg—-vp=0. (1)

By using homogeneity we may write

X —cos g —sin p=0. (2)

Thus, the family of lines has the manifold structure R XS,

with S the unit circle, X € R, and 6 e[0,27]. There is an-
other way to recover this manifold structure, which turns out
to be useful for generalizations to higher dimensions. The
Euclidean group E(2) acts transitively on the set of lines in
the plane with a stability group given by the translations
along the line itself. Therefore the family of lines is given by
E(2)/R, i.e., R XS.

The action of R XS may be visualized in the following
way: a fiducial line passing through the origin may be trans-
lated along the normal to the line to generate a family of
parallel lines. See Fig. 1. Afterward, by using the rotation
group we may rotate this family of parallel lines into any
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FIG. 1. Tomography on the plane.

other family of parallel lines. As the two actions commute,
we may also rotate first and then translate. Thus, we may
consider the set of all lines passing through the origin and
parametrized by the angle and then translate each one along
the normal.

It is interesting to observe that

R%2=E(2)/S, R X S=E(2)/R. (3)

The Radon transform maps F(R?) into F(R X S), where F is
a suitable class of functions that depends on the physical
setting (for our purposes, L' is enough). The set of lines can
be parametrized by two numbers: the distance from the ori-
gin, d € R, and the angle with respect to the p=0 axis, 6
€[0,27). Any point in R? can then be parametrized by

(g,p) = (s cos 6,s sin 0) + (= d sin 6,d cos 6), (4)

where s is the parameter running along the line defined by d
and 6. See Fig. 1.
The Radon transform is defined by

+00
F(d,0) = f f(s cos —d sin 6,5 sin 8+ d cos O)ds. (5)

The inversion formula, as given by Radon, amounts to con-
sidering first the average value of F on all lines tangent to the
circle of center P=(q,p) and radius r, namely,

1 2
Fp(r):;_rf F(q cos 8+ p sin 6+ r,0)d6 (6)
0

and then

1 [ Fu(r)

fla.p)==— f =—dr. (7)
T r

The Radon transform maps a (suitable) function on the plane

into a function on the cylinder. Some conditions that guaran-

tee the invertibility and continuity of the map were studied
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by Radon himself [1], John [19], Helgason [20], and Stri-
chartz [21].

It is possible to write the Radon transform in the affine
language (the so-called tomographic map) [1,22]

wf(X’/-'L’ V) = <5(X_ Mmq — Vp))
= f fg.p)dX - ng - vp)dq dp, (8)
RZ

where ¢ is the Dirac function and the parameters X, u,v
e R. We notice that

1 0\(qg
(/W)(O 1>(p>=p«q+1/p, )
but also
0 -1\(q
(- VM)(I 0 )(p)=m1+ vp. (10)

This means that the argument in the Dirac 6 function may be
considered either as a Euclidean product or as a symplectic
product. Equivalently, one might consider the Euclidean or
symplectic Fourier transforms.

Another remark is the following. The full linear inhomo-
geneous group acts transitively on the family of lines on R>.
Instead of E(2) as a privileged group, we may consider

SL(2,R) = Sp(2,R) =IGL(2,R)/(R* X R),  (11)

where SL, Sp, and IGL are the special linear, symplectic, and
inhomogeneous linear groups, respectively. The R group in
the “denominator” gives dilations while R? gives transla-
tions. Because Sp(2,RR) is not Abelian, it can be generated by
two types of transformations: rotations

cos @ sin 6
. (12)
—sin 6 cos 0
and “squeezing” transformations
s 0
. 13
(O 57 ) (13)

The action of the squeezing transformation maps lines into
lines, while preserving the area of the triangle. The further
action of the rotation group will change the angle formed
with the ¢ axis. One may show that the Radon transform is
equivariant with respect to the action of SL(2,R) or E(2);
both of them preserve the measure on R2.

The inverse transform of (8) reads [1,22]

Vp)dXd,udV

(2 (14)

flg.p) = f L oXom, v)e! X Ha-
R

In polar coordinates u=r cos 6, v=r sin 6, the inversion for-
mula takes the form of the standard inverse Radon transform:

dX do
m?’

(15)

2m
f(q,p):f J /X, cos 0,sin O)K(6,q,p)
rJo

with
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K(6,q9,p) =sin Gf giqr cos O=iprsin 6, 1. (16)
0

and where we made use of the homogeneity of w/(X,u,v),
1
H)f()\X,)\M,)\V) = mwf(xwufa V)a (17)

which is a direct consequence of (8). If the function f(q,p) is
a probability density distribution on the phase space of a
classical particle, i.e.,

flg.p) =0, f flg.p)dgq dp =1, (18)
RZ

also the function wf(X , M, V) is nonnegative and is called a
symplectic tomogram, or the “Radon component” of the dis-
tribution function f(g,p) (analogously to the Fourier compo-
nent of a function). The Radon component contains the same
information on the state of the particle evolving on the phase
space as the initial distribution function. Summarizing,

oAX,u,v) =0, f o X,u,v)dX=1, V u,v,

R
(19)

and the family of tomograms depends on the two real param-
eters u and v.

III. TOMOGRAPHY ON THE CIRCLE

In order to extend the preceding tomographic analysis to
particles confined to compact domains there are two alterna-
tive definitions, following two different strategies.

A. First definition: Tomography on the strip

Let us choose for definiteness an interval of width 2.
The configuration space

1=[0,2m) (20)

yields the phase space I X R (a strip). To consider this case it
is convenient to deal with the parametrization of lines given
by SX R, where R is the translation along the normal to the
line. If we consider the intersection of the lines with the
selected strip, it is still possible to consider the treatment of
the planar situation, where in addition the measure dg dp is
multiplied by the characteristic function of the strip.

The state of a classical particle moving in the interval in
the presence of fluctuations is associated with a distribution
function f(g,p)=0, satisfying the normalization condition

f flg.p)dg dp=1. (21)
IXR

In this case, the symplectic tomogram (8) specializes to
oA X, p,v) = Aq.p)dX - pg—vp)dgdp, (22)
IXR

with X, u,v e R. One easily checks nonnegativity and nor-
malization as in Eq. (19):
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wAX,u,v) =0, f wdX,u,v)dX=1, V pu,v.
R

(23)
The inverse transform, still given by (14), yields a function
fa.p) = xi(q)f(q.p) (24)

(x; being the characteristic function), which vanishes identi-
cally outside the strip, i.e., f(g,p)=0 for g & I.

On the other hand, a function f on the strip /X R can be
extended to a periodic function f,, over the whole plane R?
defined by

Fanlq.p) = 2 flg=2mk,p) = 2 flg =27k, p) X1s2mi (@)

kel kel
(25)

where the periodicity f,.(q+27,p)=f>.(q,p) is apparent
and we used Eq. (24) in the second equality.

The phase space has become a cylinder S X R, where S
=R/(277) is the unit circle. In order to emphasize this
change of geometry, we will denote the position of a particle
on the circle by the angle ¢ and its angular momentum by J.
The state of a classical particle moving on the circle in the
presence of fluctuations is associated with the distribution
function (25) f(¢,J)=f2.(q=p,p=J), satisfying the normal-
ization condition

f ded f(,J)=1. (26)
SXR

Due to the periodicity f(¢p+2km,J)=f(p,J) (ke 7Z), in the
inversion formula (14), the Fourier integral over u will be
replaced by a Fourier series. Therefore, it follows that, in
order to reconstruct f(¢,J), in (22) only the tomograms
wAX,m,v) with m € 7 are really needed. Thus, we define

<°>(va) (X —me¢p—vJ))
:f d¢de(¢,J)5(X—m¢—v]), (27)
IXR

where X,ve R and m € Z. In Eq. (27) one integrates along
the family of one-step segments of helices: X=m¢p+ vJ with
0< <27 and X/v-2mm/v<J<X/w. The choice of this
family implies the choice of one particular fiber of the cyl-
inder along which each segment is discontinuous. In fact,
observe that if the ¢ domain of integration in (27) is
changed, say to

I,=1+a=[a,27+a), (28)

one gets different families of tomograms labeled by a gauge
a,

o (X,m,v) = de dJ f(,J)SX —mep— vJ),

1, XR
(29)
which are related to (27) by
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FIG. 2. Tomography on the circle: (a) strip; (b) cylinder.

wf VX, m,v) = w (X ma,m,v), (30)

where 7,f(q,p)=f(q+a,p) is a horizontal translation of f.
Notice that, due to the periodicity of f, the horizontal tomo-
gram, with m=0, is gauge invariant, namely, (X 0,v)
—wj(lo)(X 0,v). Moreover, all families are obtalned by re-
stricting a € [0,27). In fact one gets

o™X m,v) = o (X - 2mmk.m,v), (1)

for k € 7. The gauge « is the anomaly of the chosen fiber of
the cylinder S X R. See Fig. 2(a). One easily checks nonne-
gativity and normalization in the form

(X, m,v) =0, J o (X,m,v)dX =1,
R
Y m,v,a. (32)

Let us emphasize again that in these formulas, unlike in Eqgs.
(19) and (23), m e Z.
The inverse transform is
ydX dv
2m?*

fp =2 (33)

meZ

}a)(x’m’ V)ei(X—m¢>—VJ

Indeed, by making use of the Poisson formula

> e =21 > Sp-2mm) =2w5 (), (34)

mel me’Z

where o7 is the T-periodic delta function,

> 8(t—kT),

T+#0,
S(1) = 8(t(modT)) =\ kez (35)
o), T=0,
one gets
dX dv
E f 1(X—mzf>—v]) (X m, V)
meZ J R? (27T)2
dX dv
= f dpdK f(pK) 2 | 5
I, XR mel 2 )
X /XM= §(X — maf— vK)
im(y—)
e
= J dipdK f(.K) 2 S(K —J)
xR mez 2
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=f dip dK f(i).K) 8,,(1f = ) S(K - J)
1,X

a

=f(¢.J), (36)

as required.

B. Second definition: Tomography on the cylinder

When we restrict our attention to periodic functions, we
are identifying the line at 0 with the line at 2. In this way
lines become helices. In this situation, however, a new phe-
nomenon takes place: translations along the “normal” will
map the helix into itself, for translations which are integer
multiples of 24 tan 6 (see Fig. 3). The set of different helices
is, therefore, parametrized by an angle 6 e (—m,0) and the
intercept ¢ € [0,27). Notice that the value #=0 does not
correspond to a helix but to an infinite family of circles “par-
allel” to the base circle. Thus, the set of helices is a trivial
bundle with fiber S and base manifold S\{0}, where we can
use as coordinates the slope and intercept (6, ¢) or the slope
and the shift with respect to the helix crossing the origin, i.e.,
(0,r(¢, 0)) with r(¢p, 0)=(27— ¢)tan 6.

Thus, in this setting we would define the Radon transform
as going from functions on [0,277] X R to functions on S
X (S\{0}). It seems clear that only specific applications may
suggest to use one or the other. For x-ray tomography the
integration along “segments” may be appropriate. For quan-
tum tomography we may want to integrate along maximal
Lagrangian submanifolds to get the marginals along transver-
sal Lagrangian submanifolds out of the Wigner function on
the full phase space.

For these reasons we introduce a different tomographic
probability distribution: Let

‘;f(X’m9 V) = <6277m(X - m¢ - VJ)>

:J d¢djf(¢»J)5Zﬁm(X_m¢_VJ)’
xR

51
(37)
where X,ve R, m e Z, and S;=S is the unit circle. Observe

that (37) is independent of the ¢ domain of integration, due
to the periodicity of the integrand. By plugging (35) into (37)

E dX dv l(X—m¢—VJ)6f(X’m’ V) = f dw dKf(l,[/,K) E
S1XR

2
meZ J 8, XR (277)

meZl J S, XR (277)2

Sy

- f dypdK f(h.K) > ©
8 xR

meZ

=f($.]).

= f dy dK f(i4,K) 2
XR

meZ
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we get for m € Z\{0} (and an arbitrary a € R)

dep df(.J)

>
I, XR

oAX,m,v) =

X D 8(X = mep— vJ - 2mmk)
kel

=2

keZ J (I 42mk)XR

XX -mep—v])

dep dif(p—21k,J)

_ f b dl f($.0)5X ~mb—vi),  (38)
]RZ
while, for m=0,
0AX,0,v) = j dodj f(d, )X - v]). (39)
S,XR

In conclusion, here we integrate over the whole helix, while
the previous Eq. (29) was integrated on a single step of it.
Notice also that translations along the line X—m¢p—wvJ pre-
serve the measure. By using the homogeneity in Eq. (37) we
may consider the quantity X/m—¢—(v/m)J that implies
27m periodicity of @,

OAX +2mm,m,v) = 0AX,m,v). (40)

Therefore, the tomogram lives on a family of cylinders la-
beled by the integer m. See Fig. 2(b).
The inverse transform is given by

dX dv

(X-m¢p—vJ
o/X,m, V) e X-md= )(2 et

fpd)= 2

mel J S, XR

(41)

where S_,=S,,=R/(2mmZ) is the circle of radius |m| and
So=R the real line. When f is nonnegative and normalized as
in (26), one easily obtains

oAX,m,v) =0, f o X,m,v)dX=1, ¥V m,v.
Sm

(42)
The proof of Eq. (41) goes as follows:

axd
5/ 0 g, (X = mi— vK)

dX dv
2 (2 @m2°

m(i)-p)

l(X—md)—VJ)(S(X mz// VK)

5(K—J)=f dir dK f(,K)8,,(f— $) 8K - J),
S| xR

(43)
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d(0)

FIG. 3. Phase space and relevant variables for the tomography
on the strip.

where we made use of Poisson formula (34) and of the
equality

> dX XS, (X — mip— vK)
mel J S

m

=2

meZ JR

dX e/ Xmé=rD (X — iy — vK). (44)

It is easy to see how the transforms (29) and (37) are related.
Indeed, for m € Z\{0} we get from (38)

BAX,m,v) = > (X = 2mmr,m,v), (45)

re’

while, from (39),
B(X.0,v) = 0{(X.0,v). (46)

Incidentally, this relation can be used to give an alternative
proof of the inversion formula (41). In fact, from the equality

J oAX,m, veX dX = E
S

Sm re’l J [a,a+2mm)

X a);f’)(X — 27mr,m,v)e’X dX
= f wdX,m, v)e’X dX, (47)
R

which is trivially valid for m=0, the inversion formula (33)
translates into (41).

C. A few comments

A few comments are in order. If the configuration space is
an interval, the phase space will be a strip and a “free” par-
ticle bouncing back and forth will move on a rectangle. If we
impose periodic boundary conditions we get circles parallel
to the base. Clearly, if we want to consider the quantum case,
we have to integrate the Wigner function on Lagrangian sub-
spaces and get the marginals, out of which we should be able
to “reconstruct” the function. As we know, we need a “large”

PHYSICAL REVIEW A 76, 012117 (2007)

family of such marginals, perhaps parametrized by the sym-
plectic group, to be able to reconstruct the “state,” i.e., the
original Wigner function [2—4,23,24]. This viewpoint differs
from the original Radon formulation based on the set of geo-
desic lines of the plane R? as Riemannian space (for the
two-dimensional case); in our case the relevant lines are the
Lagrangian lines of the symplectic plane as phase space of
the one dimensional particle. In the Radon case the picture is
dynamical while in the symplectic case it is purely kinemati-
cal.

In our “classical” setting, we asked a similar question, i.e.,
how to reconstruct a classical distribution function on phase
space by means of its integrals on a family of one-
dimensional subspaces. In some sense the fact that the family
is parametrized by two numbers appears as a necessary con-
dition for the reconstruction to be possible.

Finally, it appears that the two Ansdtze considered in this
section yield two different phase spaces. It is reasonable to
expect that what is a suitable function in one situation need
not be suitable for the other one. Therefore the two proposals
may coexist, once it is clear that they represent different
physical situations. In general, they will yield different re-
sults. In a way, physics will decide which transform better
matches the problem at hand.

IV. GAUSSIAN EXAMPLE
Let us consider as an illustration the particular case

1
2 77_)3/2e

which is properly normalized, [sygf=1. The Radon trans-
form (27) yields for m#0

—7*2 (48)

dpdJ

1xn 2m)?

1 do (_ (m</)—X)2>

O\ (X, m, v) = e 2S(X — mep - v

=0 312 €XP

lv[J, @2m 217
1 2 (|m|/\2|v])(a=XIm+2m) n
=——F dx e™
477|m| N (|171‘/\5|V|)((1/-X/m)

1 |m| X
= erf| = | a—-—+27w
47|m| V2| m

X
—erf{ \’gl/'(a—njﬂ}, (49)

where erf(x) is the error function. On the other hand, if m
=0,

dodl
w}a)(X,O, V) = (Zd)we_ﬂlzﬁ()( - vJ)
I, xR \£T
1 X
=m|v|exp =52/ (50)

It is easy to verify that the inverse Radon transform (33)
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permits one to recover the original function (48).
On the other hand, the tomograms along the helices read
(m#0)

~ dpd] _p
oAX,m,v) = (2?7 5 T8, (X—mep—vl)
xR
dpd] »
= j i (277)3/28 TR28(X —mep— vl)
R
_ 1 [ _do ((m¢—XF>
v Jg (2m)¥> 207
1
=5 (51)
while, for m=0 it coincides with (50), @AX,0,v)

—w<“ (X,0, 7). Note that Egs. (49) and (51) satisfy (45).

It is clear from this example that the two transforms are
different. As we stressed before, both being mathematically
legitimate, a choice should be motivated on physical
grounds.

V. TORUS TOMOGRAPHY

The generalization to many particles is straightforward.
Let us consider N> 1 classical particles, each moving on its
own circle. The system state is described by a probability

distribution function f(q;,J) =( satisfying the normalization
condition

f dd di f(d,J) =1, (52)
TNXRN

with coordinates ¢=(g,, ..., dy) € TV=(S)" on the N-torus

and angular momenta J=(J,,...,Jy) € RV.
The tomogram of the torus is defined by

N
w/(‘O)(X’”Z, )=\ [ 8 - mpep.— i)
k=1

N
= f dg dJ f($, DT X, — mpcp— v,
INxRN k=1
(53)

with X, 7 e RN and m e Z". The inverse transform reads

- N
dX dv - .
(0) > i(Xg=my =i Jy)
O X,m, )| X .
RZN (277)2N f k=1

fh= 2
me7N

(54)

The tomograms w(&)(}z ,m,v) and 6()} ,m,v) are obtained
analogously, as N-dimensional generalizations of (29) and
37).

VI. LIMIT TO THE STANDARD RADON TRANSFORM

Let us discuss now how the formulas for the Radon trans-
form (and its inverse) of a function defined on a cylinder

PHYSICAL REVIEW A 76, 012117 (2007)

tend to those of the standard Radon transform of a function
defined on the plane in the limit of infinite radius of the
cylinder. To this end, let us first recall how the Fourier series
of a periodic function fx(g) with period R and normalization

R fr(@)dg=1 becomes the Fourier integral when R — .
The Fourier series reads

) 2T
fR(q) = 2 Ckme_lkmq, km: ?m (m € Z)’ (55)
meZl
and its coefficients are given by
RI2 .
C (R)=— fr(@)e?™ R dg. (56)
m R —RI2

For R— o the Fourier series becomes the Fourier integral
representation of the function f(q)=1img_,.fz(g) defined on
the line. Thus Eq. (55) becomes

flg)=1lim 2 AkZ_C e‘”‘m‘f—f C(k)e ™4 dk,

R—> ey

(57)

where Ak=k,,,—k,,=27/R and C(k)=lim C; R/2. On the
other hand, Eq. (56) takes the form

C(k) = lim 2—Ck =— f flg)e™ dg. (58)
R—x

Using these well-known limiting relations one can get the
limit of the tomographic map formulas for the particle mov-
ing on the circle. For definiteness we will look at the tomo-
gram (27); the procedure is analogous for the other tomo-
grams. We first replace Eq. (27) by a formula that takes into
account the radius R of the circle. Given a probability density
f(é,J) =0 on the cylinder, by introducing the new variables
q=¢R/2m and p=J and setting

Falg.p) = f(”q ) (59)

we have the tomogram (27) in the form

R/2

& (X, ptynv) = (X = 9 — vp)) = f fr(q.p)

—R/2

X 8(X = w,q — vp)dq dp, (60)

where w,,=27m/R with a correctly normalized probability
density

R/2 ©
J frlq.p)dg dp=1. (61)
—RI2J =

The inverse formula (33) reads
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V,,)dX dv
@m)?’

(62)

felap)= 2 Au f 2‘9(f0)(X,Mm, v)e! Xt~
R

meZ

with Au=27/R. In the limit R — oo, we get formulas (8) and
(14) and the tomographic map on the circle yields the Radon
transform on the plane.

VII. CONCLUSIONS AND PERSPECTIVES

We have shown that one can map the probability distribu-
tion density f(¢,J), defined on a cylinder in terms of two
random variables (position ¢ and angular momentum J),
onto a family of probability distribution densities depending
on one random variable X, which is a continuous coordinate
on the helix. The family of helices is labeled by the integer
number m and the real number v. The map is obtained by
means of the Radon transform extended to the case of a
cylinder.

The Radon transform is closely related to the Fourier
transform. We pointed out an important specific property of
the Radon transform, that is valid for tomographic maps of
functions defined both on the plane and on the cylinder: in
contrast to the Fourier transform, for which the Fourier com-
ponent of the probability density is not a probability density,
the Radon component of the probability density (given on
the plane or the cylinder) is again a probability density and
depends on some extra parameters.

We have also straightforwardly extended the Radon trans-
form construction to the classical motion on a multidimen-
sional torus and shown that the tomographic map of prob-
ability densities on cylinder becomes the tomographic map
of probability density on the plane. This implies that the two
corresponding Radon transforms are related to each other, in
close analogy to the relation between Fourier series and Fou-
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rier integrals for functions on a circle and functions on a line.
One difference should be stressed though: while in the Fou-
rier case the limit is taken in L2, in the Radon case it is
(obviously) taken in L!. This is apparent in the manipulations
of Sec. VL

For practical applications, since in an experiment only a
finite amount of data is collected, it would be interesting to
quantify the difference of the ideal inverse Radon transform
from the practical one, obtained if the tomograms are
sampled only at a finite number of values of X, m and v.
Since inverse Radon transforms are ill behaved, due to the
singular nature of their kernel, in the presence of experimen-
tal errors some regularization is necessary. This raises the
issue of the stability of the inversion of the transform and in
particular of its positivity [15]. This problem will be tackled
in the future.

The quantum extension of the tomographic map for the
free motion on a circle requires additional investigation, due
to the well-known ambiguities in the definition of the analog
of the conjugate observables angle and angular momentum
[25]. Similarly, the extension of Radon transforms for curved
manifolds in the present and related contexts deserves addi-
tional study [20].
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