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Direct Experimental Evidence of Free-Fermion Antibunching
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Fermion antibunching was observed on a beam of free noninteracting neutrons. A monochromatic beam
of thermal neutrons was first split by a graphite single crystal, then fed to two detectors, displaying a
reduced coincidence rate. The result is a fermionic complement to the Hanbury Brown and Twiss effect
for photons.
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FIG. 1 (color online). Schematic drawing of the experimental
setup: M, monochromator; S, beam splitter; D1 and D2, detec-
tors; C, coincidence counter; DAE, Data Acquisition
Electronics. The two detectors can be positioned at the same
distance from S, and one of them can be moved across this
distance. The collimators are not shown.
Over the past three decades, the research on the founda-
tions of quantum mechanics has been enriched by many
experiments on thermal neutrons, in particular, by several
enlightening results about the coherence properties and the
physical nature of the wave function describing the behav-
ior of a massive particle [1]. A general property of fermions
is that of being characterized by an antisymmetric wave
function: the second-order correlation function of a fer-
mion gas exhibits an anticorrelation in the intensity fluc-
tuations, in particular, interference in the coincidence
distributions of identical particles. This Letter describes a
new contribution in this field: an experiment on thermal
neutrons that brings to light the fermion antibunching
effect in a beam of free noninteracting particles. The result
is a fermionic complement to the seminal Hanbury Brown
and Twiss effect for bosons (photons) [2].

The consequences of antisymmetry are well-known in
condensed matter physics, where the electronic states dis-
play a strong quantum entanglement and are confined
within the Fermi surface. Interesting experiments with
electron beams have confirmed these effects [3–5]. In the
case of almost free particles, an anticorrelation was ob-
served in the coincidence spectrum of neutrons from
compound-nuclear reaction at small relative momentum
[6,7]. However, such a physical system is not a good
representative sample of a statistical ensemble of noninter-
acting identical fermions. A monochromatic beam of ther-
mal neutrons from a nuclear reactor represents much better
a statistical ensemble of free particles. Nevertheless, the
observation of thermal-neutron antibunching by means of
coincidence measurements on such beams with the avail-
able instrumentation did not appear to be feasible up to
now, mainly because the mean number of fermions obtain-
able per unit cell of phase space, to which the signal-to-
noise ratio is proportional, was so low that a measurement
time of several years was estimated [8].

We shall show below that, with present-day available
advanced instrumentation, a very accurately designed
setup, and a precise knowledge of the statistical properties
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of the neutron source, the experiment is feasible. In this
Letter we shall describe some measurements carried out at
the Institute Laue Langevin, Grenoble, France.

How can one directly bring to light an anticorrelation
effect in a neutron beam? In a gas of fermions there is a
certain tendency for particles of the same spin to avoid
each other, a tendency arising from the exchange antisym-
metry of the wave function: two fermions in the same spin
state cannot occupy at the same time the same point in
space, and therefore the probability amplitude for their
being close together must be small. We just want to ob-
serve such an effect in a beam of thermal neutrons.

Let us start by considering the conceptual scheme of our
experiment, which is schematically represented in Fig. 1,
and is a massive particle analogue of the seminal optical
Hanbury Brown and Twiss experiment [2], which yielded
the first direct observation of the bunching effect in light
beams and is a direct consequence of the symmetric wave
function of a bosonic state. The semiclassical and quantum
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interpretations of this experiment are very clearly dis-
cussed in classic textbooks [9,10]: light from uncorrelated
parts of the source yields interference effects that are
associated with intensity correlations but not with the
intensities themselves.

In the present experiment, a monochromatic beam of
thermal neutrons is split by a pyrolytic graphite single
crystal into a transmitted and a reflected beam. The inten-
sity of each component is measured by a detector, and the
coincidence rate of the outcomes at the two detectors is
recorded as a function of their relative distance from the
splitting crystal. Of course, also accidental coincidences
occur in the apparatus and their rate must be subtracted
from the total rate. The quantity of interest is the average
value of these rates over a long enough period of
observation.

The nature of the emission of thermal neutrons in the
source is expected to be Poissonian, so that there is a small
but finite probability of having two neutrons within the
detection time interval of the apparatus. With reference to
Fig. 1, for an average total rate n of neutrons impinging on
the splitter crystal S and a total measuring time T0, the
predicted number of coincidences Nbg (where the subscript
stands for background) measured at the two detectors can
be calculated from the joint probability that a neutron is
transmitted while a second neutron is reflected from S. By
neglecting the fermion antibunching, one readily obtains

Nbg � �wntnrT0; (1)

where nt and nr � n� nt are the average rates of the
transmitted and reflected beam, respectively, that have
been assumed to be constant during the acquisition time
T0, and we have assumed a short enough coincidence
window �w=2, such that n�w � 1 (in our experiment
n�w ’ 10�2–10�3). When the distances of the two detec-
tors from the beam splitter, SD1 and SD2, are different
enough, Eq. (1) gives the expected number of random
coincidences, since the measured coincidences are associ-
ated only with the simultaneous detection of two particles
emerging from the splitter at different times.

Let us now qualitatively analyze the expected conse-
quences of antibunching. Again referring to an ideal ex-
periment, let SD1 � SD2 and �c be the coherence time of
the neutron wave packet. It should be remarked that the
coherence time of the wave packet is defined by its energy
distribution and it is longer when the energy width is small.
Equation (1) can be modified to yield the expected number
of correlated coincidences: observe that these are only
those due to two neutrons with different spins that emerge
from the beam splitter at the same time, because two
neutrons with the same spin, due to the Pauli exclusion
principle, cannot impinge on the beam splitter at the same
time. If the incident beam is spin-unpolarized, it is equally
likely that a neutron pair will either occur in one of the
three triplet states or in the singlet state; i.e., the triplet
states will occur 3=4 of the time. Thus, the average number
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of coincidences expected for SD1 � SD2, as a consequence
of fermion antisymmetry, is reduced from that of Eq. (1) by
the following quantity

��Nfa � ��cntnrT0=2; (2)

where �1=2 � �3=4� 1=4, �3=4 being due to the anti-
bunching of the triplet states and 1=4 to the bunching of the
singlet state. Such a depression of the coincidence rate
involves a two-particle state, and it is essential that both
members of the pair be detected. Since the relative direc-
tions of the two particles may not be known in advance,
one might think that something near a 4� detector might
generally be needed. But in the present experiment the
two-particle state to be tested is only that emerging (within
a small solid angle) from the collimator and the monochro-
mator, and the expression �cntnr in Eq. (2) is simply the
rate of such emerging state. This must be taken into ac-
count if one plans to perform a neutron-spin test of the Bell
inequality [11].

Of course, in a real coincidence experiment, one must
take �w much longer than �c, in order to account for
various instrumental effects that force one to broaden the
coincidence window. Actually, two particles arriving at the
beam splitter at the same time may be absorbed and
recorded at the two detectors within a rather long time
interval �D, because of the finite thickness of the beam
splitter and detectors and of small differences in their
speeds. Moreover, the finite detection resolution �D < �w
modifies the value of �Nfa in Eq. (2) by the factor �w=�D,
making the use of intrinsically fast detectors highly desir-
able. The experimental data require therefore a careful
analysis, as we shall discuss in detail in the following.

In order to detect the expected fermion antibunching
effect, we have performed an optimized experiment based
on the general scheme of Fig. 1. The main limitations of the
experiment arise from the random fluctuations, which can
mask the difference signal of Eq. (2). We assume that there
are no accidental coincidences due to nonrandom pro-
cesses. Therefore the expected random fluctuations are
those due to the intrinsic statistics of the number of mea-
sured coincidences. The expected root mean square
fluctuation of the total number of coincidences is �Nbg ���������������������
�wntnrT0

p
and in order to detect a signal it is necessary

that the noise to signal ratio, �Nbg=�Nfa �

2
������
�w
p

=��c
��������������
ntnrT0

p
�, be smaller than unity. We see that

the noise to signal ratio decreases when the coherence
time of the incoming beam is long, so that the experiment
should be performed by employing the most monochro-
matic available beam. We chose to use the primary spec-
trometer of the IN10 beam line [12], which produces a
monochromatic beam by using an almost perfect Si(111)
single crystal in the backscattering configuration. This
monochromator produces a flux n ’ 3000 sec�1, at an
energy E ’ 2:08 meV with a (nominal) energy spread
�E ’ 0:13 �eV (0:3 �eV FWHM), and a beam size at
the beam splitter of 1:5 �horizontal� � 4:0 �vertical� cm2.
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FIG. 2. Number of coincidences N as a function of the path
difference x � SD1 � SD2 of the detectors from the splitter. Top
panel: scintillator detectors, translation step 0.2 mm; Bottom
panel: gas detector, translation step 1 mm. The dip appears at
x0 ’ 2 mm due to calibration, which could not be determined
with a resolution better than 1:5–2:0 mm. The parameters �D, �c,
Nbg, and x0, by substituting t � �x� x0�=v in Eq. (3), are
determined by a best fit (see text).
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More precisely, �E is the total energy spread produced by
the monochromator and the energy analyzer used at the
IN10 instrument, the former giving a finer contribution
than the latter, mainly because of the different crystal
dimensions. An estimate of the energy spread produced
by the monochromator only can be calculated from its
geometry and yields an effective energy spread �E &

0:02 �eV [13]. The coherence time of the incoming neu-
tron beam is therefore �c * @=2�E ’ 16 ns. Considering
that the neutron speed v is about 630 m=s, the neutron
coherence length is larger than 10 �m, a very small value.
It is clear that both the beam splitter and the detectors must
be as thin as possible, in order to reduce any additional
spread of the signal. We therefore employed a 0.3 mm thick
graphite crystal as beam splitter. At the wavelength of the
present experiment the crystal has a good reflectivity so
that the transmitted and diffracted beam are of the same
order of magnitude. It should also be remarked that the
possible velocity difference between the two particles of a
pair, originating from the energy spread of the monochro-
mator, contributes a negligible difference in the corre-
sponding time of flight along the 40 cm path from the
splitter to the detectors.

Two different detection systems were employed. The
first one was based on two squashed 3He 2 mm thick,
1.2 cm wide and 10 cm high detectors, whose neutron
absorption length was ’ 1:4 mm. The second one was
based on two scintillator detectors having thickness
0.2 mm, width 1.5 cm and height 5 cm, whose neutron
absorption length was ’ 0:25 mm. The scintillator was a
6Li 98% enriched ZnS glass, directly coupled to a 5 cm
diameter fast photomultiplier. The shaping time was about
2 �s in the case of 3He detectors, while it was 0:3 �s in the
case of the scintillators. The coincidences were measured
within an electronic time window �w=2 of �10 �s in the
case of gas detectors and �0:8 �s for the scintillators.
Therefore the total time windows, that include the shaping
time of the detectors, were �12 �s and �1:1 �s
respectively.

Using this arrangement we have been able to perform
two meaningful determinations of the actual antibunching
effect in the incoming neutron beam. In order to do this,
one detector was kept at a fixed position, at a distance of
40 cm from the graphite splitter along the diffracted beam,
while the other detector was scanned through the trans-
mitted beam, at approximately the same distance. For gas
detectors, whose spatial resolution is of order 2 mm, we
used a coarse translation step of 1 mm, while for scintilla-
tor detectors the translation step was 0.2 mm.

The data acquisition took several days; we therefore had
to take into account the effect of the incoming beam
fluctuations. As can be seen from Eq. (1), such an effect
is nonlinear and directly related to the instantaneous value
of the incoming beam rate. Since the instantaneous rate
cannot be measured with adequate accuracy, one can per-
form a correction of the actual data by assuming that the
beam fluctuations are small. In such a case, assuming that
08040
the acquisition time T0 is much longer and the detection
window �w much shorter than the correlation time of the
noise and neglecting second-order effects, Eqs. (1) and (2)
yield N � �N�Nt= �Nt � Nr= �Nr � 1�, where N is the actual
number of coincidences, �N is the number of coincidences
detected in an (ideal) experiment with a constant rate on
both the transmitted and incoming beam, andNt andNr are
the actual numbers of neutrons detected on the two beams.
The experimental data collected with the two detecting
systems were corrected for the beam fluctuations and the
results are reported in Fig. 2. In both cases a small dip is
observed in the number of coincidences detected as a
function of the relative distance of the two detectors from
the beam splitter. We attribute this small dip to the anti-
bunching effect due to the Fermion nature of the neutron.

It is interesting to perform a quantitative analysis, using
the experimentally observed width of the dip in order to get
an estimate of the coherence time of the incoming beam
neutron wave packet. As a spinoff, this will yield a con-
sistency check of our experimental results. Let us first
consider the global response function of our experimental
arrangement. We assume that the neutrons are diffracted
within the thickness of the beam splitter according to the
secondary extinction law [14] and are absorbed by the
detectors, within a few mean free paths inside the absorb-
ing medium. For simplicity, let us assume that the total
response function of the detection system is (a normalized)
Gaussian, R�t� � exp��t2=2�2

D�=
�������
2�
p

�D, with a charac-
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teristic response time �D 	 �c, where �c is the coherence
time defined in Eq. (2). The global response time �D of the
detection system will be obtained by fitting the experimen-
tal data: it is, however, expected to be close to the shaping
time of the detectors (2 �s for 3He detectors, 0:3 �s for
scintillators).

The neutron pair correlation function, describing the
antibunching effect, will also be taken to be Gaussian
C�t� � 1� �1=2� exp��t2=2�2

c�, the factor 1=2 �
3=4� 1=4 being due to the difference between the triplet
and the singlet contributions [see Eq. (2)]. The total num-
ber of counts is therefore given by the convolution

N�t�
Nbg

� 
R � C��t� ’ 1�
1

2

�c
�D

exp
�
�

t2

2�2
D

�
: (3)

This must be compared with the observed number of
coincidences in Fig. 2. Looking at the experimental data,
we see that in both cases there is a small but appreciable
dip, which is broader in the case of the experiment per-
formed using the (thicker) gas detectors, as expected. The
above formula implies that the width of the dip is �D, its
depth being �c=2�D � ��Nfa=Nbg���w=�D�, in agreement
with Eqs. (1) and (2).

An accurate fit yields �D � 1:3� 0:4 �s, x0 � 2:1�
0:2 mm, and Nbg � 34720� 44 for 3He detectors, and
�D � 0:33� 0:07 �s, x0 � 1:93� 0:02 mm, and Nbg �

993:7� 0:6 for the scintillators. Notice that the values
obtained for Nbg agree with those calculated from Eq. (1)
(acquisition times T0 � 600 s for 3He detectors and 300 s
for the scintillators, and tw corrected in order to include the
shaping time of the detectors). Moreover,

�c � 20� 7 ns for 3He detectors; (4)

�c � 19� 3 ns for scintillators; (5)

both values being fully consistent with each other and with
the bound obtained by the energy spread of the beam
(*16 ns). It is worth emphasizing that any additional
attenuation factor (due, for example, to transversal coher-
ence effects) multiplying the exponential in (3) can only
yield larger values of �c: Equations (4) and (5) are there-
fore conservative estimates. The fitting curve is shown as a
full line and is in very good agreement with the data: We
obtained �2 � 19:38 with 17 degrees of freedom, yielding
P17��2 
 19:38� � 0:31, for the scintillators, and �2 �
0:7083 with 1 degree of freedom, yielding P1��2 

0:7083� � 0:40, for 3He. A flat fit would yield �2 �
61:85 with 20 degrees of freedom, yielding P20��

2 

61:85� � 4� 10�6, for the scintillators and �2 � 5:049
with 4 degrees of freedom, yielding P4��

2 
 5:049� �
0:28, for 3He. Note also that the value �D ’ 0:33 �s is in
full accord with the nominal shaping time of the scintillator
(0:3 �s), while the value �D ’ 1:3 �s is smaller than the
nominal shaping time of the 3He detectors (2 �s): this can
be understood by remarking that 3He detectors tend to
absorb neutrons in the initial section. Finally, one also
08040
obtains results that are consistent with those above by
performing a convolution with more realistic (non-
Gaussian) shape functions describing the response function
of the detectors and of the beam splitter.

It is useful to clarify in what sense this experiment
performed with neutrons is complementary to its photon
[2,15] and electron [3–5] counterparts. The first, obvious
observation is that neutrons are fermions that are not
affected by Coulomb interaction that plays, by contrast,
an important role in condensed matter systems. Second,
neutrons have very low phase-space densities, so that all
the effects we have brought to light are due to two-particle
correlations, three or more particle effects being com-
pletely negligible. This experiment, providing a firm ex-
perimental evidence of the Pauli exclusion principle,
displaying its effects on free neutrons in real space, has a
very basic importance, because it is directly related to the
quantum mechanics of identical particles.
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