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We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum
systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally
multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions,
only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these

states and their frustration for n=7.
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I. INTRODUCTION

Entanglement is nowadays recognized as a fundamental
resource for quantum information processing (see, e.g., [1]).
It explicitly appeared long before the dawn of quantum in-
formation science and without any reference to discrete vari-
ables (qubits) [2]. In fact, it first came to light in the context
of continuous variables [3]. Thus, its characterization must
necessarily include the latter as well. Along this line, impor-
tant milestones have appeared in terms of continuous vari-
ables and more specifically Gaussian states (see, e.g., [4] and
references therein).

Although bipartite entanglement can be conveniently
characterized (e.g., in terms of purity or von Neumann en-
tropy) [5], the characterization of multipartite entanglement
remains a challenging problem, together with the definition
of a class of quantum states that exhibit high values of mul-
tipartite entanglement. Recently, the notion of maximally
multipartite-entangled state (MMES) was introduced in the
qubit framework [6]. These states have a large (in fact, maxi-
mum) value of average bipartite entanglement over all bal-
anced bipartitions of a system of qubits [6,7]. They are solu-
tion of an optimization problem and minimize a suitably
defined cost function, which can be viewed as a potential of
multipartite entanglement. A MMES is called “perfect” if it
saturates the maximum bipartite entanglement for all bipar-
titions. Perfect MMESs exist for
n=2, 3, 5, and 6 qubits, they do not exist for n=4, n>7
[6,8], while the case n=7 is still an open problem. In terms
of potential applications in quantum information science,
MMESs are the ideal resource for initializing a quantum in-
ternet [9] and could be useful in several multiparty quantum
information protocols (e.g., controlled teleportation [10] or
quantum secret sharing [11]).

The concept of MMES was extended to the framework of
continuous variable (and Gaussian) systems in [12]. There a
Gaussian MMES is a state with a maximal rank for any
bipartition of the n party system in the limit of infinite
squeezing [12]. Notice that such a state allows perfect quan-
tum teleportation among its n parties. Here, with the aim of
characterizing Gaussian MMESs, we adopt a different view-
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point, by introducing a constraint on the maximal mean en-
ergy allowed per user (which, eventually, will be let to go to
infinity). Hence, we look for states that present the maximal
amount of bipartite entanglement compatible with the given
constraint. We will show that, following this definition, per-
fect MMESs exist in the continuous variable Gaussian set-
ting only for n=2,3. For n=4, a simple argument shows that
perfect MMESs do not exist, hence, manifesting the phe-
nomenon of entanglement frustration [13] (see also [14]).
Then, for 4=n=7, we study the distribution of entangle-
ment among the bipartitions. Finally, we find examples of
MMESs and provide numerical evidence that bipartite en-
tanglement can be optimally distributed for n=5,6.

II. BASIC DEFINITIONS

A system composed of n identical (but distinguishable)
subsystems is described by a Hilbert space H="Hg, with
Hg:=®,.sh; and S={1,2,...,n}, which is the tensor product
of the Hilbert spaces of its elements h;=§. Examples range
from qubits, where h:‘Cz, to continuous variables systems,
where h=L?*(R). We will denote a bipartition of system S by
the pair (A,A), where ACS, A=S\A, and 1 =n,=<nj, with
ny=|A|, the cardinality of party A (of course, ny+nz=n). At
the level of Hilbert spaces, we get

H=H,4® Hj. (1)

A crucial question in quantum information is about the

amount of entanglement between party A and party A. When
the total system is in a pure state |) € H, which is the only
case we will consider henceforth, the answer is simple and
can be given, for example, in terms of the purity

my =te(p}) 2)
of the reduced density matrix of party A,
pa = oy (D[P 3)

Indeed, this quantity can be taken as a measure of the en-
tanglement of the bipartition (A,A). Its range is
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Wﬁfin = A =1 s (4)
where
A = (dim H,) ™' = (dim )™, (5)

with the stipulation that 1/%=0.

The upper bound 1 is attained by unentangled factorized
states |)=|¢),®|x)i. On the other hand, when dim b <o,
the lower bound, which depends only on the number of ele-
ments n, composing party A, is attained by maximally
bipartite-entangled states, whose reduced density matrix is a
completely mixed state

pa =il - (6)

Note, however, that for continuous variables dim h=c°, the
lower bound 74 =0 is not attained by any state. Therefore,
strictly speaking, in this situation there do not exist maxi-
mally bipartite entangled states but only states that approxi-
mate them. This inconvenience can be overcome by intro-
ducing physical constraints related to the limited amount of
resources that one has in real life. This reduces the set of
possible states and induces one to reformulate the question in
the form: what are the physical minimizers of Eq. (2),
namely, the states that minimize Eq. (2) and belong to the set
C of physically constrained states? In sensible situations, e.g.,
when one considers states with bounded energy and bounded
number of particles, the purity lower bound

74 = inf{m,, |y € C} = 74, (7)
is no longer zero and is attained by a class of minimizers,
namely, the maximally bipartite-entangled states. 1If this is
the case, we can also consider multipartite entanglement and
ask whether there exist states in C that are maximally en-

tangled for every bipartition (A,A) and therefore satisfy the
extremal property

= Al (8)
for every subsystem ACS with ny=|A|=n/2. In analogy
with the discrete variable situation, where dim fh<<oo and
C="H, we will call a state that satisfies Eq. (8) a perfect
MMES (subject to the constraint C).

Since the requirement (8) is very strong, the answer to the
quest can be negative for n>2 (when n=2 it is trivially
satisfied) and the set of perfect MMES can be empty. We
remind that for a system of n qubits, i.e., when dim h=2,
perfect MMESs exist for n=2, 3, 5, and 6, do not exist for
n=4, n>7 [6,8], while the case n=7 is still open. This is a
symptom of frustration [13]. We emphasize that this frustra-
tion is a consequence of the conflicting requirements that
entanglement be maximal for all possible bipartitions of the
system.

In the best of all possible worlds, one can still seek for the
(nonempty) class of states that better approximate perfect
MMESs, that is, states with minimal average purity. We
therefore consider the potential of multipartite entanglement

[6]
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1
2 e (9)

|Al=[n2]

)
[n/2]

where the sum runs over all balanced bipartition, with
|A|=n,=[n/2], where [-] denotes the integer part. (It is im-
mediate to see that a necessary and sufficient condition for a
state to be a perfect MMES is to be maximally entangled
with respect to balanced bipartitions, i.e., those with
n,=[n/2].) By definition, a MMES is a state that belongs to
C and minimizes the potential of multipartite entanglement.
Obviously, when . :=ming mye= 2 there is no
frustration and the MMESs are perfect. In order to quantify
the amount of the frustration (for states belonging to the set
C), we will take the quantity

Xgin = W&E,min/ﬂln/ﬂ’c' (10)

min

mye = E(my) = (

Eventually, we will consider the limit C— H.

II1. BASIC TOOLS FOR GAUSSIAN STATES

Let us consider a collection of n identical bosonic oscil-
lators with (dimensionless) canonical variables {q;, piti=1... n-
We assume that the oscillators have unit frequency and set
fi=1. A quantum state of the n oscillators can be described
by a density operator p(, on the n-mode Hilbert space or
equivalently by the Wigner function on the n-mode phase
space

W,(q.p) = f d"y(q - ylpwlg+y)e*™®,  (11)

where  q:=(qy,....9,), P=P1,-...P)s Y=1s..0500)
e R”, and we have denoted by
lq £ y) =@ lgx * yi) (12)

the generalized eigenstates of the “position” operators g;. By
definition, Gaussian states are those described by a Gaussian
Wigner function. Introducing the phase-space coordinate
vector X=(X|,...,X5,):==(q1,P1»---,qn>Pn), a Gaussian
state has a Wigner function of the following form:

1 1
Wiy(X) = —————exp| - =(X - X)) V(X - X,)T |,
W= e Tl 2 0 0

(13)

where X,=(X), with (f(X)):= [f(X)W,(X)d*"X, is the vec-
tor of first moments, and V is the 2n X 2n covariance matrix
(CM), whose elements are

Vi = (X = (X)X, = (X)) (14)

We will also consider an equivalent representation defined
by a different ordering of the canonical variables

i:(ch»qb

»qnsP1sP2s--->Py). In this representation, the
CM is denoted V and has elements
Vi = (X, = XN (X, — (X)) (15)

In order to study the properties of entanglement for
Gaussian states, we will consider the purity

062311-2



GAUSSIAN MAXIMALLY MULTIPARTITE-ENTANGLED STATES

(P = tr(P(zn))- (16)

From Eq. (11), it is straightforward to compute this quantity
in terms of the Wigner function,

T(P()) = (277)"J [W(X)Pd"X. (17)

In particular, the purity of Gaussian states is a function of the
determinant of the CM. From Eq. (17), it follows that

1
=——, 18
o) = 3o (18)

with the bound 7(p(,)=1. Notice that from Eq. (18), a
Gaussian state with positive CM is pure if and only if

(1 2n
detV={(=] . 1
¢ 2) (19)

As anticipated in Sec. II, in order to obtain sensible re-
sults, we will impose a suitable energy constraint. Here we
do not allow more than N mean excitations for each bosonic
mode, i.e.,

)
(qx +Pi)

1
—— =N+—, for

, k=1, ...,n. 20
5 5 n (20)

This constraint introduces a cutoff in the Hilbert space of
each quantum oscillator.

A particular example of Gaussian state is the thermal state
p‘(},‘,) with N thermal excitations per mode described by a
Gaussian Wigner function with vanishing first moments and
CM

V= (N+1/2)1,,. (21)

Obviously, p?,‘l) satisfies the constraint (20). We now show the
following

Proposition 1. Among all Gaussian states, the thermal
state is the unique state that minimizes purity under the con-
straint (20). The corresponding minimal purity is

1
TN+ 12"

N h
Wﬁlin = W(pzn))

(22)
Proof. We prove that the thermal state is the unique mini-
mizer of the purity among the Gaussian states, satisfying the
inequality

1é gi+r) _ .1

, 23
Ny 2 2 ( )

which constrains the average mean energy per mode. This is
indeed sufficient to prove the proposition since all the states
satisfying Eq. (20) also satisfy Eq. (23).
The inequality (23) can be written in terms of the vector
of first moments and the trace of the CM as follows:
(V) + [(X)]? 1
—( )+ X)) =N+-. (24)
2n 2
Now we notice from Eq. (18) that the Gaussian state
minimizing the purity is the one whose CM has a maximal
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determinant under the constraint. The determinant
and the trace of a CM are functions of its eigenvalues
{vj}jz1, . 2n- We hence consider the problem of finding V
such that det(V)=Il,v; is maximal under the constraint
tr(V)=2v,=2n(N+1/2)-|(X)|>. The unique solution is the
scalar matrix [N+ 1/2—=[(X)[>/(2n)]l,,. For a given value of
(X), the maximal value of the determinant is hence
[N+1/2—=|(X)|?/(2n)]*". It follows that the unique Gaussian
state minimizing the purity under the energy constraint
(23)—and hence the constraint (20)—is the one with
(X)=0 and CM as in Eq. (21), i.e., the thermal state.

IV. GAUSSIAN MMES

In the following, we will focus our attention on the case
of pure Gaussian states characterized by Eq. (19) and sub-
jected to the energy constraint (20). As in Sec. II, we con-
sider a collection of n modes and a bipartition into two dis-

joint subsets A and A, containing n, and ny=n—n, modes,
respectively, with ny =n,. In order to quantify the bipartite
entanglement between the two subsets of oscillators, we
compute the purity 7, of the reduced state of subsystem A.

The modes of subset A and A have phase-space coordinates
X, and X, respectively. The Wigner function, describing the
reduced state of party A, is obtained by integrating the
Wigner function of the whole system over the variables be-

longing to A, ie.,

Wi )(Xy) = f W (X)d>"X 3. (25)

It follows that the reduced state of a Gaussian state with first
moment (X) and CM V is Gaussian with first moment (X,)
and CM V. The CM of the reduced state is the square sub-
matrix of V identified by the indices belonging to subsystem
A.

States that are maximally entangled with respect to the
given bipartition are those admitting a reduced state for sub-
system A with minimum value for the purity. From proposi-
tion 1, the reduced system has to be in a thermal state of ny
oscillators. Taking into account the energy constraint (20),
we get

=N+=

2 2 |
C= {|"[’> e H.|p)is Gaussian,M ,

2 2
(26)
and
aul=m =1, (27)
with 74¢= 74N given by Eq. (22).

We will generalize this property to multipartite entangle-
ment by requiring minimal possible purity for each sub-
system A of the modes—assuming that the state of the total
system is pure—thus, defining a Gaussian maximally
multipartite-entangled state. In particular, we will define a
perfect Gaussian MMES as a pure Gaussian state of n oscil-
lators that is maximally entangled with respect to all bal-
anced bipartitions and satisfies the energy constraint (26). It
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follows from this definition that the reduced state is thermal
for all possible bipartitions (A,A).

In order to formalize the above definition of MMES for
Gaussian states with constrained energy, we start from Eq.
(9) and define a (normalized) potential of multipartite en-
tanglement,

X = T/ T = (N + 1/2)"™E[det(V,)7"?],  (28)

where n,=[n/2], V, is the square submatrix defined by the
corresponding indexes. The minimum of this quantity x ..
[where C=C(N) is the constraint] is a measure of frustration,
according to Eq. (10). A Gaussian MMES will be a mini-
mizer of the potential (28). The potential in Eq. (28) is the
normalized purity of the reduced state averaged over all bal-
anced bipartitions. Notice that y=1 and perfect Gaussian
MMESs satisfy y=1.

We recall from the above discussion that the requirement
of the minimization of purity for a given bipartition could be
in contrast with that for another bipartition. Therefore, per-
fect MMESs do not necessarily exist. Actually, we get the
following:

Theorem 1. Perfect Gaussian MMESs only exist for
n<4.

Proof. First we present examples of perfect Gaussian
MMESs for n=2,3, then we show that perfect Gaussian
MMESs do not exist for n=4.

A two-mode Gaussian state is described by the vector of
first moments (X)={(¢q;,p;,92,p>)) and by the 4 X4 CM

v v
V:( 1,1 1,2)' (29)

T 7
Via Vao

Imposing that the one-mode reduced states are thermal im-
plies (X)=(0,0,0,0) and V; ;=V,,=(N+1/2)l,. It remains
to specify the submatrix V,, in order to obtain a well-
defined CM 'V, satisfying the purity condition (19). A solu-
tion is given by the CM

cosh r 0 sinh r 0
1 0 cosh r 0 —sinh r
x/ =- . s (30)
2| sinh r 0 cosh r 0

0 —sinh r 0 cosh r

describing a two-mode squeezed state, the so-called twin-
beam state [4], for

coshr=2N+1 (31)

(squeezing parameter r/2).

Let us now consider the case n=3. A three-mode perfect
Gaussian MMES has all the three single-mode reduced sys-
tems in a thermal state. Hence, the vector of first moments
vanishes, and the CM has the form

(N+1/2)1, Vi Vis
V= \\/{2 (N+ 1/2)][2 \\’2,3 . (32)
Vi, Vi, (N+12),

It remains to determine the submatrices V, ,, V; 3, and V, 5 in
order to obtain a well-defined CM obeying the purity con-
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strain (19). A solution is given by an instance of the tripartite
Gaussian Greenberger-Horne-Zeilinger states [15] character-
ized by the condition V;,=V, 3=V, 3=diag(v,,v_) with

2
Ui:w[li /HM} )
4N +2 2N(N+1)

The cases n=2,3 are the only ones in which perfect
Gaussian MMESs exist. The nonexistence of perfect Gauss-
ian MMESs for n=4 is easily seen by inspecting the n-mode
CM. Indeed, the generic submatrix of n, =n/2 modes is of
the form

V. . Vi
Lty 1lny
Va=| o], (34)
V;‘r i Vi i
1° ny nytny
where V, is a 2ny X2n, matrix and A={i,....i, }. For
n=4, the definition of perfect Gaussian MMES implies that
V;;=0 for i,j e A and i# j, (35)
‘\/Yi’iz (N+ 1/2)]12 for ieA. (36)

This condition must hold for all bipartitions (A,A) and,
therefore, all off-diagonal submatrices are zero. As a conse-
quence, the CM of the Gaussian state is diagonal of the form
(N+1/2)1,,. Such a CM describes a thermal state with N
thermal excitation per mode, in contradiction with the re-
quirement that the global state of the n oscillators is pure.

V. NUMERICAL SEARCH OF MMES

We have seen that perfect MMESs only exist for n<4.
For n=4, we now numerically search for n-mode pure states
minimizing the cost function (28), under the energy con-
straint (20). Minimizing the cost function (28) corresponds to
minimizing the average purity of the reduced states. The
value y=1 corresponds to a perfect MMES. For n =4, this is
possible only for N=0, where the problem becomes trivial
since the only state compatible with the energy constraint is
the vacuum, which is a separable state.

For numerical investigations, we use a convenient param-
etrization of n-mode pure Gaussian states. First of all in the
following, we will assume, without loss of generality,

(X)=(X)=0. It remains to parametrize the set of n-mode
covariance matrices. Working in the representation (15), it is
possible to show that the CM of a n-mode pure Gaussian
state can be written as [16]

V=-RT2RT, (37)
where T is a diagonal matrix of the form

K 0
=(0 K‘l)’ (38)

with K a nonsingular diagonal matrix, while R is both sym-
plectic and orthogonal. Therefore, it has the form
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FIG. 1. Minimal value of the (dimensionless) cost function y
versus the (dimensionless) energy constraint parameter N, for sev-

eral values of n.
(2) .

where the matrix U=X+/Y is unitary.

Figure 1 shows minimal value x, . of the potential (28)
under the constraint (20), for 4=n<=7, as a function of the
mean number of excitations per mode N. This minimal value
yields a measure of the frustration present in the system,
which does not allow the existence of perfect MMESs. The
larger the minimal value of y, the larger the frustration. The
numerical analysis indicates that the minimum of the poten-
tial of multipartite entanglement is a nondecreasing concave
function of N; moreover, a plateau is reached for sufficiently
high values of N. This saturation value increases with n but
oscillates between even and odd n.

Since it is not possible to find perfect MMESs, it is im-
portant to quantify the distribution of entanglement. A good
distribution of entanglement should be rather insensitive to a
change in bipartition. A fairly distributed multipartite en-
tanglement should therefore be characterized by a distribu-
tion (over balanced bipartition) with a small standard devia-
tion [17]. We therefore consider the standard deviation of the
purity of the reduced states over balanced bipartitions

Ay = V(N + 1/2)*E[det(V ) '] - 2, (40)

with n,=[n/2]. We will call a MMES with Ay=0 a uni-
formly optimal MMES because it has an optimal distribution
of entanglement: entanglement (and frustration) is fairly dis-
tributed over all bipartitions that attain the minimal value of
purity allowed by frustration. Of course, a perfect MMES is
uniformly optimal.

Figure 2 displays the peculiar behavior of the standard
deviation of the purity: such standard deviation has a differ-
ent behavior as a function of N for different values of n. For
n=5 and 6, MMESs are not perfect. Nonetheless, interest-
ingly enough, they have an optimal distribution of entangle-
ment: Ay=0 (for n=5,6). By contrast, a nonoptimal en-
tanglement distribution has been found for MMES with
n=4 and 7. This reminds, mutatis mutandis, of what happens
in qubit systems, where frustration appears for n=4 and
n=7 [6-8]. The numerical analysis shows a Ay of the non-
uniformly optimal states, which is a concave nondecreasing
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FIG. 2. Standard deviation Ay (dimensionless) of the normal-
ized purity versus the (dimensionless) energy constraint parameter
N, for n=4 and 7. For n=5 and 6, the MMESs have optimally
distributed entanglement, hence, vanishing standard deviation.

function of the energy parameter N. We notice also in this
case the presence of a saturation effect for large values of N.
These findings are summarized in Table 1.

VI. CONCLUSIONS

In conclusion, we have characterized Gaussian states that
display a maximal amount of multipartite entanglement com-
patible with a given constraint on the mean energy. We have
shown that perfect Gaussian MMESs (that saturate the maxi-
mum mean energy) only exist for n=2 and 3, while the phe-
nomenon of entanglement frustration appears already for n
=4. Curiously, we found clear numerical evidence that al-
though perfect Gaussian MMESs do not exist for n=5 and 6,
for these particular values of n, bipartite entanglement can be
optimally distributed, in the sense that the standard deviation
of purity over balanced bipartitions [Eq. (40)] can be made to
vanish. We numerically found that, by contrast, such stan-
dard deviation cannot be made to vanish (and bipartite en-
tanglement is therefore not optimally distributed) for n=4
and 7. This peculiar situation is reminiscent of that encoun-
tered with qubit MMES, where perfect MMESs exist for
n=>5 and 6 (qubits) but do not exist for n=4 and (probably
[6]) n=7. This suggests once more that n=2, 3, 5, and 6 are
“special” integers. We endeavored to summarize these con-
clusions in Table I. Experience with integers does not induce
us to expect that these amusing peculiarities only occur for
n=6 (for instance, we numerically found that uniformly op-
timal MMESs—with vanishing Ayx—exist for n=9). Addi-

TABLE I. Comparison between qubit and Gaussian maximally
multipartite-entangled states.

n Qubit perfect MMES Gaussian perfect MMES
2,3 yes yes

4 no no

5,6 yes no, but uniformly optimal®
7 no* no

=8 no no

*Numerical evidence.
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tional research is needed in order to investigate the large n
behavior and clarify the underlying structure of entanglement
frustration. We emphasize again that this frustration is a con-
sequence of the conflicting requirements that entanglement
be maximal for all possible bipartitions of the system. The
same phenomenon is also worth studying under different
constraints, for instance, the (weaker) energy constraint (23).

From a more applicative perspective, we emphasize that
due to recent progress in the optical generation of Gaussian
entangled states (up to 9 modes [18]), the above features are
also liable to experimental check. These results combined
with those obtained in [12] and the ensuing proposed char-
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acterization of entanglement would help in optimizing mul-
tiparty quantum information protocols with continuous vari-
ables.
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