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Spontaneous emission and lifetime modification caused by an intense electromagnetic field

P. Facchi and S. Pascazio
Dipartimento di Fisica, Universita` di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari, Italy

~Received 15 September 1999; revised manuscript received 29 November 1999; published 14 July 2000!

We study the temporal evolution of a three-level system~such as an atom or a molecule!, initially prepared
in an excited state, bathed in a laser field tuned at the transition frequency of the other level. The features of
the spontaneous emission are investigated and the lifetime of the initial state is evaluated: a Fermi ‘‘golden
rule’’ still applies, but the on-shell matrix elements depend on the intensity of the laser field. In general, the
lifetime is a decreasing function of the laser intensity. The phenomenon we discuss can be viewed as an
‘‘inverse’’ quantum Zeno effect and can be analyzed in terms of dressed states.

PACS number~s!: 42.50.Hz, 42.50.Vk, 03.65.Bz
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I. INTRODUCTION

The temporal behavior of quantum-mechanical syste
can be strongly influenced by the action of an external ag
A good example is the quantum Zeno effect@1,2#, where the
quantum-mechanical evolution of a given~not necessarily
unstable! state is slowed down~or even halted! by perform-
ing a series of measurements that ascertain whether the
tem is still in its initial state. This peculiar effect is histor
cally associated and usually ascribed to what we could ca
‘‘pulsed’’ quantum-mechanical observation on the syste
However, it can also be obtained by performing a ‘‘contin
ous’’ observation of the quantum state, e.g., by means o
intense field@3,4#.

Most experiment that have been performed or propose
order to modify the quantum-mechanical evolution law ma
use of oscillating systems@5–9#. On the other hand, it would
be interesting to understand whether and to which extent
evolution law of a bona fide ‘‘unstable’’ system can be
changed. In order to discuss the evolution of genuine
stable systems one usually makes use of the Weissk
Wigner approximation@10#, that ascribes the main propertie
of the decay law to a pole located near the real axis of
complex energy plane. This yields the Fermi ‘‘golden rule
@11#. In this paper we shall investigate the possibility that t
lifetime of an unstable quantum system can be modified
the presence of a very intense electromagnetic field. We s
look at the temporal behavior of a three-level system~such as
an atom or a molecule!, where level No. 1 is the ground sta
and levels No. 2, No. 3 are two excited states~see Fig. 1!.
The system is initially prepared in level No. 2 and if it fo
lows its natural evolution, it will decay to level No. 1. Th
decay will be~approximately! exponential and characterize
by a certain lifetime, that can be calculated from the Fe
golden rule. But if one shines on the system an intense l
field, tuned at the transition frequency 3-1, the evolution c
be different. This problem was investigated in Ref.@3#,
where it was found that the lifetime of the initial state d
pends on the intensity of the laser field. In the limit of
extremely intense field, the initial state undergoes a ‘‘co
tinuous observation’’ and the decay should be considera
slowed down~quantum Zeno effect!. The aim of this paper is
to study this effect in more detail and discuss a new phen
enon@12#: we shall see that for physically sensible values
1050-2947/2000/62~2!/023804~14!/$15.00 62 0238
s
t.

ys-

a
.

-
n

in
e

e

-
f-

e

e
y
all

i
er
n

-
ly

-
f

the intensity of the laser, the decay can beenhanced, rather
than hindered. This can be viewed as an ‘‘inverse’’ quant
Zeno effect. An important role in this context will be playe
by the specific properties of the interaction Hamiltonian,
particular by the ‘‘form factor’’ of the interaction.

Other authors have studied physical effects that are
lated to those we shall discuss. The features of the ma
elements of the interaction Hamiltonian were investigated
the context of the quantum Zeno effect by Kofman and K
izki @13#, who also emphasized that different quantum Ze
regimes are present. Plenio, Knight and Thompson discu
the quantum Zeno effect due to ‘‘continuous’’ measureme
and considered several physical systems whose evolutio
modified by an external field@14#. There is also work by
Kraus on a similar subject@15#. Finally, Zhu, Narducci and
Scully @16# investigated the electromagnetic-induced tra
parency in a context similar to that considered in this pap
In some sense, our present investigation ‘‘blends’’ the
studies, by taking into account the important role played
the matrix elements of the interaction. This will enable us
discuss some new features of the evolution that have
been considered before. We shall look at this phenome
from several perspectives, by first solving the tim
dependent Schro¨dinger equation, then looking at the spe
trum of the emitted photons and finally constructing t
dressed~Fano! states.

Our analysis will be performed within the Weisskop
Wigner approximation and no deviations at short@1,17,18#
and long@19# times will be considered. The features of th
quantum-mechanical evolution are summarized in Ref.@20#
and have a1ready been discussed within a quantum field
oretical framework@21–24#, where several subtle effect
have to be properly taken into account.

FIG. 1. Level configuration.
©2000 The American Physical Society04-1
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P. FACCHI AND S. PASCAZIO PHYSICAL REVIEW A62 023804
This paper is organized as follows. In Sec. II we introdu
the three-level system bathed in the laser field. Its temp
evolution is studied in Sec. III. The spectrum of the photo
emitted during the evolution is evaluated in Sec. IV. Sect
V contains a discussion in terms of dressed states, Sec. V
analysis of the influence of additional levels on the lifetim
and Sec. VII some concluding remarks.

II. PRELIMINARIES AND DEFINITIONS

We consider the Hamiltonian (\5c51) @3#:

H5H01H int

5v0u2&^2u1V0u3&^3u1(
k,l

vkakl
† akl

1(
k,l

~fklakl
† u1&^2u1fkl* aklu2&^1u!

1(
k,l

~Fklakl
† u1&^3u1Fkl* aklu3&^1u!, ~1!

where the first two terms are the free Hamiltonian of t
three-level atom@whose statesu i & ( i 51,2,3) have energie
E150, v05E22E1.0, V05E32E1.0#, the third term is
the free Hamiltonian of the EM field and the last two term
describe the 1↔2 and 1↔3 transitions in the rotating wav
approximation, respectively~see Fig. 1!. Statesu2& and u3&
are chosen so that no transition between them is poss
~e.g., because of selection rules!. The matrix elements of the
interaction Hamiltonian read

fkl5
e

A2e0Vv
E d3x e2 ik•xekl* • j12~x!,

~2!

Fkl5
e

A2e0Vv
E d3x e2 ik•xekl* • j13~x!,

where2e is the electron charge,e0 the vacuum permittivity,
V the volume of the box,v5uku, ekl the photon polarization
and jfi the transition current of the radiating system. For e
ample, in the case of an electron in an external field, we h
jfi5c f

†ac i where c i and c f are the wave functions of th
initial and final state, respectively, anda is the vector of
Dirac matrices. For the sake of generality we are using r
tivistic matrix elements, but our analysis can also be p
formed with nonrelativistic onesjfi5c f* pc i /me , wherep/me

is the electron velocity.
We shall concentrate our attention on a three-level sys

bathed in a continuous laser beam, whose photons have
mentum k0 (uk0u5V0) and polarizationl0, and assume
throughout this paper, that

fk0l0
50, ~3!

i.e., the laser does not interact with stateu2&. Let the laser be
in a coherent stateua0& with a very large average numbe
02380
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N̄05ua0u2 of k0-photons in volumeV @we will eventually
consider the thermodynamical limit; see Eq.~26!#. In the
picture defined by the unitary operator

T~ t !5exp~a0* eiV0tak0l0
2a0e2 iV0tak0l0

† !, ~4!

the Hamiltonian~1! reads

H~ t !5THT†1 i ṪT†5H1~Fk0l0
a0* eiV0tu1&^3u

1Fk0l0
* a0e2 iV0tu3&^1u!. ~5!

In this picture, thek0 mode is initially in the vacuum state
@25# and by noting that forN̄0@1

u^1;0kluH~ t !u3;0kl&u5AN̄0uFk0l0
u

@u^1;1kluH~ t !u3;0kl&u

5uFklu, ~6!

the Hamiltonian~5! becomes

H.v0u2&^2u1V0u3&^3u1(
k,l

vkakl
† akl

1( 8
k,l

~fklakl
† u1&^2u1fkl* aklu2&^1u!

1~Fk0l0
a0* eiV0tu1&^3u1Fk0l0

* a0e2 iV0tu3&^1u!,

~7!

where a prime means that the summation does not inc
(k0 ,l0) @due to hypothesis~3!#. In the above equations an
henceforth, the vectoru i ;nkl& represents a state in which th
atom is in stateu i & and the electromagnetic field in a sta
with nkl (k,l) photons. We shall analyze the behavior of t
system under the action of a continuous laser beam of h
intensity. Under these conditions, level configurations sim
lar to that of Fig. 1 give rise to the phenomenon of induc
transparency@26#, for laser beams of sufficiently high inten
sities. Our interest, however, will be focused onunstable
initial states: we shall study the temporal behavior of le
No. 2 when the system is shined by a continuous lase
intensity comparable to those used to obtain induced tra
parency.

Notice that in Eq.~7! the spontaneous decay 3→1 has
been neglected with respect to the stimulated transition,

cause of the large factorAN̄0@1 in Eq. ~6!. However, since
our interest is primarily in the first step of this proces
namely the decay 2→1, these smaller, later effects~of the
order of 1/N0) do not change our conclusions.

The operator

N5u2&^2u1( 8
k,l

akl
† akl , ~8!

satisfies
4-2
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@H,N#50, ~9!

which implies the conservation of the total number of ph
tons plus the atomic excitation~Tamm-Dancoff approxima-
tion @27#!. The Hilbert space splits therefore into sectors t
are invariant under the action of the Hamiltonian: in o
case, the system evolves in the subspace labeled by th
genvalueN51 and the analysis can be restricted to this s
tor @28#.

III. TEMPORAL EVOLUTION

We will study the temporal evolution by solving the tim
dependent Schro¨dinger equation

i
d

dt
uc~ t !&5H~ t !uc~ t !&, ~10!

where the states of the total system in the sectorN51 read

uc~ t !&5x~ t !u2;0&1( 8
k,l

ykl~ t !u1;1kl&

1( 8
k,l

zkl~ t !e2 iV0tu3;1kl& ~11!

and are normalized:

^c~ t !uc~ t !&5ux~ t !u21( 8
k,l

uyk,l~ t !u21( 8
k,l

uzk,l~ t !u251

~;t !. ~12!

By inserting Eq.~11! in Eq. ~10! one obtains the equations o
motion

i ẋ~ t !5v0x~ t !1( 8
k,l

fkl* ykl~ t !,

i ẏkl~ t !5fklx~ t !1vkykl~ t !1a0* Fk0l0
zkl~ t !, ~13!

i żkl~ t !5a0Fk0l0
* ykl~ t !1vkzkl~ t !,

where a dot denotes time derivative. At timet50 we prepare
our system in the state

uc~0!&5u2;0& ⇔ x~0!51, ykl~0!50, zkl~0!50,
~14!

which is an eigenstate of the free Hamiltonian

H0uc~0!&5H0u2;0&5v0u2;0&. ~15!

Incidentally, we stress that the choice of the initial state
different from that of Ref.@5#, where the three-level atom i
initially in the ground state~No. 1! and a Rabi oscillation to
level No. 2, provoked by an rf field, is inhibited by a pulse
laser, resonating between levels No. 1 and No. 3, that
forms the ‘‘observation’’ of level No. 1. In our case, th
atom is initially in level No. 2, so that it canspontaneously
02380
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decay to level No. 1, and it is ‘‘continuously observed’’ by
continuous laser at the 1-3 frequency@3#: As soon as the
system has decayed to level No. 1, the~intense! laser pro-
vokes the 1→3 transition.~The irreversibility inherent in the
act of observation is eventually brought in by the sponta
ous decay of level No. 3.! This brings us conceptually close
to the seminal formulation@1,2# of quantum Zeno effect.

By Laplace transforming the system of differential equ
tions ~13! and incorporating the initial condition~14! we get
the algebraic system

is x̃~s!5v0x̃~s!1( 8
k,l

fkl* ỹkl~s!1 i ,

is ỹkl~s!5fklx̃~s!1vkỹkl~s!1a0* Fk0l0
z̃kl~s!, ~16!

is z̃kl~s!5a0Fk0l0
* ỹkl~s!1vkz̃kl~s!,

where

f̃ ~s!5E
0

`

dt e2stf ~ t !, f ~ t !5
1

2p i EB
ds etsf̃ ~s!, ~17!

the Bromwich path B being a vertical line Res5const in the
half plane of convergence of the Laplace transform.@Very
similar equations of motion can be obtained by assuming
the external~laser! field is initially in a number stateN0, with
N0 very large@12#. See also the discussion in Sec. V.# It is
straightforward to obtain

x̃~s!5
1

s1 iv01Q~B,s!
, ~18!

ỹkl~s!5
2 ifkl~s1 ivk!

~s1 ivk!
21B2

x̃~s!, ~19!

z̃kl~s!52

AN̄0Fk0l0
* fkl

~s1 ivk!
21B2

x̃~s!, ~20!

with

Q~B,s!5(
k,l

ufklu2
s1 ivk

~s1 ivk!
21B2

~21!

and where

B25N̄0uFk0l0
u2 ~22!

is proportional to the intensity of the laser field and can
viewed as the ‘‘strength’’ of the observation performed
the laser beam on level No. 2@3#. See the paragraph follow
ing Eq. ~15!. Note that the couplingB is related to the Rab
frequency by the simple relationB5VRabi/2.

In the continuum limit (V→`), the matrix elements scal
as follows:
4-3
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lim
V→`

Vv2

~2p!3 (
l
E dVufklu2[g2v0x2~v!, ~23!

where V is the solid angle. The~dimensionless! function
x(v) and coupling constantg have the following genera
properties, discussed in Appendix A:

x2~v!}H v2 j 71 if v!L,

v2b if v@L,
~24!

g25a~v0 /L!2 j 1171, ~25!

wherej is the total angular momentum of the photon emitt
in the 2→1 transition,7 represent electric and magnet
transitions, respectively,b(.1) is a constant,a the fine
structure constant andL a natural cutoff~of the order of the
inverse size of the emitting system, e.g., the Bohr radius
an atom!, which determines the range of the atomic or m
lecular form factor@29#.

In order to scale the quantityB, we take the limit of very
large cavity, by keeping the density ofV0 photons in the
cavity constant:

V→`, N̄0→`, with
N̄0

V
5n05const ~26!

and obtain from Eq.~22!

B25n0VuFk0l0
u25~2p!3n0uwl0

~k0!u2, ~27!

wherew[FV1/2/(2p)3/2 is the scaled matrix element of th
1-3 transition. As we shall see, in order to affect significan
the lifetime of level No. 2, we shall need a high value ofB,
namely, a laser beam of high intensity. It is therefore int
esting to consider a 1-3 transition of the dipole type,
which case the above formula reads

B252paV0uek0l0
* •x13u2n0 , ~28!

wherex13 is the dipole matrix element.

A. Laser off

Let us first look at the caseB50. The laser is off and we
expect to recover the well-known physics of the spontane
emission a two-level system prepared in an excited state
coupled to the vacuum of the radiation field. In this ca
Q(0,s) is nothing but the self-energy function

Q~s![Q~0,s!5(
k,l

ufklu2
1

s1 ivk
, ~29!

which becomes, in the continuum limit

Q~s![g2v0q~s![2 ig2v0E
0

`

dv
x2~v!

v2 is
, ~30!

wherex is defined in Eq.~23!. The functionx̃(s) in Eq. ~18!
~with B50) has a logarithmic branch cut, extending from
02380
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to 2 i`, and no singularities on the first Riemann she
~physical sheet! @22#. On the other hand, it has a simple po
on the second Riemann sheet, that is the solution of the e
tion

s1 iv01g2v0qII~s!50, ~31!

where

qII~s!5q~se22p i !5q~s!12px2~ is! ~32!

is the determination ofq(s) on the second Riemann shee
We note thatg2q(s) is O(g2), so that the pole can be foun
perturbatively: by expandingqII(s) around2 iv0 we get a
power series, whose radius of convergence isRc5v0 be-
cause of the branch point at the origin. The circle of conv
gence lies half on the first Riemann sheet and half on
second sheet~Fig. 2!. The pole is well inside the conver
gence circle, becauseuspole1 iv0u;g2v0!Rc , and we can
write

spole52 iv02g2v0qII~2 iv0201!1O~g4!

52 iv02g2v0q~2 iv0101!1O~g4!, ~33!

becauseqII(s) is the analytic continuation ofq(s) below the
branch cut. By using the formula

lim
«→01

1

x6 i«
5P

1

x
7 ipd~x!, ~34!

one gets from Eq.~30!

FIG. 2. Cut and pole in thes plane (B50) and convergence
circle for the expansion ofQ(s) arounds52 iv0. I and II are the
first and second Riemann sheets, respectively. The pole is on
second Riemann sheet, at a distanceO(g2) from 2 iv0.
4-4
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FIG. 3. Cuts and pole in the
s-plane (BÞ0) and convergence
circle for the expansion ofQ(B,s)
arounds52 iv0. I , II, and III are
the first, second, and third Rie
mann sheets, respectively.~a! B
,v0. ~b! B.v0. In both cases,
the pole is at a distanceO(g2)
from 2 iv0.
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q~2 ih101!52 i E
0

`

dv x2~v!
1

v2h2 i01

5px2~h!u~h!2 i PE
0

`

dv x2~v!
1

v2h

~35!

and by setting

spole52 iv01 iDE2
g

2
, ~36!

one obtains

g52pg2v0x2~v0!1O~g4!,

DE5g2v0PE
0

`

dv
x2~v!

v2v0
1O~g4!, ~37!

which are the Fermi ‘‘golden rule’’ and the second ord
correction to the energy of level No. 2.

The Weisskopf-Wigner approximation@10# consists in ne-
glecting all branch cut contributions and approximating
self-energy function with a constant~its value in the pole!,
that is

x̃~s!5
1

s1 iv01Q~s!
.

1

s1 iv01QII~spole!
5

1

s2spole
,

~38!

where in the last equality we used the pole equation~31!.
This yields a purely exponential behavior,x(t)5exp(spolet),
without short-time~and long-time! corrections. As is well
known, the latter are all contained in the neglected bra
cut contribution.

B. Laser on

We turn now our attention to the situation with the las
switched on (BÞ0) and tuned at the 1-3 transition frequen
V0. The self energy functionQ(B,s) in Eq. ~21! depends on
B and can be written in terms of the self energy functi
02380
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Q(s) in absence of laser field@Eq. ~29!#, by making use of
the following remarkable property:

Q~B,s!5
1

2 (
k,l

ufklu2S 1

s1 ivk1 iB
1

1

s1 ivk2 iB D
5

1

2
@Q~s1 iB !1Q~s2 iB !#. ~39!

Notice, incidentally, that in the continuum limit (V→`), due
to the above formula,Q(B,s) scales just asQ(s). The posi-
tion of the polespole ~and as a consequence the lifetimetE
[g21521/2 Respole) depends on the value ofB. There are
now two branch cuts in the complexs plane, due to the two
terms in Eq.~39!. They lie over the imaginary axis, along
(2 i`,2 iB# and (2 i`,1 iB#.

The pole satisfies the equation

s1 iv01Q~B,s!50, ~40!

whereQ(B,s) is of orderg2, as before, and can again b
expanded in power series arounds52 iv0, in order to find
the pole perturbatively. However, this time one has to cho
the right determination of the functionQ(B,s). Two cases
are mathematically possible:~a! The branch point2 iB is
situated above2 iv0, so that2 iv0 lies on both cuts, see
Fig. 3~a!; ~b! the branch point2 iB is situated below2 iv0,
so that2 iv0 lies only on the upper branch cut, see Fig. 3~b!.
We notice that, although mathematically conceivable, the
ter case (B.v0) cannot be tackled within our approxima
tions, for a number of additional effects would then have
be considered: multiphoton processes would take place,
other atomic levels would start to play an important role a
our approach~three-level atom in the rotating wave approx
mation! would no longer be valid. We therefore restrict o
attention to values ofB that are high~of the same order of
magnitude as those utilized in electromagnetic induced tra
parency!, but not extremely high, so that our starting a
proximations still apply.

In case~a!, i.e., for B,v0, the pole is on the third Rie-
mann sheet~under both cuts! and the power series converge
in a circle lying half on the first and half on the third Rie
mann sheet, within a convergence radiusRc5v02B, which
4-5
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FIG. 4. The decay rateg(B)
vs B, for electric transitions with
j 51,2,3;g(B) is in unitsg andB
in units v0. Notice the different
scales on the vertical axis.
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decreases asB increases@Fig. 3~a!#. For the sake of com-
pleteness we also notice that in case~b!, i.e., for B.v0, the
pole would be on the second Riemann sheet~under the upper
cut only! and the power series would converge in a cir
lying half on the first and half on the second Riemann sh
within a convergence radiusRc5B2v0, which increases
with B @Fig. 3~b!#.

In either cases we can write, foruspole1 iv0u,Rc5
uB2v0u,

spole52 iv02
1

2
$Q@2 i ~v01B!101#

1Q@2 i ~v02B!101#%1O~g4!

52 iv02
1

2
g2v0$q@2 i ~v01B!101#

1q@2 i ~v02B!101#%1O~g4!. ~41!

Equation~41! enables us to analyze the temporal behavio
state No. 2.

C. Decay rate vsB

We write, as in Eq.~36!,

spole52 iv01 iDE~B!2
g~B!

2
. ~42!

Substituting Eq.~35! into Eq. ~41! and taking the real part
one obtains the following expression for the decay rate:

g~B!5pg2v0@x2~v01B!1x2~v02B!u~v02B!#

1O~g4!. ~43!

On the other hand, by Eq.~37!, one can write

g~B!5g
x2~v01B!1x2~v02B!u~v02B!

2x2~v0!
1O~g4!.

~44!

This is the central result of this paper and involves no
proximations: Equation~44! expresses the ‘‘new’’ lifetime
g(B)21, when the system is bathed in an intense laser fi
02380
t,

f
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B, in terms of the ‘‘ordinary’’ lifetimeg21, when there is no
laser field. By taking into account the general behavior~24!
of the matrix elementsx2(v) and substituting into Eq.~44!,
one gets toO(g4)

g~B!.
g

2 F S 11
B

v0
D 2 j 71

1S 12
B

v0
D 2 j 71

u~v02B!G
(B!L), ~45!

where 7 refers to 1-2 transitions of electric and magne
type, respectively. Observe that, sinceL; inverse Bohr ra-
dius, only the caseB,v0!L is the physically relevant one
@12#. The decay rate is profoundly modified by the presen
of the laser field. Its behavior is shown in Fig. 4 for a fe
values ofj. In general, forj .1 ~1-2 transitions of electric
quadrupole, magnetic dipole or higher!, the decay rateg(B)
increases withB, so that the lifetimeg(B)21 decreases asB
is increased. If one looks atB as the strength of the ‘‘obser
vation’’ performed by the laser beam on level No. 2@3#, one
can view this phenomenon as an ‘‘inverse’’ quantum Ze
effect, for decay isenhanced~rather than suppressed! by
observation.

As we shall see in Secs. IV and V, the emitted photo
have different frequencies@for they correspond to decay ont
different dressed~Fano! states#. By selecting the photon
wavelength~i.e., by means of filters!, one could therefore
also measure the different contributions to the inverse l
time in Eqs.~44!,~45!. We shall come back to this point late

As already emphasized, Eq.~45! is valid for B!L. In the
opposite~unphysical! caseB@L, by Eqs.~24! and~44!, one
gets toO(g4)

g~B!.
g

2

x2~B!

x2~v0!
}~B/L!2b ~B@L!. ~46!

This result is similar to that obtained in Ref.@3#. If such high
values ofB were experimentally obtainable, the decay wou
be considerably hindered andB could be properly viewed as
the ‘‘strength’’ of the observation performed by the las
field on level no. 2~quantum Zeno effect!. However, in such
a case, many additional effects would have to be conside
and our analysis should be modified in order to take th
4-6
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into account. A similar remark was made by Kofman a
Kurizki in a different context@13#.

A final remark is now in order. If one would use th
approximation~38! in Eq. ~39!, in order to evaluate the new
lifetime, i.e., if one setsQ(s)5Q(spole)5const, one would
obtain Q(B,s)5Q(s)5Q(spole), i.e., no B dependence
Therefore, the effect we are discussing is ultimately due
the nonexponential contributions arising from the cut. In p
ticular, viewed from the perspective of the time domain, t
effect is ascribable to the quadratic short-time behavior
the 2→1 decay.

D. Estimates

We saw in the previous subsection that the ratioB/v0 is
the relevant quantity in the evaluation of the modified lif
time. Let us therefore try to get a rough feeling for the ma
nitude of the relevant physical parameters. In order to af
significantly the lifetime of level No. 2, we have to look
rather large values ofB: for instance at 1-3 transition of th
electric dipole type. In such a case, Eq.~28! applies

B252paV0uek0l0
* •x13u2n0 . ~47!

Considering the angle average

^uek0l0
* •x13u2&5

1

3
ux13u2 ~48!

and remembering that the decay rate is

G135
4

3
aux13u2V0

3 , ~49!

we obtain

B25
p

2
n0

G13

V0
2

, ~50!

which, reinsertingc’s and\ ’s, reads

B25
p

2
n0\V0

c3

V0
3
\G135~n0\V0!

lL
3

16p2
~\G13!, ~51!

where lL52pc/V0. The quantityB2 has dimensions o
squared energy and is given by the product of the energ
the laser field contained in the volumelL

3/16p2 times the
energy spread of the 1-3 transitionV0. ThereforeB depends
on both laser and atomic system. Observe thatn0lL

3 is the
number of laser photons contained in the volumelL

3 .
In terms of laser powerP and laser spot areaA, Eq. ~51!

reads

B25
P

cA

lL
3

16p2
~\G13!5132

PlL
3

A
~\G13! eV2, ~52!

whereP is expressed in Watt,lL in mm, A in mm2 and\G
in eV. In Eq. ~52! the quantityB is expressed in suitabl
units and can be easily compared tov0 @the ratioB/v0 being
02380
o
-
s
f

-
ct

of

the relevant quantity in Eq.~45!#. For laser intensities tha
are routinely used in the study of electromagnetic induc
transparency, the effect should be experimentally observa
For a quick comparison remember thatB is just half the Rabi
frequency of the resonant transition 1-3@see paragraph fol-
lowing Eq. ~22!#.

IV. PHOTON SPECTRUM

It is interesting to look at the spectrum of the emitt
photons. It is easy to check that, in the Weisskopf-Wign
approximation, the survival probabilityz^c(0)uc(t)& z2
5ux(t)u2 decreases exponentially with time. The standa
way to obtain this result is to neglect the cut contribution
the complexs plane, or equivalently, to substitute in Eq.~18!
the pole determination of the self-energy function

x̃~s!5
1

s1 iv01Q~B,s!
'

1

s1 iv01Q~B,spole!
5

1

s2spole
,

~53!

from which one gets

x~ t !5exp~spolet !5expS 2 i v̄0t2
g~B!

2
t D , ~54!

where v̄05v02DE(B). In this approximation, for any
value ofB, the spectrum of the emitted photons is Loren
ian. The proof is straightforward and is given in Appendix
One finds that, forB50, the probability to emit a photon in
the range (v,v1dv) reads

dPB505g2v0x2~v! f L~v2v̄0 ;g!dv, ~55!

where

f L~v;g!5
1

v21g2/4
. ~56!

On the other hand, whenBÞ0 one gets

FIG. 5. The spectrum~57! of the emitted photons. The height o
the Lorentzians is proportional to the matrix elementx2(v) ~dashed
line!. We chose an electric quadrupole transition, withj 52 andg

51021v̄0, and used arbitrary units on the vertical axis.~a! B50;

~b! B5v̄0/5; note that from Eq.~45! g(B)5(28/25)g.
4-7
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dPB5g2v0x2~v!
1

2
$ f L@v2v̄02B;g~B!#

1 f L@v2v̄01B;g~B!#%dv. ~57!

The emission probability is given by the sum of two Loren
zians, centered inv̄06B. We see that the emission probab
ity of a photon of frequencyv̄01B (v̄02B) increases~de-
creases! with B ~Fig. 5!. The linewidths are modified
according to Eq.~45!. When B reaches the ‘‘threshold’’
value v̄0, only the photon of higher frequency (v̄01B) is
emitted~with increasing probability vsB).

Photons of different frequencies are therefore emit
with different rates. We shall understand better the featu
of the emission in the next section, by looking at the dres
states of the system.

V. DRESSED STATES AND LINKS WITH INDUCED
TRANSPARENCY

It is useful and interesting to look at our results from
different perspective, by analyzing the modifications of t
energy levels provoked by the laser field. For simplici
since the average numberN̄0 of k0 photons in the total vol-
ume V can be considered very large, we shall perform o
analysis in terms of number~rather than coherent! states of
the electromagnetic field. In this limit,

^1;0kl ,N0uH intu3;0kl ,N021&

5AN0Fk0l0

@^1;1kl ,N021uH intu3;0kl ,N021&

5Fkl , ~58!

;(k,l)Þ(k0 ,l0). @This is equivalent to Eq.~6!.# In the
above equation and henceforth, the vectoru i ;nkl ,M0& repre-
sents an atom in stateu i &, with nkl (k,l) photons andM0
laser photons.

In the above approximation, the Hamiltonian~1! becomes

H.v0u2&^2u1V0u3&^3u1(
k,l

vkakl
† akl

1( 8
k,l

~fklakl
† u1&^2u1fkl* aklu2&^1u!

1~Fk0l0
ak0l0

† u1&^3u1Fk0l0
* ak0l0

u3&^1u!, ~59!

where a prime means that the summation does not inc
(k0 ,l0) @due to hypothesis~3!#. In addition to Eq.~8!, there
is now another conserved quantity: indeed the operator

N05u3&^3u1ak0l0

† ak0l0
~60!

satisfies

@H,N0#5@N0 ,N#50. ~61!
02380
d
s
d

e
,

r

de

In this case, the system evolves in the subspace labele
the two eigenvaluesN51 andN05N0, whose states read

uc~ t !&5x~ t !u2;0,N0&1( 8
k,l

ykl~ t !u1;1kl ,N0&

1( 8
k,l

zkl~ t !u3;1kl ,N021&. ~62!

By using the Hamiltonian~59! and the states~62! and iden-
tifying N0 with N̄05ua0u2, the Schro¨dinger equation yields
again the equations of motion~13!, obtained by assuming a
coherent state for the laser mode. Our analysis is there
independent of the statistics of the driving field, provided
is sufficiently intense, and the~convenient! use of number
states is completely justified.

Energy conservation implies that if there are two emitt
photons with different energies~as we saw in the previou
section!, there are two levels of different energies to whi
the atom can decay. This can be seen by considering
laser-dressed~Fano! atomic states@30#. The shift of the
dressed states can be obtained directly from the structur
the Hamiltonian~59!. In the sectorN05N0, the operatorN0
is proportional to the unit operator, the constant of prop
tionality being its eigenvalue. Hence one can write t
Hamiltonian in the following form:

H5H2V0N01V0N0 , ~63!

which, by the settingE11N0V050, reads

H5H01H int

5v0u2&^2u1( 8
k,l

vkakl
† akl

1( 8
k,l

~fklakl
† u1&^2u1fkl* aklu2&^1u!

1~Fk0l0
ak0l0

† u1&^3u1Fk0l0
* ak0l0

u3&^1u!. ~64!

On the other hand, in the sectorHNN0
with N51 andN0

5N0, the last term becomes

~Fk0l0
ak0l0

† u1&^3u1Fk0l0
* ak0l0

u3&^1u!

5~Fk0l0
AN0u1&^3u1Fk0l0

* AN0u3&^1u!. ~65!

Let us diagonalize this operator, i.e. let us look for two no
interacting statesu1& andu2& which are linear combinations
of the old statesu1& and u3&. To this end we write

u1&5
1

A2
~ u1&1eidu2&),

u3&5
eia

A2
~ u1&2eidu2&), ~66!

with u1& and u2& orthonormal:
4-8
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^1u1&5^2u2&51, ^1u2&50. ~67!

Plugging Eq.~66! into Eq.~64!, the interaction term become

H int5( 8
k,l

F S fkl

A2
akl

† u1&^2u1
fkl*

A2
aklu2&^1u D

1S fkl

A2
eidakl

† u2&^2u1
fkl*

A2
e2 idaklu2&^2u D G

1BFeib

2
e2 ia(u1&1eidu2&)(^1u2e2 id^2u!1H.c.G ,

~68!

where we have setFk0l0
AN05Beib. Rearranging the las

term

BFei (b2a)

2
~ u1&^1u2u2&^2u1eidu2&^1u

2e2 idu1&^2u!1
e2 i (b2a)

2
~ u1&^1u

2u2&^2u1e2 idu1&^2u2eidu2&^1u!G
5B cos~b2a!~ u1&^1u2u2&^2u!

1 iB sin~b2a!~eidu2&^1u2e2 idu1&^2u!,

~69!

and settinga5b the two statesu1& and u2& decouple and
one gets

H int5( 8
k,l

F S fkl

A2
akl

† u1&^2u1
fkl*

A2
aklu2&^1u D

1S fkl

A2
eidakl

† u2&^2u1
fkl*

A2
e2 idaklu2&^2u D G

1Bu1&^1u2Bu2&^2u. ~70!

Therefore we can write

H01H int5H081H int8 , ~71!

where the primed free and interaction Hamiltonians re
respectively,

H085v0u2&^2u1Bu1&^1u2Bu2&^2u1( 8
k,l

vkakl
† akl ,

~72!H int8 5( 8
k,l

F S fkl

A2
akl

† u1&^2u1
fkl*

A2
aklu2&^1u D

1S fkl

A2
akl

† u2&^2u1
fkl*

A2
aklu2&^2u D G
02380
,

and we setd50. We see that the laser dresses the statesu1&
and u3&, which ~if one includes theV0 photon! are degener-
ate @with energyE50, due to the choice of the zero of en
ergy: see line after Eq.~63!#. The dressed statesu1& and
u2& have energies1B and 2B and interact with stateu2&
with a coupling fkl /A2. Since 2B5VRabi these are the
well-known Autler-Townes doublet@31#.

Therefore, by applying the Fermi golden rule, the dec
rates into the dressed states read

g152pg2v0

x2~v02B!

2
, g252pg2v0

x2~v01B!

2
~73!

and the total decay rate of stateu2& is given by their sum

g5g11g2 , ~74!

which yields Eq.~43!. One sees why there is a threshold
B5v0: For B,v0, the energies of both dressed statesu6&
are lower than that of the initial stateu2& @Fig. 6~a!#. The
decay rateg2 increases withB, whereasg1 decreases with
B; their sumg increases withB. These two decays~and their
lifetimes! could be easily distinguished by selecting the fr
quencies of the emitted photons, e.g., by means of filters

We also notice, for completeness, that whenB.v0, the
energy of the dressed stateu1& is larger than that of stateu2&
and this decay channel disappears@Fig. 6~b!#. As repeatedly
emphasized, this situation would require a different analy
for additional effects would play an important role.

Finally, let us emphasize that if stateu2& werebelowstate
u1&, our system would become a three-level system in a l
der configuration, and the shift of the dressed states wo
give rise to electromagnetically induced transparency@26#.
The situation we consider and the laser power required
bring these effects to light are therefore similar to those u
in induced transparency.

VI. INFLUENCE OF OTHER LEVELS

Let us now see how our results are modified by the pr
ence of off-resonant levels. To this end we generalize
three-level Hamiltonian~7! by including other off-resonan
levels u j & ( j 54, . . . ,N) in our analysis:

FIG. 6. Shift of the dressed statesu1& and u2& vs B. ~a! For
B,v0 there are two decay channels, withg2.g1 . ~b! For B
.v0 level u1& is above levelu2& and only theg2 decay channel
remains.
4-9
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H5v0u2&^2u1(
j 53

N

V j u j &^ j u1(
k,l

vkakl
† akl

1( 8
k,l

~fklakl
† u1&^2u1fkl* aklu2&^1u!

1(
j 53

N

~F ja0* eiV3tu1&^ j u1F j* a0e2 iV3tu j &^1u!,

~75!

whereF j5F j ,k0l0
are the matrix elements of the 1↔ j tran-

sitions andV j5Ej2E1 the energy of levelu j & @in particular,
F3,k0l0

5Fk0l0
andV35V0 in Eq. ~7!#.

By a calculation similar to that used in Sec. III one ge
again the expression~18! for the Laplace trasform of the
survival amplitude, with the new self-energy function mod
fied by the presence of other levels

Q~B,s!5(
k,l

ufklu2

s1 ivk1B2( j 53
N @ f j /~s1 id j1 ivk!#

,

~76!

where f j5uF j u2/uF3u2 andd j5V j2V3.
The denominator ofQ(B,s) is now a polynomial of order

N21 @when N53 one reobtains Eq.~21! with a quadratic
polynomial#. Hence the newQ(B,s) in Eq. ~76! hasN21
branching points and the property~39! is generalized to

Q~B,s!5c1Q~s1 is1!1c2Q~s1 is2!

1(
j 54

N

cjQ~s1 is j !, ~77!

where$2 is1 ,2 is2 ,2 is j% ( j 54, . . . ,N) are the branch-
ing points, i.e., the zeroes of the denominator ofQ(B,s). In
this case one has to solve an algebraic equation ofN
21)th order, whose zeroes do not have in general an a
lytical expression. We seek a perturbative solution inB. It is
lengthy, but straightforward, to obtain up to second orde
B

5 s656B2B2(
j 54

N
f j

2d j
,

s j5d j1B2
f j

d j
,

5 c65 1
27B(

j 54

N
f j

4d j
2B2(

j 54

N
f j

2d j
2

,

cj5B2
f j

d j
2

.

~78!

From the above equations we see that the presence of
resonant levels modifies the energiess656B of the two
dressed states by a shift of orderB2 and createsN23 new
02380
a-

n

ff-

dressed states with energiesd j.V j2V3, whose contribu-
tion to the self-energy function is of orderB2.

By starting with the self-energy function~77! and looking
for the location of the pole one obtains instead of Eq.~45!
the following expression for the modified decay rate:

gmany~B!5gFc2S 12
s2

v0
D k

1c1S 12
s1

v0
D k

u~v02s1!

1 (
l 54

N

cl S 12
s l

v0
D k

u~v02s l !G , ~79!

wherek52 j 71.
By substituting the expressions~78! for the zeroes and the

coefficients, valid up to second order inB, into Eq.~79! one
gets

gmany~B!.gH 11k
B2

v0
2

1
B2

v0
2 (

l 54

N

f l F S k
v0

d l

2
v0

2

d l
2 D

2S v0

d l

2
v0

2

d l
2 D u~v02d l !G J

5g~B!1g
B2

v0
2 (

l 54

N

f l F S k
v0

d l

2
v0

2

d l
2 D

2S v0

d l

2
v0

2

d l
2 D u~v02d l !G1O~B3!, ~80!

whereg(B) is the decay rate~45! evaluated in the three-leve
approximation.

The above general expression can be evaluated in pr
cal cases of interest. For instance, by assuming that the
resonant levels are well separated from the three main lev
that is by assumingd l 5V l 2V3.v0, all dressed states
other thanu6& do not enter in Eq.~79!, because their ener
gies are larger than the energyv0 of level u2&, and Eq.~80!
reads

gmany~B!.gF11k
B2

v0
2 S 11 (

l 54

N

f l

v0

d l
D G.g~B* !,

~81!

where

B* 5BF11 (
l 54

N

f l

v0

2d l
G . ~82!

This is the correction sought: the effect of sufficiently o
resonant levels,d l .v0, modifies the decay rate~45!, calcu-
lated in the three-level approximation, simply by changingB
into B* . Observe thatf l is a rapidly decreasing function o
l ~polynomial fall-off in atomic systems!. Notice also that
B* .B, hence the presence of the other levels enhances
effect discussed in Sec. III.
4-10
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VII. CONCLUDING REMARKS

We have studied the evolution of an unstable system
der the action of an external~laser! field. The dynamical
evolution of level No. 2~initial state! is modified by the laser
field, tuned at the transition frequency 1-3. For physica
sensible values of the parameters, the decay of level No.
fasterwhen the laser is present. Equations~44!,~45! ~valid to
fourth order in the coupling constant! express the new life-
time as a function of the ‘‘natural’’ one and other paramet
characterizing the physical system. The initial state decay
the laser-dressed states with different lifetimes. We have
tained Eq.~44! in three different ways, deriving the Ferm
golden rule from the time-dependent Schro¨dinger equation,
by making use of Laplace transforms, as in Sec. III C,
starting from the dressed states, as in Eqs.~73!,~74!, or as a
consequence of a normalization condition, as in Eq.~B13!.
We also computed, in Sec. VI, the corrections due to o
resonant levels. We emphasize that, since we always wo
the Weisskopf-Wigner approximation, the conceptual pr
lems related to state preparation@22# and deviation from ex-
ponential behavior@20,1,18,19# were not considered.

In which sense is the phenomenon discussed in this p
an ‘‘inverse’’ quantum Zeno effect? If the situationB@L
were experimentally attainable, then decay would be h
dered and one could reasonably speak of a quantum Z
effect provoked by the ‘‘continuous’’ observation perform
on the system by the laser beam. On the other hand, w
B!L, one can still think in terms of a ‘‘continuous gaze’’ o
the laser on the system, but this enhances~rather than hinder!
decay. One should also notice that the inclusion of the sp
taneous decay of level No. 3 in the Hamiltonian~7! would
not change our conclusion~up to orderG13/B). The inter-
pretation in terms of an ‘‘inverse’’ quantum Zeno effect
appealing and enables one to look at the problem from
different perspective.
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APPENDIX A

We discuss here some general properties of the ma
elements and derive Eqs.~24!,~25! of the text. An exhaustive
analysis of some general features of the matrix elements
be found in Ref.@29#, but we will focus here on the behavio
at small and large values ofv. The matrix elements~2! of
the 1-2 interaction Hamiltonian read

fkl5A2pa

Vv E d3x e2 ik•xekl* • j12~x!, ~A1!

wherea5e2/4pe0 is the fine-structure constant. If the wav
length of the radiation is large compared to the sizea of the
system~i.e., v!L5a21) the main contribution to the inte
gral ~A1! comes from small values ofr 5uxu (vr !1). Ex-
panding the exponential (k5nv)
02380
n-

is

s
to
b-

r

-
in
-

er

-
no

en

n-

a

-

ix

an

exp~2 ik•x![exp~2 ivn•x!

512 iv~n•x!1
~2 iv!2

2!
~n•x!21•••

~A2!

and integrating term by term one obtains the asymptotic
ries

fkl;A2p

V
Aa

v(
s50

`

qnl
(s)vs, ~A3!

where

qnl
(s)[

~2 i !s

s! E d3x enl* • j12~x!~n•x!s ~A4!

(ekl5enl depends only on the direction ofk). Notice that
we explicitly wrote everyv dependence and thatq(s) does
not depend onv. Observe thatq(0) corresponds to electric
dipole transitionsE1, q(1) to electric quadrupoleE2 and/or
magnetic dipole transitionsM1, and so on. Hences5 j 2l,
wherel50 (l51) stands for magnetic~electric! transition
M j (E j). Since the dominant contribution to the integral
Eq. ~A4! comes from a region of sizea and the currentj 12 is
essentiallyv0 /a2, we get

qnl
(s)}v0as11, v0[E22E1 . ~A5!

If va!1 the dominant term in the series~A3! is the first
nonvanishing one, namely,

fkl;qnl
(r )v r}~v0a!~va!r , ~A6!

for somes5r . In the continuum limit one gets

(
k,l

ufklu2→ V

~2p!3 (
l
E d3kufklu2

5E
0

`

dv v2
V

~2p!3 (
l
E dVufklu2

5E
0

`

dv g2v0x2~v!, ~A7!

where we have defined

g2v0x2~v![ lim
V→`

v2V

~2p!3 (
l
E dVufklu2, ~A8!

as in Eq.~23!. From Eq.~A6! we obtain

ufklu25
2p

V

a

v U(
r 50

`

qnl
(r )v rU2

;
2p

V
auqnl

(r )u2v2r 21 ~A9!

and therefore
4-11
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g2v0x2~v!;
a

~2p!2 S (
l
E dVuqnl

(r )u2Dv2r 11

}@a~v0a!2r 12#v0S v

v0
D 2r 11

. ~A10!

Remembering that 2r 1152 j 22l1152 j 71, we obtain
the first equation in Eq.~24! and Eq.~25!.

On the other hand, if the wavelength is much smaller th
a ~i.e. v@L), we first rewrite Eq.~A1! in the form

fkl5A2pa

Vv E d3x e2 ivn•xekl* • j12~x!

5A2pa

Vv E dxi e2 ivxi j nl,12~xi!, ~A11!

where

j nl,12~xi![E d2x'enl* • j12~x! ~A12!

and x[xin1x' . According to the Riemann-Lesbegu
lemma, the integral in Eq.~A11! vanishes in thev→` limit.
In particular, if j nl,12(xi) is N times differentiable, integrat
ing by parts we get

fkl5A2pa

Vv

1

~ iv!NE dx e2 ivx
dN

dxN
j nl,12~x! ~A13!

and we can write

fkl5o~v2N21/2!, ~v@L! ~A14!

which yields the largev behavior of the second equation
Eq. ~24!. It goes without saying that ifj nl,12(xi) is an ana-
lytic function, thenfkl→0 more rapidly than any power
The second equation in Eq.~24! is therefore a conservativ
estimate.

APPENDIX B

In this appendix we shall analyze the spectrum of
emitted photons. We start by substituting Eq.~53! into Eqs.
~19! and ~20!, to obtain

ỹkl~s!5
2 ifkl~s1 ivk!

~s1 ivk!
21B2

1

s2spole
, ~B1!

z̃kl~s!52

AN̄0Fk0l0
* fkl

~s1 ivk!
21B2

1

s2spole
. ~B2!

Closing the Bromwich path with a semicircle in the ha
plane Res,0, we get

ykl~ t !5
1

2p i EG
ds etsỹkl~s!,
02380
n

e

zkl~ t !5
1

2p i EG
ds etsz̃kl~s!, ~B3!

which can be evaluated by summing over the integrand r
dues. The quantityuykl(t)u2„uzkl(t)u2

… represents the prob
ability that, at timet, the transition 2→1 (2→1→3) has
taken place. Whent→`, the contribution ofspole ~that has a
finite negative real part! is exponentially damped. This
leaves only the contributions of the poles in2 i (vk6B).

We look first at the caseB50 ~laser off!. One gets (zkl

50, ;t)

uykl~1`!u25
ufklu2

~vk2v̄0!21g2/4
~B4!

and, in the continuum limit~23!, the probability to emit a
photon in the frequency range (v,v1dv) reads

dPB505g2v0x2~v! f L~v2v̄0 ;g!dv, ~B5!

where f L is the Lorentzian profile

f L~v;g!5
1

v21g2/4
. ~B6!

This is Eq.~55! of the text. The quantityP must be normal-
ized to unity: imposing this condition one gets the Fer
golden rule~37!.

On the other hand, whenBÞ0, the total emission prob
ability is given by the sum

uykl~`!u21uzkl~`!u2 ~B7!

and it is straightforward to derive the following expressio

@nk5vk2v̄0 and we write for simplicityg(B)5g#

uykl~`!u25
ufklu2

US nk1 i
g

2D 2

2B2U2 F S nk
21

g2

4 D cos2~Bt!

1B2sin2~Bt!1
gB

2
sin~2Bt!G ,

uzkl~`!u25
ufklu2

US nk1 i
g

2D 2

2B2U2 F S nk
21

g2

4 D sin2~Bt!

1B2 cos2~Bt!2
gB

2
sin~2Bt!G , ~B8!

which yield

uykl~`!u21uzkl~`!u25
ufklu2

US nk1 i
g

2D 2

2B2U2 S nk
21

g2

4
1B2D .

~B9!

Therefore, in the continuum limit, we can write
4-12
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dPB5g2v0x2~v!

3

~v2v̄0!21
g2

4
1B2

F ~v2v̄02B!21
g2

4 GF ~v2v̄01B!21
g2

4 G dv.

~B10!

This formula can be rewritten in the following form:

dPB5g2v0x2~v!
1

2
@ f L~v2v̄02B;g!

1 f L~v2v̄01B;g!#dv. ~B11!

This is Eq.~57! of the text. We see that the emission pro
ability is the sum of two Lorentzians, centered inv̄02B and
v̄01B and weighted byg2v0x2(v). This result is in agree-
ment with that obtained in Refs.@16,32#. Incidentally, we
.

.

d
a

et
A

.

.

th

A

-
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notice that the value~43! of g(B) can be readily estimated
by imposing the normalization of the emission probability

E dPB5E
0

`

g2v0x2~v!
1

2
@ f L~v2v̄02B;g!

1 f L~v2v̄01B;g!#dv

51. ~B12!

Performing the integration one obtains@g!v̄0, hence one
can integrate over the whole real axis and takex2(v) equal
to its value on each Lorentzian peak#

15E dPB'
1

2
g2v0@x2~v̄01B!1x2~v̄02B!#

2p

g~B!
,

~B13!

which yields Eq.~43! of the text.
v.
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