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We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the
bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is
maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are
investigated, both analytically and numerically.
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The characterization of multipartite entanglement is no
simple matter. The bipartite entanglement of a composed
quantum system �1� can be consistently defined and quanti-
fied in terms of the entropy of entanglement or some physi-
cally equivalent quantity. On the other hand, there is no
unique way of characterizing the multipartite entanglement.
Different definitions often do not agree with each other, be-
cause they adopt different strategies, focus on different as-
pects, and capture different features of this quantum phe-
nomenon �2–4�. There is a profound reason behind this
problem: the number of measures �i.e., real numbers� needed
to quantify multipartite entanglement grows exponentially
with the size of the system �e.g., the number of qubits�.
Therefore, the definition of appropriate entanglement mea-
sures, able to summarize the most salient global features of
entanglement, can be very difficult and their evaluation bears
serious computational difficulties. This difficulty is a charac-
teristic trait of complexity �6�, and entanglement is no excep-
tion in this respect �7,8�; we shall introduce here multipartite
entangled states that bear the symptoms of frustration.

The aim of this Rapid Communication is to explore
“maximally” multipartite entangled states of n qubits. These
states, to be precisely defined later, are maximally �bipartite�
entangled for all possible bipartitions. The focus is therefore
on the global, partition-independent features of entangle-
ment. We will consider only pure states, the extension to
mixed states being not straightforward, due to well-known
phenomena such as bound entanglement �9�.

We consider an ensemble S= �1,2 , . . . ,n� of n qubits in
the Hilbert space H= �C2��n, whose state is

��� = 	
k�Z2

n

zk�k�, zk � C, 	
k�Z2

n

�zk�2 = 1, �1�

where k= �ki�i�S, with ki�Z2= �0,1�, and

�k� = �
i�S

�ki�, �ki� � Ci
2. �2�

In order to analyze the multipartite features of the entangle-
ment shared by the qubits, we proceed as follows. Consider a

bipartition �A , Ā� of the system, made up of nA and nA qubits,

respectively, where A�S is a subset of nA elements, Ā

=S \A is its complement, nA+nA=n, and we will stipulate
nA�nA with no loss of generality. The total Hilbert space is
accordingly factorized into H=HA � HA, with HA= � i�ACi

2,
of dimensions NA=2nA and NA=2nA, respectively �NANA
=N�. As a measure of the bipartite entanglement between the
two subsets, we consider the purity of subsystem A,

�A = TrA �A
2 , �A = TrA���
�� , �3�

TrX being the partial trace over subsystem X. We notice that
�A=�A and

1/NA � �A � 1. �4�

State �1� can be written according to the bipartition �A , Ā� as

��� = 	
k�Z2

n

zk�kA� � �kA� , �5�

where �kA�= � i�A �ki��HA. By plugging Eq. �5� into Eq. �3�,
we obtain

�A = 	
ki�Z2

n

zk1
z̄k2

zk3
z̄k4

�k1
A,k4

A�k2
A,k3

A�k1
A,k2

A�k3
A,k4

A. �6�

Notice that for a given bipartition, it is very easy to satu-
rate the lower bound 1 /NA of Eq. �6�: one looks for those
maximally bipartite entangled states that yield a totally
mixed state �A=1 /NA. We will generalize the above property
by requiring maximal possible mixedness for each sub-
system A�S, given the constraint that the total system be in
a pure state. A state endowed with this property will be
called a maximally multipartite entangled state �MMES�.

In the most favorable case, this means that every sub-
system A composed of nA�n /2 qubits is in a totally mixed
state �A=1 /NA and thus �A=1 /NA �recall that �A=�A, thus

when nA�n /2 the above requirement applies to Ā�. In fact, it
is sufficient to look at maximal subsystems of size nA
= �n /2� ��x��integer part of x�, because the density matrix of
every smaller part B�A would automatically be of the
sought form, �B=TrB�A�A=1 /NB. Therefore, a perfect
MMES would be maximally entangled for every bipartition

�A , Ā� and would be characterized by �A=1 /NA for all bal-
anced bipartitions. Observe that the requirement of maximal
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mixedness for �A , Ā�, �A=1 /NA, and the analogous require-

ment for a different balanced bipartition �B , B̄�, with B�A,
might not be compatible with each other, so that, at variance
with the bipartite case, perfect MMESs do not necessarily
exist.

We define a MMES as a minimizer of what we shall call
the potential of multipartite entanglement,

�ME = � n

nA
�−1

	
�A�=nA

�A, �7�

where nA= �n /2�. The above quantity is related to the �aver-
age� linear entropy SL= �1−�ME�NA / �NA−1� introduced in
�4�, which extends ideas put forward in �3�. See also �5�. The
quantity �ME measures the average bipartite entanglement
over all possible balanced bipartition and thus inherits prop-
erty �4�, i.e.,

1/NA � �ME � 1. �8�

The upper bound �ME=1 is attained by the fully factorized
states, zk=
i�S�ki

i , with ��0
i �2+ ��1

i �2=1. On the other hand,
the lower bound �ME=1 /NA, if attained, would correspond
to a perfect MMES, maximally entangled for every biparti-
tion. However, it can happen that the requirements of maxi-
mal mixedness for different bipartitions compete with each
other. In such a case, the system is frustrated and the mini-
mum of the potential �7� is strictly larger than the lower
bound in �8�, i.e., min �ME�1 /NA. Since in such a situation
it may happen that different bipartitions yield different val-
ues of �A, our strategy will be to seek those states among the
minimizers that have the smallest variance.

This quest can be recast as an optimization problem:
search for the minimum of the cost function

�̃ME�	� = �ME + 	
ME, �9�

where 	�0 is a Lagrange multiplier and


ME
2 = � n

nA
�−1

	
�A�=nA

��A − �ME�2 �10�

is the variance of �A over all balanced bipartitions. Notice
that the introduction of 	 enables one to look for a compro-
mise between the minimal purity �ME �maximal average en-
tanglement� and the minimal standard deviation 
ME of the
distribution �maximally distributed entanglement�. In gen-
eral, the solution of this optimization problem completely
defines a class of states with the maximal possible entangle-
ment �minimum purity�, that is also well distributed, being as
insensitive as possible to the particular choice of the biparti-
tion.

If 	�1, the minimization process will yield a very well
peaked distribution of �A around its average: entanglement
will be uniformly distributed, but this does not necessarily
provide a MMES; for example, a completely separable state
has a �vanishing� entanglement that is insensitive to the
change of the bipartition ��A=1 for all bipartitions�. More
interesting is the case 	=0; indeed, a solution that minimizes
the cost function �̃ME�0� will have an entanglement distribu-
tion centered on the minimum of the potential �ME. There-

fore, if this minimum saturates the lower bound in �8�, the
width 
ME must vanish. This would be our desideratum.
However, it is known that, for n�8, perfect MMESs do not
exist �4�. The general problem is therefore complicated. As a
first step we set 	=0 in Eq. �9�, and focus on the minimiza-
tion of the potential �ME� �̃ME�0�. We shall tackle this prob-
lem both analytically and numerically. By plugging Eq. �6�
into Eq. �7�, one gets after some combinatorics

�ME = 	
ki�Z2

n


�k1,k2;k3,k4�zk1
zk2

z̄k3
z̄k4

, �11�

with


�k1,k2;l1,l2� = � n

nA
�−1

	
�A�=nA

�k1
A,l1

A�k2
A,l2

A�k1
A,l2

A�k2
A,l1

A

= g�k1 � l1 ∨ k2 � l2,k1 � l2 ∨ k2 � l1� ,

g�a,b� = � n

nA
�−1

�a∧b,0�n − �a� − �b�
nA − �a�

� , �12�

where a � b= �ai+bi mod 2�i�S is the XOR operation, a∨b
= �ai+bi−aibi�i�S the OR operation, a∧b= �aibi�i�S the AND

operation, and �a � =	i�Sai. Equations �11� and �12� yield a
closed expression for the average purity that is amenable to
analytic and numerical investigation.

In order to further simplify the problem, in the following
discussion we will replace rk= �zk� in Eq. �1� with its mean
value 1 /�N, and focus on the states

��� =
1

�N
	

k�Z2
n

ei�k�k� . �13�

Plugging Eq. �13� into Eq. �6�, we find

�A =
NA + NĀ − 1

N

+
2

N2 	
l�l�,m�m�

cos��lm
p − �l�m

p + �l�m�
p − �lm�

p � , �14�

where �lm
p =�p−1�l,m�, p being a permutation such that A

= �p�1� , p�2� , . . . , p�nA��. This is an interesting formula that is
worth discussing in detail: �i� first of all, if �k=	i�S�ki

i in Eq.
�13�, one obtains separable states, which yield the maximum
possible value �A=1 for all bipartitions: indeed the N�NA
−1��NĀ−1� /4 cosines in the summation in Eq. �14� are all 1;
�ii� the first addendum on the right-hand side corresponds to
the average entanglement of typical states �8,10�. Thus, the
combination of phases in the summation can increase or re-
duce the value of the purity with respect to the typical one �at
fixed bipartition�; �iii� in order to get a lower value of purity,
one should look for combinations of angles that tend to yield
negative cosines. On the other hand, it is also clear that for
n�2, not all cosines can be −1, as this would yield a purity

smaller than 1 /NA; �iv� at fixed bipartition �A , Ā�, it is always
possible to find combinations of cosines that saturate the
lower bound �A=1 /NA. However, when plugged into Eq.
�11�, the requirement that this lower bound be saturated for
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every A might not be satisfiable. This problem is in general
n-dependent.

We now explicitly look at the simplest examples. For two
qubits, we only have one bipartition and the potential of
multipartite entanglement reduces to

�ME
�2� =

3

4
+

1

4
cos��0 − �1 − �2 + �3� , �15�

where the indices of the phases are expressed in terms of k,
in decimal notation. The minimization of the potential con-
sists in solving the equation �ME

�2� = 1
2 �remember that NA

=NĀ=2�. It is straightforward to obtain �0−�1−�2+�3=�,
which yields the MMES

��2� =
1

2
�ei�0�0� + ei�1�1� + ei�2�2� − ei�−�0+�1+�2��3�� . �16�

In this degenerate case, multipartite entanglement coincides
with bipartite entanglement, and this state is obviously
equivalent, up to local operations, to a Bell state.

For three qubits, one must look for the solutions of �ME
�3�

= 1
2 , where

�ME
�3� =

5

8
+

1

48	
p

�cos��p�0� + �p�7� − �p�1� − �p�6�� + cos��p�2�

+ �p�5� − �p�4� − �p�3�� + 2 cos��p�0� + �p�3� − �p�1�

− �p�2�� + 2 cos��p�7� + �p�4� − �p�6� − �p�5��� , �17�

where the sum is over the three cyclic permutations �of the
qubits�. A class of solutions is

��3� =
1

8
�ei�0�0� + ei�1�1� + ei�2�2� − ei�−�0+�1+�2��3� + ei�4�4�

− ei�−�0+�1+�4��5� + e−i�6�6� + ei�−�0+�1+�6��7�� �18�

and form a five-dimensional submanifold. These states are
equivalent, up to local unitaries, to the GHZ state �11� and
share the same properties of the GHZ state for what concerns
concurrence and one-tangle. Note that �ME

�3� contains 12 co-
sines with different arguments, 6 of which are counted twice.

The solution proposed corresponds to 2 cosines�1, 4
cosines�−�, 4�2 cosines�−1, and 2�2 cosines��, with
�=cos��0−�2−�4+�6�, that sum up to 2−4�−8+4�=−6.
In fact, there are three families of solutions of the form �13�,
corresponding to the three submanifolds Mp= ��i ��p�0�
+�p�7�−�p�1�−�p�6� = 0, �p�2�+�p�5�−�p�4�−�p�3� = 0, �p�0�
+�p�3�−�p�1�−�p�2�=�� with p a cyclic permutation. All
three classes yield the same pattern of cosines in �ME

�3� ��
being given by the corresponding permutation�.

For a number of qubits larger than 3, we turned to a nu-
merical approach: we generated a typical state of the form
�13� and numerically tackled the minimization problem
through different kinds of iterative algorithms �for a review
of numerical techniques and their implementation, see �12��.
We first used deterministic algorithms. In general, we found
that minimization is strongly dependent on the initial condi-
tions. Therefore, we sampled a large number of initial states
in order to test the reliability of the solutions obtained.
Among others, the truncated Newton method gave us the
best results in terms of both reliability and speed. The use of
stochastic algorithms gave us comparable results. In both
cases, the existence of a large number of degenerate �local
and global� minima required an accurate analysis.

For n=4 qubits, we numerically obtained min �ME
�4�

�0.333�
1
4 with 
ME�10−4. If the requirement �zk � =1 /�N

in Eq. �1� �and Eq. �13�� is relaxed, one can make 
ME van-
ish. This is a first example of frustration among the biparti-
tions, which prevents the existence of a perfect MMES. It is
curious that the requirement that purity be minimal for all
balanced bipartitions generate conflicts already for n=4 qu-
bits. This is consistent with results obtained by other authors
�13,14�.

For n=5 and 6, the landscape of the manifold on which
the minimization is performed becomes complicated. None-
theless, we found perfect MMES, namely, solutions for
�ME

�5� = 1
4 and �ME

�6� = 1
8 , respectively. Therefore, and curiously,

frustration is present for n=4 qubits while it is absent for n
=5 and 6. For example, a 5-qubit perfect MMES is defined
by Eq. �13� with the following set of phases:

��k� = �0,0,0,0,0,�,�,0,0,�,�,0,0,0,0,0,0,0,�,�,0,�,0,�,�,0,�,0,�,�,0,0� �19�

and lives on a seven-dimensional manifold. The distribution
of the angles x=� jl

p −� jl�
p +� j�l�

p −� jl�
p for a given 6-qubit

MMES is displayed in Fig. 1. We observe interesting fea-
tures, shared by all the MMESs we investigated and for all
values of n: first of all, the distribution is symmetric around
x=�; second, there is a large number of instances such that
cos x=−1, partially compensated by the contribution of
cos x=1; third, the distribution of the remaining angles is
symmetric around x=� /2 and yields a vanishing contribu-
tion to �ME.

For n=7, we numerically found configurations with

min �ME
�7� �0.134�

1
8 and 
ME�10−2, which improves previ-

ous bounds �4,14�. By minimizing the cost function �9� with
a nonvanishing 	, one can reduce 
ME to �10−3 at the ex-
pense of a higher �ME�0.136. It is not clear at present if the
impossibility of reaching the absolute minimum for n=7 is
to be ascribed to the numerical procedure. For n=8 and 9,
where perfect MMESs do not exist �4�, the convergence of
the numerical simulations becomes very slow. This is a typi-
cal signature of frustration. The numerical results show that,
in order to obtain a vanishing width of the distribution for
frustrated systems, it is necessary to increase the value of the
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average of the purity. These conclusions are summarized in
Table I.

A comment is now in order. Although in this Rapid Com-
munication perfect MMESs are exhibited as minimizers of
the potential of entanglement, they are, by their very nature,
independent of the method used to find them. In fact, by
virtue of their maximal mixedness, they saturate all measures
of multipartite entanglement. This is the case, for example,
of the global entanglement measure of Meyer and Wallach
�3�, as well as its generalizations. Indeed, any entanglement
monotones, being functions of the partial density matrices of
subsystems of qubits, attain their maximal values on perfect
MMESs. The minimization procedure we propose is just a
convenient way to construct them. For nonperfect MMESs,
due to a possible finite value of 
ME, different measures of
entanglement can resolve a part of the degeneracy of the
manifold of minimizers.

It is interesting to briefly discuss one straightforward po-
tential application. Consider the 5-qubit perfect MMES ��5�
defined by Eqs. �13� and �19�. One can easily prove that


�5�
1
z
2

z
3
y
4

y
5
z ��5� = 1, �20�

where 
i
y and 
i

z are Pauli matrices. Therefore, the single-
and two-qubit statistics are always “flat,” but the measure-
ments of the observables in Eq. �20� are always strictly cor-

related. Any two parties, which can be far apart, can therefore
share a cryptographic key only if the other three parties agree
on measuring their respective observables in Eq. �20� and
making their results public. Notice that the key is shared by
the two parties but is unknown to the other three. We call this
phenomenon majority-agreed key distribution.

In conclusion, we introduced a class of multipartite en-
tangled states that maximize the amount and distribution of
entanglement. The features of these states depend strongly
on the number of qubits involved. In our numerical search,
we noticed that already for a relatively small number of qu-
bits �n�7�, the landscape of the parameter space where the
optimization procedure is performed has a complex structure
with a large number of local minima and a very slow con-
vergence. The presence of frustration, due to the competition
among different partitions �observed already for n=4�, ap-
pears to be a general feature of many-body systems. It pre-
vents the possibility to find perfect MMESs but introduces
interesting perspectives. In this sense, the minimization task
is a problem that requires a careful analysis and the use of
numerical and analytical strategies from different research
fields. In this paper, we just started to explore these connec-
tions. Thus, the study of maximally multipartite entangled
states paves the way toward a deeper comprehension of the
complex structure of quantum correlations arising in many-
body systems.
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TABLE I. Perfect MMESs for different n.

n Perfect MMESs

2,3,5,6 exist

4 do not exist

7 ?

�8 do not exist
Π�2 Π 3Π�2 2Π

x

14000

10000

6000

2000

No. of phases

FIG. 1. Distribution of the arguments x of the cosines in �ME
�6� ,

for a given 6-qubit MMES. Notice the symmetries around � and
� /2. The total number of phases is 62 720. Different phases are
fully resolved by the binning.
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