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Abstract

We study the effects of imperfections in a spin model of a quantum computer. We identify
different regimes, ranging from low-frequency fluctuations, where the imperfections can be
considered static, to the high-frequency case, where the imperfections are purely dynamical
and their effects are shown to be completely wiped out.

Dynamical errors, yielding decoherence, can be extremely detrimental in quantum
computation [1]. On the other hand, the role of static imperfections, such as small
inaccuracies in the coupling constants, is often considered on a different footing,
as these do not induce, strictly speaking, any decoherence, but rather errors that
can be tolerated up to a certain threshold [2]. Also, the role of static imperfections
is regime dependent, and can be utilized as an indicator of an underlying chaotlc
dynamics [2].

However, strictu senso, a discrimination between “static” imperfections and “dy-
namical” noise is given by the physics and depends on the speed of the quantum
computer: dynamical noise plays the role of static imperfections, if its timescale is
much larger than the computational time. We intend to explore this problem in
more details and discuss the suggestion [3] that static imperfections can be more
disruptive than noise for quantum computation.

We model a quantum computer as a lattice of interacting spins (qubits). Due to
the imperfections, the couplings between the qubits and with an external field are
both random and fluctuate in time. We consider n qubits on a d-dimensional lattice,
described by the Hamiltonian

H,(t) = Z[Ao +8;()]eP + 3 Jii(t)ePal®, (1)
(i)

where the o(’s (o = z,y, z) are the Pauli matrices for qubit ¢ and the second sum
runs over nearest-neighbor pairs. The number n, of terms in the second sum depends
both on the arrangement and dimensionality and is proportional to nd. The energy
spacing between the up and down states of a qubit is Ay + d;(t), where the 6;(t)’s
are uniformly distributed in the interval [—§/2,5/2] and the J;;(t)’s in the interval
[-J, J] (zero means and variances 6202 and 4J202, respectively, with 0% = 1/12).
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FIG. 1: Error E as a function of 7 for t = 25,n = 10,J = 5 x 1073, in the ergodic regime
6 =5x 1073 = J, with n;| = 8,n1; = 5 (squares), n1; = 13,nq; = 0 (triangles), and in the
FGR regime § = 3 x 107! « J, with ny; = 8,n; = 5 (circles). We set 02 = 1/12, n. = 13,
Ap = 1. The fits are given by Eq. (3) with ny; = 8,n1; = 5 (dashed), nyy = 13,n1; =0
(dot-dashed). The transition at 7, is shown only in the former case.

We model the dynamical noise by supposing that both 6;(t) and J;;(t) randomly
change after each time interval 7 and are constant otherwise.

For J = § = 0 the spectrum of the Hamiltonian is composed of n + 1 degenerate
levels, with interlevel spacing 2Ag, corresponding to the energy required to flip a
single qubit. We study the case 0 < §,J <« Ay, in which the degeneracies are
resolved and the spectrum is composed by n + 1 bands. In this limit the coupling
between different bands is very weak and each state is effectively coupled to O(n)
other states inside the band. We assume free boundary conditions and express all
energies in units Ag (A = 1). We study the behavior of the error (that is the
logarithm of the fidelity [4])

2
Et(T) = —lnFt('r) =—-In y

(O[T exp (—i /0 t ﬁ,(s)ds) o) @)

where 7 denotes time ordering. The behavior of E will be studied at fixed ¢ as a
function of 7, the inverse frequency of the noise characterizing the fluctuations of é
and J. The initial state |¥) is taken to be an eigenstate of o (j=1,...;n) and
we concentrate on the central band of zero total magnetization, characterized by the
highest density of states, and for which one expects the effect of noise to be most
pronounced. v

An exact calculation of the error to order J2 can be carried out explicitly [5]. We
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only give here the approximate expression at a fixed time ¢ > 7:

NeT T< T (all regimes)
T Tp<T<Te (all regimes)
T T>T, J~8  (ergodic regime)
nymw/d > 71, J <8/n (FGR regime)

Ei(1) =~ 4J202t‘ (3)

where n. = ny| + nyp is the total number of links, ny (nq)) being the number of
nearest-neighbor parallel (antiparallel) pairs in the initial state. Notice that, unlike
nq; and ngq, ne does not depend on the initial state |¥) but only on the geometry
of the spin lattice. ‘

In Fig. 1 we show the behavior of E;(7) for different values of 8. In the static
situation (large 7, so that é’s and J’s can be considered constant) system (1) is
characterized by two distinct dynamical regimes: the Fermi Golden Rule (FGR)
(J < J.) and the ergodic regime (J > J;), where J; ~ §/n [2, 3]. The FGR holds
below threshold (weak coupling J « §) and is characterized by a Lorentzian local
density of states. The ergodic regime takes place in the strong-coupling regime
0 ~ J, when all the levels inside the band participate to the dynamics [6] and the
local density of states coincides with the (Gaussian) density of states. The fidelity
Fy(r) [from which the error (2) is computed] is always the Fourier transform of the
local density of states {6].

When 7 becomes smaller, the imperfections become dynamical and different
regimes emerge as a function of the frequency 7~ !. The transition at 7 = 7. occurs
when the error starts deviating from the linear behavior given by Eq. (3). As 7 < 7
the two distinct (ergodic and FGR) behaviors characterizing the static case (com-
pared in Fig. 1 only for the sets with ny) = 8) cannot be resolved anymore. The
additional kink at 7 ~ 7, = 7/4A sets in when the single spin dynamics starts to
play a role. As a global feature, the error tends to vanish linearly with 7.

In conclusion, below a given (frequency) threshold, the errors can be considered
static, and thus can be corrected by using any of the known methods. One observes
in this case two different dynamical regimes. Above this threshold these regimes
become unresolved. The difference between these regimes, found for static imper-
fections, holds also in the quasi-static case. On the other hand, unitary dynamical
errors average to zero in the high frequency case. Our results can be relevant in the
context of the strategies that have been proposed during the last few years in order
to suppress decoherence [7].

These results are independent of the form and the size of the quantum computer.
They remain valid under quite general conditions on the system Hamiltonian [5],
allowing a more general application of these findings. Our results show that it
is crucial to optimize the computing timescale, by choosing it between the two
competing types of noise (static and dynamic). In turn, this suggests new strategies
to develop general error correcting techniques.
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