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Non-Abelian phases from quantum Zeno dynamics
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A connection is established between the non-Abelian phases obtained via adiabatic driving and those acquired
via quantum Zeno dynamics induced by repeated projective measurements. In comparison to the adiabatic case,
the Zeno dynamics is shown to be more flexible in tuning the system evolution, which paves the way for the
implementation of unitary quantum gates and applications in quantum control.
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I. INTRODUCTION

The possibility of engineering arbitrary dynamics by
modifying the system Hamiltonian in real time is the main
paradigm of control theory. For a quantum system, it is known
that highly nontrivial evolution might be induced by exploiting
the interference effects arising when the system is driven along
special loops in the space of the control parameters. These
techniques are at the core of geometric [1] and topological
quantum computation [2]. The main drawback of the adiabatic
approach is associated with the fact that the realization of
gates requires in general a long running time in order to
minimize nonadiabatic transitions. Even though in some cases
this limitation can be overcome through a clever design of
the control pulses (e.g., see Refs. [3,4]), this typically entails
extra costs which might conflict with the resources at our
disposal.

A completely different approach to control is the possibility
of exploiting the quantum Zeno effect and dynamics [5]. The
key idea is to engineer a given dynamical evolution by a rapid
sequence of projections [6,7]. This yields in general a Berry
phase [8]. This evolution has been studied in the literature and
is sometimes referred to as the anti-Zeno effect [9,10]. We
intend to utilize efficiently these ideas in order to engineer
unitary holonomic gates through loops in parameter space
[11–14]. We notice that a gate hinging upon such a Zeno
mechanism can be very fast [8], its speed depending essentially
on how fast the projections can be performed in practice.

Starting from the seminal work by Franson et al. [15],
several attempts to exploit these ideas have been discussed in
quantum optics [16–19] with the aim of inhibiting the failure
events that would otherwise occur in a linear optics approach
to quantum computing. More recently, control induced via
Zeno dynamics has also been analyzed in the broader context
of quantum error correction [20,21] and quantum computation
[22,23].

In the present work, we unearth a connection between
adiabatic driving and the quantum Zeno effect. We show
that the implementation of evolution through measurements
provides additional freedom in tuning the system dynamics,
which paves the way to new control applications. Finally,
we demonstrate how a holonomic evolution can be achieved
entirely through dissipation engineering.

II. ADIABATIC DYNAMICS

As a starting point of our discussion, it is convenient to
briefly recall basic facts about adiabatic evolutions [24–27] and
their application to quantum control and quantum computation
[1,11,12,28]. Consider a time-dependent Hamiltonian H (t),
which is diagonalizable at any instant t as

H (t) =
∑

n

En(t)Pn(t), En(t) �= En′(t) (n �= n′), (1)

where Pn(t) are orthogonal projections onto the instantaneous
eigenspaces Sn(t) of H (t), which are in general multidimen-
sional, and En(t) are the associated energies. The parametric
temporal dependence of Pn(t) is determined by a continuous
family of unitary operators W (t) which define the mapping,

Pn(t) = W (t)Pn(0)W †(t), ∀n, W (0) = 1, (2)

where W (t) need not form a one-parameter group. Factoring
out W (t) and the dynamical phases from the evolution of the
system U (t), generated by H (t), as (h̄ = 1)

U (t) = W (t)
∑

n

e−i
∫ t

0 ds En(s)Pn(0)UG(t), (3)

the unitary operator UG(t), with Hamiltonian HG(t), is
responsible for the inter- and intracouplings between the
energy eigenspaces Sn(t). Under the adiabatic approximation
[see (6) below], the transitions across the energy eigenspaces
Sn(t) are dynamically suppressed, and one ends up with
UG(t) � U

(diag)
G (t) := ∏

n U
(n)
G (t), where U

(n)
G (t) is generated

by

H
(n)
G (t) := iPn(0)Ẇ †(t)W (t)Pn(0). (4)

The dynamics is still capable of inducing nontrivial rotations
within individual subspaces Sn(t) in the form of non-Abelian
Berry phases (holonomies) that possess a distinctive geomet-
rical [29] or, in some special cases, topological character (see
below for an explicit example). Specifically, assuming that at
time t = 0 the system is initialized in a state |ψ(0)〉 belonging
to the nth subspace Sn(0), the state of the system at time t � 0
is described by the vector

|ψ(t)〉 � e−i
∫ t

0 ds En(s)W (t)U (n)
G (t)|ψ(0)〉, (5)
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which remains in the nth subspace Sn(t) [notice that the
projection Pn(0) has been absorbed in |ψ(0)〉 exploiting the
fact that it commutes with U

(n)
G (t)]. Even if the Hamiltonian

H (t) is driven back to the original one H (0) after the slow
driving and the system comes back to the original subspace
Sn(0), the state of the system |ψ(t)〉 can be different from the
initial one |ψ(0)〉, rotated according to (5). This rotation can
be used to realize gate operations for quantum computation,
which can have high stability due to their geometric or
topological nature.

Note that the adiabatic evolution (5) is an approxi-
mation, ensured as long as the probability qn(t) = 〈ψ(t)|
[1 − Pn(t)]|ψ(t)〉 of the system escaping from the nth subspace
Sn(t) is negligible, i.e.,

qn(t) = 〈ψ(0)|Ũ (off)†
G (t)[1 − Pn(0)]Ũ (off)

G (t)|ψ(0)〉

� 〈ψ(0)|
(∫ t

0
ds H̃

(off)
G (s)

)2

|ψ(0)〉 � 1, (6)

where H̃
(off)
G := U

(diag)†
G [HG − ∑

n H
(n)
G ]U (diag)

G is the genera-
tor of Ũ

(off)
G , responsible for the escape.

III. ZENO DYNAMICS

Let us next analyze the dynamics of a quantum system with
a Hamiltonian H0(t) [not necessarily the same as H (t) in (1)],
under a sequence of projective measurements described by
a set of time-dependent projections Pn(tk) performed at tk =
kt/N (k = 0, . . . ,N), where the measurement is changed step
by step as in (2), unlike in the ordinary Zeno effect [5,30,31].
Suppose then that, starting from an initial state |ψ(0)〉 in the
nth subspace Sn(0), as in the case of (5), the system is found
to remain in its rotated counterparts Sn(t1),Sn(t2), . . . by the N

successive measurements. Under this condition, the evolution
of the system is described by the operator

V
(n)
N (t) :=

N−1∏
k=0

Pn(tk+1)U0(tk+1,tk)Pn(tk)

= W (t)
N−1∏
k=0

Pn(0)Ũ0(tk+1,tk)Pn(0), (7)

where U0(t,t ′) := Te−i
∫ t

t ′ ds H0(s) = W (t)Ũ0(t,t ′)W †(t ′), T
denotes time ordering, and the products are understood to
be time-ordered [with later times (larger k) to the left] hence
forth. Seen from the frame rotating according to W (t), the
system appears to evolve with Ũ0(t,t ′), during which it is
repeatedly measured with fixed projections Pn(0). With these
definitions, the state of the system at time t is given by
|ψ(t)〉 = V

(n)
N (t)|ψ(0)〉/

√
p

(n)
N (t), where

p
(n)
N (t) := ∥∥V

(n)
N (t)|ψ(0)〉∥∥2

(8)

is the probability of the realization of the conditional evolution.
For large N , each factor in the projected evolution operator (7)
reduces to

Pn(0)Ũ0(tk+1,tk)Pn(0) = e−iH
(n)
Z (tk ) t

N Pn(0) + O(t2/N2), (9)

where H
(n)
Z (t) is an emergent Hamiltonian given by

H
(n)
Z (t) = Pn(0)W †(t)H0(t)W (t)Pn(0) + H

(n)
G (t), (10)

with H
(n)
G (t) being the adiabatic Hamiltonian (4). From the

point of view of differential geometry, if one neglects the
Zeno-projected part of the Hamiltonian, this yields nothing
but the connection (vector potential) of the curvature (Yang-
Mills field). A similar expression was derived by Anandan
and Aharonov for the Abelian case [7], while non-Abelian
holonomies obtained through sequences of projective mea-
surements were discussed by Anandan and Pines [32], and
later in Refs. [33,34] in the context of open system dynamics.

We are mostly interested in the interplay between the
two components of the Hamiltonian (10). Such an interplay
is typical of the Zeno mechanism (where it is called Zeno
dynamics [5]) and, as we shall see, makes it possible to speed
up physical operations.

In the Zeno limit N → ∞ keeping t finite, one gets

V
(n)
N (t) ∼ W (t)

N−1∏
k=0

e−iH
(n)
Z (tk) t

N Pn(0)

→ W (t)U (n)
Z (t)Pn(0), (11)

with

U
(n)
Z (t) := Te−i

∫ t

0 ds H
(n)
Z (s) (12)

being the Zeno unitary transformation, which maps Sn(0) into
itself. Accordingly p

(n)
N (t) → 1, i.e., the system remains in

Sn(t) at all t with certainty, while it is rotated there as

|ψ(t)〉 = W (t)U (n)
Z (t)|ψ(0)〉. (13)

This result bears a striking resemblance with the adiabatic evo-
lution in (5) with (4). In particular, by choosing H0(t) = H (t)
and performing the measurements such that the associated
projections Pn(t) coincide with the instantaneous eigenprojec-
tions of H (t) in (1), one gets H

(n)
Z (t) = En(t)Pn(0) + H

(n)
G (t),

which exactly reproduces (5).
It should be noticed, however, that the correspondence

between the adiabatic and Zeno scenarios holds since we
considered as the initial state of the system a vector |ψ(0)〉
contained in a single subspace Sn(0). This is a crucial
assumption since due to the projective measurements, the
Zeno procedure (7) naturally leads to the decoherence of
any superposition present initially across subspaces, while
the adiabatic evolution preserves it. Specifically, for a generic
initial state ρ(0) inhabiting across different subspaces Sn(0),
the Zeno dynamics under a sequence of frequent nonselective
measurements

P(t)ρ :=
∑

n

Pn(t)ρPn(t), (14)

which provides a dephasing channel removing all the correla-
tions among the subspaces Sn(0), yields

ρ(t) = W(t)UZ(t)P(0)ρ(0), (15)

instead of (13), where UZ(t)ρ = UZ(t)ρU
†
Z(t) with UZ(t) =∏

n U
(n)
Z (t), and W(t)ρ = W (t)ρW †(t). Nonetheless, as long

as we are interested in the dynamical processes taking place
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inside a given subspace Sn(t), the equivalence between the two
descriptions is guaranteed.

IV. CONTROLS AND CONSTRAINTS

Equation (11) with (10) shows that sequences of time-
dependent projective measurements aimed at checking
whether or not a system initially prepared in Sn(0) remains
in the nth subspace Sn(t) enable one to reproduce the
evolution attainable by enforcing the adiabatic dynamics (5).
Interestingly enough, however, while the latter requires time
scales which determine the variations of the driving W (t) to
be long with respect to the inverse of the minimum gap of
the energy spectrum of H (t) along the trajectory, the mapping
(13) is free from this constraint: the adiabatic evolution can
in principle be realized with no speed limitation. In the Zeno
scenario, on the other hand, condition (6) is replaced by the
Zeno limit (11), which requires the projective measurements
varied continuously in time to be performed frequently enough
at a sufficiently rapid pace. In other words, moving from (5)
to (13), we trade the slow-driving requirement [22,23] for the
adiabatic evolution with the fast-monitoring requirement for
the Zeno paradigm.

Another remarkable difference between the two procedures
is that in the Zeno case, once the parametric dependence
of Pn(t) is fixed, we still have the freedom to choose
H0(t) in order to design H

(n)
Z (t) [this freedom being ab-

sent in the adiabatic scenario, where the dynamical part
Pn(0)W †(t)H (t)W (t)Pn(0) = En(t)Pn(0) is diagonal and au-
tomatically determined by the given Hamiltonian H (t)]. As a
matter of fact, Eq. (10) can be expressed as

H
(n)
Z (t) = iPn(0) ˙̃W †(t)W̃ (t)Pn(0) (16)

by introducing the unitary operator

W̃ (t) = U
†
0 (t,0)W (t). (17)

This expression reveals that H0(t) plays the role of effectively
modifying the way of rotating the measurement basis (namely
the subspaces followed by the system during the Zeno
procedure) from W (t) to W̃ (t). In view of these considerations,
we identify two configurations that deserve special attention:

(i) No Hamiltonian H0(t) = 0. In this case, the system
does not possess any intrinsic dynamics. Still, a nontrivial
unitary evolution (13) is induced via the Zeno procedure,
which simulates the adiabatic evolution with a Hamiltonian
H (t), apart from the phase in each subspace. Conceptually
this is reminiscent of what happens in one-way quantum
computation [35], where an effective temporal evolution is
introduced via sequences of properly selected measurements
performed on an otherwise static quantum register. Notably,
the Zeno limit (11) does not pose constraints on the speed
at which the instantaneous measurements have to be varied
in time (no other time scale being present in the system): it
only requires a continuity condition [i.e., the projections Pn(tk)
performed at the kth step must be close to those Pn(tk+1)
performed at the (k + 1)th step].

(ii) A constant Hamiltonian H0(t) = H0. In this case, the
system is characterized by a proper intrinsic (uncontrolled)
Hamiltonian, which sets the pace at which the measurements
have to be performed in order to ensure the Zeno limit (11).

Once this limit is reached, the resulting evolution of the system
can be forged along trajectories which could not be realized
by H0. For instance, a real life implementation of the wagon-
wheel optical illusion effect can be induced on the system by
taking W (t) = e−2iH0t . Under this condition, Eq. (10) yields
H

(n)
Z = −Pn(0)H0Pn(0), resulting in an effective time reversal

of the dynamics induced by H0.

V. EXAMPLE

The possibility of exploiting the correspondence between
(5) and (13) paves the way to a new form of quantum control,
where frequent measurements are introduced to replace the
adiabatic driving or, even better, to compensate for possible
departures from the adiabatic regime, leading hence to a speed-
up of the resulting transformation. To clarify this point, we
find it useful to consider the following simple model, where
a three-level system {|1〉,|2〉,|3〉} is driven with a Hamiltonian
H (t) depending on two time-dependent real parameters a(t)
and b(t),

H =

⎛
⎜⎜⎝

√
a2 + b2 a b

a a2√
a2+b2

ab√
a2+b2

b ab√
a2+b2

b2√
a2+b2

⎞
⎟⎟⎠. (18)

This admits two instantaneous eigenvalues, which in terms of
the polar coordinates a = r cos θ and b = r sin θ are given
by E0 = 0 and E1 = 2r , with the former being twofold
degenerate and the gap between the two eigenvalues clos-
ing at the critical point (a,b) = (0,0). The corresponding
instantaneous eigenspaces S0(θ ) and S1(θ ) are specified
by the projections P0(θ ) = |E0(θ )〉〈E0(θ )| + |E−(θ )〉〈E−(θ )|
and P1(θ ) = |E+(θ )〉〈E+(θ )| with

|E±(θ )〉 = |1〉 ± (cos θ |2〉 + sin θ |3〉)√
2

= W (θ )|E±(θ0)〉,
(19)|E0(θ )〉 = − sin θ |2〉 + cos θ |3〉 = W (θ )|E0(θ0)〉,

where W (θ ) = e−iG(θ−θ0) with G = −i|2〉〈3| + i|3〉〈2| is the
unitary transformation inducing the parametric rotations of
the eigenspaces from θ0 := θ (0). For this model, the adiabatic
regime (6) is guaranteed when

|θ̇(t)| � r(t) (20)

for all t along the trajectory in the (a,b) plane [this of
course excludes the possibility that the trajectory passes
through the critical point (a,b) = (0,0), where r , and hence
the instantaneous gap, vanishes]. In the subspace S0(θ ), the
generator of the adiabatic evolution (4) is given by H

(0)
G (t) =

−G0θ̇ (t)/
√

2 with

G0 = −i|E0(θ0)〉〈E−(θ0)| + i|E−(θ0)〉〈E0(θ0)|, (21)

yielding the adiabatic unitary gate U
(0)
G (t) = e

i√
2
G0[θ(t)−θ0]

.

This transformation, besides possessing a geometrical char-
acter, also has a topological character. Indeed, for any closed
loop in the parameter space, one gets

U
(0)
G = ei�m

√
2 πG0 , (22)

with �m being the difference between the number of anti-
clockwise and clockwise windings around the critical point
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(a,b) = (0,0) (if the loop does not encircle the origin, then
�m = 0). Following our analysis, the same evolution can
be induced by the Zeno procedure (13), operating on a
three-level system with no intrinsic dynamics (i.e., H0 = 0)
and performing sequences of instantaneous measurements
which check whether the system belongs to the subspace
S0(θ0),S0(θ1),S0(θ2), . . . .

Notice that, along the lines discussed in point (ii) of the
preceding section, the above rotation angle �m

√
2 π after

�m windings of Zeno driving can be modified by applying a
Hamiltonian

H0(t) = αGθ̇ (t) (23)

during the operation. In this case, Eq. (10) yields H
(0)
Z (t) =

−(1 − α)G0θ̇(t)/
√

2, and one gets

U
(0)
Z = ei(1−α)�m

√
2 πG0 . (24)

A. Zeno gate by dissipation

There are different implementations of the Zeno dynamics
[5,30,31]: via projective measurements studied above, via
unitary kicks (including the bang-bang control), and via a
strong coupling to an external agent. All these strategies are ap-
plicable for inducing geometric phases and for realizing Zeno
gates by the procedure detailed above. More interestingly,
dephasing induced by an external environment can be utilized
to implement the Zeno gates. This possibility is allowed by the
peculiar fact that, when monitoring the system on a rapid pace,
we are not required to read out the results of the measurements.
As a matter of fact, the whole procedure is explicitly designed
in such a way that the measurements are expected always to
give the same result (i.e., the system is always found inside the
nth subspace). Given that, it makes absolutely no difference if
we let the environment perform the projections Pn(t). To see
how this works explicitly, suppose that our system is evolving
through the following time-dependent master equation:

ρ̇(t) = −i[H0(t),ρ(t)] + L(t)ρ(t), (25)

where

L(t)ρ = − 1
2γ [L2(t)ρ + ρL2(t) − 2L(t)ρL(t)] (26)

with

L(t) =
∑

n

αnPn(t) (αn �= αn′ for n �= n′). (27)

Going to the rotating frame defined by ρ̃(t) = W †(t)ρ(t)W (t),
the master equation (25) is converted into

˙̃ρ(t) = −i[H̃ (t),ρ̃(t)] + Lρ̃(t), (28)

where H̃ (t) = W †(t)H0(t)W (t) + iẆ †(t)W (t) and L = L(0).

Note also that eLt t→∞−−−→ P , with P = P(0) being the projec-
tion (14). Therefore, taking γ → ∞ in the Dyson series of
(28), one gets

ρ̃(t) = eLt ρ(0) − i

∫ t

0
dt ′eL(t−t ′)[H̃ (t ′),eLt ′ρ(0)] + · · ·

→ Pρ(0) − i

∫ t

0
dt ′ P[H̃ (t ′),Pρ(0)] + · · · , (29)

which, exploiting the fact that PH̃ (t) = ∑
n H

(n)
Z (t) = HZ(t),

obeys a von Neumann equation

˙̃ρ(t) = −i[HZ(t),P ρ̃(t)], ρ̃(0) = Pρ(0). (30)

Integrating it and moving back to the canonical reference
frame, this yields the solution (15) as anticipated.

VI. CONCLUSIONS

We have provided a formal connection between the adi-
abatic theorem and Zeno dynamics, and we showed that
the latter provides more flexibility in implementing gates
with topological character. While a detailed analysis of the
resources involved is beyond the scope of this paper, it is clear
that our result opens an avenue for quantum control techniques
based on a continuous monitoring of the system dynamics.
Accordingly, a given target quantum evolution is induced via
a sort of stroboscopic approach in which the system of interest
is projected onto subspaces that are externally steered.
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