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Abstract

The limit of infinitely frequent measurements (continuous observation), yielding the quantum Zeno paradox, is critically
analyzed and shown to be unphysical. A specific example involving neutron spin is considered and some practical estimates are

given.

A quantum mechanical system that is initially pre-
pared in an eigenstate of the unperturbed Hamiltonian
undergoes a temporal evolution that can be roughly
divided into three parts: A Gaussian-like behavior at
short times, a Breit-Wigner exponential decay at inter-
mediate times, and a power law at long times [ 1-4].

The Gaussian short-time behavior is particularly sig-
nificant because it leads, under general physical con-
ditions, to the inhibition of the decay of unstable
quantum mechanical systems [ 3—-5] . This phenomenon
was named quantum Zeno paradox by Misra and
Sudarshan [5] ..

This effect was not easily amenable to experimental
test until Cook [7] proposed using atomic transitions
in two-level atoms. On the basis of this idea, Itano and
his group [ 8] recently carried out an interesting exper-
iment that provoked a lively debate [9,10].

Nowadays most physicists tend to view this phenom-
enon as a purely dynamical process and refer to it as
quantum Zeno effect (QZE) [9,10], rather than para-

! A recent account, in which one can find other references, is given
by in Ref. [6]
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dox. As the whole class of phenomena hinging upon
the notion of ‘‘wave function collapse’’, the QZE is
very interesting from the point of view of the quantum
measurement theory [11-16] and is closely related to
the partial beam detection experiments in neutron inter-
ferometry [17].

The purpose of the present Letter is just to investigate
the QZE in physical, rather than mathematical, terms.
We shall show that the uncertainty principle and the
unavoidable losses that are always present in any phys-
ical apparatus impose remarkable limitations on the
mathematical limit involved in the QZE. Consequently,
the so-called limit of ‘‘continuous observation’’,
namely the very possibility of performing infinitely
frequent measurements on a quantum system, turns out
to be an abstract idealization, void of physical meaning.

In this sense, we can say that the quantum Zeno effect
becomes a real paradox when the limit of continuous
observation is considered. In some sense, the main pur-
pose of this Letter is to bring dreams down to earth, by
clarifying in which sense and up to which approxima-
tions one can speak of QZE. Notice that some criticisms
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against the physical meaning and realizability of the
above-mentioned limit were put forward some years
ago [4]. Although different from those to be consid-
ered in this Letter, those criticisms were based on the
time—energy uncertainty relations.

In this context, it is useful to stress a very interesting
(and peculiar) feature of the QZE [ 10]: The inhibition
of the transition to states that are different from the
initial one can be derived by assuming either that the
evolution is dynamical (namely unitary) or that the
collapse a la von Neumann takes place by observation.
This remark is a confirmation, simplification and gen-
eralization of Prigogine et al.’s objection [9] against
the claim that the observation of the QZE itself is an
experimental confirmation of the projection rule.

The above-mentioned feature has been put forward
in a particular example with neutron spin (to be shortly
reviewed in the present Letter) and has been proven in
full generality [10]. In some sense, the above obser-
vation makes the issues related to the QZE even more
fascinating, because no conclusion can be drawn, at
present, in support of any particular quantum measure-
ment theory.

Let us start our analysis by briefly reviewing the
essential ingredients necessary to obtain the QZE. Let
Q be a quantum system, whose states are vectors in the
separable Hilbert space # and whose evolution is
described by the unitary operator U(t) =exp( —iHt),
where H is a semi-bounded Hamiltonian.

We prepare Q in an unstable initial state at time 0
and exploit the Gaussian-like short-time behavior by
performing a series of observations at times T/N, 2T/
N, ..., (N—1)T/N, T, in order to check whether Q is
still undecayed. The measurements are idealized to be
instantaneous.

Let P*Y’(T) be the probability that the system is
found undecayed after N measurements. In such a sit-
uation, we shall say that a quantum Zeno effect occurs
if
PM(TY>PV(T) for N>N'. (1)

The above definition is meaningful only if the phase
correlation among different branch waves is com-
pletely lost at each step (*‘‘dephasing’” or ‘‘decoher-
ence’”’ due to a quantum measurement). This is
thoroughly discussed in Ref. [10]. If, on the other
hand, one performs only a ‘‘spectral decomposition’’
[13,14], in which the phase correlation is (partially)

kept, the possibility of probability retrieval along one
direction of the Hilbert space cannot be ruled out. In
such a case, in order that the above definition make
sense, one must make sure that two or more branch
waves cannot be recombined. Notice also that, in prac-
tice, we can observe the ‘‘quantum Zeno effect’” only
if N is not too large (we shall discuss Aow large in the
following).

In the N— o limit (continuous observation), it is
possible to prove that the mathematical limit yields

P(T)= lim P™(T)=1. (2)

N-oo

This is the ‘‘quantum Zeno paradox’’: If Q is contin-
uously observed (to check whether it decays or not),
itis “‘frozen’’ in its initial state and will never be found
to decay! Notice that 7'is kept finite in taking the above
limit.

It is important to observe that the observations
(measurements) are supposed to be instantaneous.
This is a general characteristics of many descriptions
of the measurement process: The Q system instanta-
neously collapses by measurement. Such a picture is
very useful for computational purposes, but is rather
misleading in the present context: Indeed a measure-
ment process, as a physical process, takes place during
a very long time on a microscopic scale, although we
can regard it as if it happened instantaneously on a
macroscopic scale. This problem will be thoroughly
analyzed in this Letter.

We stress that in any conceivable experiment, only
the QZE, with N finite (and rather small), can be
observed. Our aim is to show that the N — oo limit is
physically unattainable as a matter of principle, and is
rather to be regarded as a mathematical limit (although
a very interesting one). In this sense, we shall say that
the quantum Zeno effect, with N finite, becomes a quan-
tum Zeno paradox when N — %,

Let us now sketch an example that involves neutron
spin and yields, in virtue of its simplicity, rich physical
insight [ 10]. An analogous situation was outlined by
Peres [ 18] with photons and has recently been exper-
imentally realized by Zeilinger’s group in Innsbruck
[19].

We shall consider two different experiments,
sketched in Fig. 1. In the first one, shown in Fig. la,
the neutron interacts with several identical regions in
which there is a static magnetic field B, oriented along
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Fig. 1. (a) “‘Free’’ evolution of the neutron spin under the action of
a magnetic field. An emitter E sends a spin-up neutron through
several regions where a magnetic field B is present. Detector D,
detects a spin-down neutron. (b) Quantum Zeno effect: the neutron
spin is ‘‘monitored’’ at every step by selecting and detecting the
spin-down component. D, detects a spin-up neutron.

the x-direction. We describe this interaction by the
Hamiltonian H= uBo,, p being the (modulus of the)
neutron magnetic moment, and o, the first Pauli matrix.

Let the initial neutron state be py=py =| 1) 1],
where | 1) is the spin-up state along the z-axis. After
crossing the region containing the magnetic field, the
state of the neutron is

p(1) =cos* (3w py +sin’*(Jwr)p,,

—icos(zor) sin(for)p,, +hec., (3)

where w=2 uB/h, t=1/v (1is the length of the region
where B is present and v the neutron speed) and the
other notation is obvious. We call this a *‘free’’ evo-
lution, during which the system evolves under the sole
influence of H.

If the neutron crosses the N regions in Fig. 1a, the
final density matrix at time 7= Nt is still given by (3),
but with T in place of ¢. (Notice that we are neglecting
the time spent between adjacent regions containing B.)
We design the experimental setup so that cos (1 wT) =0
(this “‘matching’’ condition is similar to the one exper-
imentally realized by Itano et al. [8]),

Nt=T=Q2m+1) ", meN., (4)
w

In such a case, the density matrix and the probability
that the neutron spin is down at time 7'read respectively

p(T)=p,, , (5)
P(T)=1. (6)

In our example, if the system is initially prepared in the
up state, it will evolve to the down state after time 7,
justas if there were a compact field of length NI, which
causes spin reversal in the sense of a routinely used
spin flipper [20].

Let us now modify the experiment just described as
shown in Fig. 1b, by inserting at every step a device
able to select and detect the down component of the
neutron spin. Every magnetic mirror M acts as a *‘spec-
tral decomposer’’ [13,14], by splitting a neutron wave
with arbitrary spin (a superposed state of up and down
spin) into two branch waves each of which is in a
definite spin state (up or down) along the z-axis. The
down state is then forwarded to detector D. Notice that
the magnetic mirror does not destroy the coherence
between the two branch waves, which can be brought
back to interfere [21].

We choose the same initial state for Q as in the
previous experiment, and follow the evolution of the
particle only along the horizontal direction. The cal-
culation is straightforward [10]: The density matrix
and the probability that the neutron spin is up at time T
read respectively

N
(1374
p™(T) = (COSZ 7) Pm

T N N-ox
=(0052 ﬁ) pn = Pp(T)=py, (7)

N
!
PM(T)= (00522)
2
m\ Ve
= (cos2 iﬁ) - P (T)=1, (8)

where the ‘‘matching’’ condition (4) for T=Nrt has
been required again. This is an example of QZE: Fre-
quent observations ‘‘freeze’’ the neutron spin in its
initial state, by inhibiting (N> 2) and eventually hin-
dering (N — ) transitions to other states. Notice the
difference with Egs. (5) and (6): The situation is com-
pletely reversed.

We will now show that the N —  limit considered
above (continuous observation) is only mathematical,
and is impossible to realize, physically.
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First observe that, by setting for simplicity m=0in
Eq. (4), the condition wT= wNt= 1, which is to be
met at every step in Fig. 1b, implies

Thu
Bl=
2uN

=O(N7h, (9)

where all quantities are defined after Eq. (3). Obvi-
ously, as N increases in the above formula, the practical
realization of the experiment becomes increasingly dif-
ficult, because any unavoidable practical uncertainties
of the experimental setup would suffer an N-fold
enhancement, in Eq. (8), so that it becomes extremely
important to have high-quality mirrors and very accu-
rate control on the Bl parameter [22].

But close scrutiny of Eq. (8) shows that P{™ (T)
cannot tend to 1, even in principle, in the N — « limit,
because of the quantum mechanical uncertainty rela-
tions. Indeed, let

p=wr="— = — (10)

be the argument of the cosinus in Eq. (8). Mathemat-
ically, the above quantity is of order O(N ~ ). On the
other hand, from a physical point of view, it is impos-
sible to avoid uncertainties in the neutron speed Av and
position Ax. As a consequence, ¢ is lower bounded as
follows

Bl
BBl pBAx - pB
hug kv,

o~ o=
(11)

where v, is the mean velocity of the beam and we
defined the magnetic energy gap AE,,=2 uB and the
(kinetic) energy spread of the neutron beam
AE,= A(imv?) |, =, We also assumed that the size /
of the interaction region ( where the neutron spin under-
goes a rotation under the action of the magnetic field)
is smaller than the longitudinal spread Ax of the neutron
wave packet. The constraint /> Ax (or the distances
between the fields are larger than Ax) means that each
stage acts independently on the quantum system, and
not collectively.

The assumption > Ax cannot be motivated on fun-
damental grounds, however, the following argument
shows that the result ( 11) is correct also in the opposite
case: If the magnetic field is well localized in a small
region of size [, such that /< Ax (we consider here an

almost monochromatic neutron beam) then it is rea-
sonable to assume that the ‘ ‘passage’’ time be given by
t= Ax/v, rather than =1/, so that instead of (10) we
have
Ax
p=wr= B2 (12)
fv

and by mimicking the reasoning leading to the lower
bound (11), we obtain again

_1_ AE’H

. 13
4 AE, (13)

o>
It appears therefore that the above lower bound on ¢ is
independent of the relative magnitude of / and Ax.

It is now straightforward to obtain an expression for
the value of the probability that a spin-up neutron is
observed at D, when N is large

PV (T) = (cos o)™ = (1 - 13)™"

1 ( A Em)z 2N y

—DSZA& ]‘ (9
Notice that not only the above quantity does not tend
to 1, but it vanishes in the N — o limit. In other words,
in the experiment outlined in Fig. 1(b), no spin-up
neutron would be observed at D, in the N —> o0 limit,
and no quantum Zeno paradox would occur!

It is then interesting to set a limit on the maximum
value that N can attain in order that the QZE be still
observable in the experiment outlined above. Set
P (T) ~ 4. We get.

64 In2
(AE,,/AE,)?

where we assumed reasonable values for the energies
of a thermal neutron. In conclusion, N turns out to be
large enough in order that the QZE be experimentally
observable, at least up to a certain approximation.

Besides the doubts cast by the uncertainty principle
on the physical meaning of the N — oo limit, there are
other interesting limitations arising from the presence
of losses due to reflections and rotations. We shall now
briefly analyze these problems.

To this end, the interaction between a neutron spin
and a magnetic field can be schematized by describing
the magnetic field as a potential of strength V= + uB
and width . We shall henceforth neglect the afore-
mentioned problems stemming from the uncertainty

=10*, (15)
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principle and consider a very thin potential such that
Vo= uBl is (small but) finite. The reflection proba-
bility reads

2
re= ( ﬁy) , (16)
and if we assume again that /> Ax (see discussion after
Eg. (11)), we obtain

() G - o
" The 24E, 4AE,) ° (a7
due to the energy spread AE, of the neutron beam. By
estimating N via Eq. (10), one obtains a total loss by
reflection of order Nr= AE,,/ AE,, which is easily seen
to be comparable with that of Eq. (14).

Formulas (11) (14) and (17) show that the loss
factors depend on the speed of the neutrons. Thus,
slower neutrons suffer more losses than the faster ones,
which causes a progressive narrowing of the velocity
distribution and this in turn increases Ax (and therefore
1) accordingly (see, e.g., Ref. [23]). These effect will
be considered in a follow-up study.

We stress that, if [ < Ax, the various rotation stages
may act together coherently, like a periodic potential.
In general, the reflectivity of such a coherent multiple
system is larger than the sum of the individual reflec-
tivities. Therefore, in any practical test of the QZE, one
must carefully avoid such resonance situations due to
reflections by a lattice-like structure, which may even
lead, by Egs. (10) and (16), to a total reflection loss
of order N 2r=1, corresponding to a multilayer reflec-
tion [24].

One can also give a rough estimate of the losses due
to spin rotation. After every transmission through the
magnetic field, the probability that the spin is down
(and therefore that it is reflected upwards by M, in Fig.
1b) is written as s =sin*( L wf) = uBIl/Av. This is of the
same order as r in Eq. (16). Therefore analogous con-
siderations apply also in this case.

All the above arguments, outlined for the neutron
experiment described in Fig. 1, are of rather general
validity and hold true also in the recent experiment
performed with photons in Innsbruck [19]. These
experiments showed losses which are related to the
finite number of stages and to experimental imperfec-
tions, but they were not analysed in respect to their
quantum limit. The analyses above seem to imply that

absolute “‘interaction-free’”” measurements might be
forbidden as a matter of principle, by elementary quan-
tum laws. Remember that the final observation includes
an interaction which provokes ‘‘dephasing’’ between
the spin-up and spin-down components.

Let us now endeavour to outline how the practical
limitation arising in a real experiment can be taken into
account. Consider again the situation shown in Fig. 1b,
after the neutron has only gone through one step
(namely, one interaction with the magnetic field B and
the mirror M). If the initial neutron spin is up, the
evolution is

pn =P () =ccos’(Jot)py + ..., (18)

where ¢ accounts for all the losses and practical limi-
tations and the dots stand for smaller terms. In principle,
the value of o can be calculated theoretically. In prac-
tice, it is much simpler to measure it experimentally,
by performing a preliminary one-step experiment.

After N steps, the probability to observe a spin-up
neutron by the final detector reads

BM(T) =a"PM(T) (19)

where P$Y (T) is given by Eq. (8) and we supposed
that o is the same at every step.

As was to be expected, P (T') does not tend to one
in a real experiment: Indeed, even though in general o
depends on A, it cannot tend to 1 as N—-®, even in
principle, for the many reasons discussed above. In
practice, the factor o will quickly tend to zero, as N
increases. A practical realization of an experiment con-
sisting of relatively few steps is certainly feasible, but
one should keep in mind that losses are unavoidable
from basic argument of quantum mechanics.
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