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Decoherence versus entropy in neutron interferometry
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We analyze the coherence properties of polarized neutrons, after they have interacted with a magnetic field
or a phase shifter undergoing different kinds of statistical fluctuations. We endeavor to probe the degree of
disorder of the distribution of the phase shifts by means of the loss of quantum-mechanical coherence of the
neutron. We find that the notion of entropy of the shifts and that of decoherence of the neutron do not
necessarily agree. In some cases the neutron wave function is more coherent, even though it has interacted with
a more disordered medium.
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I. INTRODUCTION

The notion of decoherence has attracted increasing a
tion in the literature of the past few years@1,2#. The loss of
quantum-mechanical coherence undergone by a quan
system, as a consequence of its interaction with a given
vironment, can be discussed in relation to many differ
physical phenomena and has deepened our comprehens
fundamental issues, disclosing unexpected application
well as innovative technology.

Neutron physics~neutron optics in particular! has played
an important role in this context, both on theoretical a
experimental grounds. Nonclassical states are readily
tained, for instance by splitting and then superposing w
packets in an interferometer@3# or different spin states in a
magnetic field@4,5#, and are of great significance in the in
vestigation of fundamental quantum-mechanical propert
The aim of this paper is to investigate the coherence feat
of neutron wave packets, by making use of the Wigner fu
tion @6#, in analogy with concepts and techniques that
routinely used in quantum optics@7#. The studies of the pas
few years have shown that nonclassical states are vulne
to statistical fluctuations@8,9#: the analysis of situations in
which these states display robustness during the interac
with noisy environments is therefore of great practical int
est.

The main motivation of this work is to use the coheren
properties of the wave function as a ‘‘probe’’ to check t
degree of disorder of an environment. A similar idea w
first proposed, as far as we know, in the context of quan
chaos and Feynman integrals@10#. One might naively expec
that a neutron ensemble suffers a greater loss of quan
coherence by interacting with an increasingly disordered
vironment: intuitively, a more disordered environme
should provoke more randomization of the phase of the w
function, which in turn implies more quantum decoheren
As we shall see, this is not always true: some of the result
be discussed below are rather counterintuitive and at v
ance with naive expectation. In some cases, the neutron w
function ismore coherent, even though it has interacted wit
a more disorderedmedium. This statement can be given
precise quantitative meaning in terms of the entropy of
1050-2947/2001/63~5!/052108~9!/$20.00 63 0521
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medium and of a ‘‘decoherence parameter’’ that will be d
fined for the neutron density matrix.

II. PRELIMINARIES

The Wigner quasidistribution function@6# can be defined
in terms of the density matrixr as

W~x,k!5
1

2pE dje2 ikj^x1j/2urux2j/2&, ~1!

wherex and p5\k are the position and momentum of th
particle. One easily checks that the Wigner function is n
malized to unity and its marginals represent the position
momentum distributions

Trr5E dxdkW~x,k!51, ~2!

P~x!5^xurux&5E dkW~x,k!, ~3!

P~k!5^kuruk&5E dxW~x,k!. ~4!

Notice that

E dxdkW~x,k!25
Trr2

2p
. ~5!

In this paper we will consider a one-dimensional system~the
extension to three dimensions is straightforward! and assume
that the wave function is well approximated by a Gaussia

c~x!5^xuc&5
1

~2pd2!1/4
expF2

~x2x0!2

4d2
1 ik0xG , ~6!

f~k!5^kuc&5
1

~2pdk
2!1/4

expF2
~k2k0!2

4dk
2

2 i ~k2k0!x0G
5S 2d2

p D 1/4

exp@2d2~k2k0!22 i ~k2k0!x0#, ~7!

wherec(x) andf(k) are the wave functions in the positio
and momentum representation, respectively,d is the spatial
spread of the wave packet,dkd5 1

2 , x0 is the initial average
position of the particle, andp05\k0 its average momentum
©2001 The American Physical Society08-1
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The two functions above are both normalized to 1: norm
ization will play an important role in our analysis and w
never be neglected. The Wigner function for the state~6! and
~7! is readily calculated

W~x,k!5
1

p
expF2

~x2x0!2

2d2 Gexp@22d2~k2k0!2#. ~8!

In this paper, we will focus on two physical situations. In t
first one, a polarized neutron acquires a phase shiftD, either
by going through a phase shifter or by crossing a magn
field parallel to its spin. In the second one, a polarized n
tron is divided in two branch waves, either in an interfero
eter or by crossing a magnetic field perpendicular to its s
The latter situation is physically most interesting, for
yields nonclassical states, whose coherence properties a
great interest.

A. Single Gaussian

If a Gaussian wave packet undergoes a phase shiftD, the
resulting Wigner function reads

W~x,k,D!5
1

p
expF2

~x2x01D!2

2d2 Gexp@22d2~k2k0!2#.

~9!

Physically, this is achieved either by placing a phase shi
in the neutron path, or by injecting a polarized neutron in
constant magnetic field parallel to its spin. In both cases,
total energy of the neutron is conserved. In the latter cas
the field has intensityB and is contained in a region of lengt
L, the neutron kinetic energy in the field changes byDE5
2umuB, where umu is the neutron magnetic moment. Th
entails a change in average momentumDk5mmB/\2k0 and
a phase shift proportional toD[LDk/k0. When it leaves the
field, the neutron acquires again the initial kinetic energy

B. Double Gaussian

Consider now a neutron wave packet that is split and t
recombined in an interferometer, with a phase shifter pla
in one of the two routes. The Wigner function in the ordina
channel~transmitted component! is readily computed:

Wint~x,k,D!

5
1

4p
exp@22d2~k2k0!2#

3F expS 2
~x2x01D!2

2d2 D 1expS 2
~x2x0!2

2d2 D
12expS 2

S x2x01
D

2 D 2

2d2
D cos~kD!G . ~10!
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Notice that, forDÞ0, it is not normalized to unity@some
neutrons end up in the extraordinary channel~reflected com-
ponent!# and that forD50 ~no phase shifter! one recovers
Eq. ~8!.

A similar result is obtained when a polarized~say,1y)
neutron crosses a magnetic field aligned along an orthog
direction ~say,1z). The total neutron energy is conserve
but due to Zeeman splitting the two spin states in the dir
tion of theB field have different kinetic energies and trav
with different speeds. This is a situation typically encou
tered in the so-called longitudinal Stern-Gerlach effect@4#
and in neutron spin-echo experiments@5# ~except that we are
not considering the second half of the evolution, with
oppositeB field that recombines the two spin states!. An
experimental realization of this situation was investiga
very recently@11#. If the initial wave function is

uC&5uc& ^ u1&y5uc& ^ S 1

A2
u1&z1

i

A2
u2&zD , ~11!

where u6&a (a5x,y,z) represents spin up/down in direc
tion a, the final state in the position representation, af
crossing theB field, reads

^xuC&5
1

A2
cS x1

D

2 D ^ u1&z1
i

A2
cS x2

D

2 D ^ u2&z .

~12!

If only the 1y-spin component is observed~‘‘postselection’’
of the initial spin component@12#!, the probability amplitude
is

y^1,xuC&5
1

2 FcS x1
D

2 D1cS x2
D

2 D G , ~13!

and the Wigner function is readily computed as

Wmagn~x,k,D!5
1

4p
exp@22d2~k2k0!2#

3F expS 2

S x2x02
D

2 D 2

2d2
D

1expS 2

S x2x01
D

2 D 2

2d2
D

12expS 2
~x2x0!2

2d2 D cos~kD!G . ~14!

This result is slightly different from Eq.~10!, because in this
case both spin components undergo a phase shift (6D/2).
Once again, forD50 ~no magnetic field! one reobtains Eq.
~8!.

We stress that in both cases the neutron wave packet
a natural spreadd t5Ad21(\t/2md)2 ~due to its free evolu-
tion for a time t.mL/\k0); however, this additional effec
will be neglected, because, as proved in Appendix A, it is
relevant for the loss of quantum coherence.
8-2
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III. FLUCTUATING PHASE SHIFT

The previous analysis refers to a rather idealized case
which every neutron in the beam acquires a constant ph
shift. This is clearly not a realistic situation, for it does n
take into account the statistical fluctuations of theB field or
of the shifter in the transverse section of the beam. If, for a
reason, the phase shiftD fluctuates, the neutron beam wi
partially lose its quantum coherence and the Wigner func

FIG. 1. If the phase shift fluctuates, each wave packet acquir
different shift. This is pictorially represented in the figure, whe
different outgoing wave packets are displayed, each associated
a single neutron~‘‘event’’ !. The average Wigner function is give
by Eq. ~20!.

FIG. 2. Decoherence parameter vs coherence length of the w
packetd(Å) and standard deviation of the fluctuations(Å). ~a!
Gaussian wave packet.~b! Double Gaussian in an interferomete
with D0516.1 Å. ~c! Double Gaussian in a magnetic field, wit
D0516.1 Å. In all casesk051.7 Å21. Observe that in case~a! the
decoherence parameter is a monotonic function ofs for every value
of d, while this is not true for cases~b! and~c!. Notice also that in
case~b! the decoherence parameter never reaches unity («< 3

4 ): this
is due to the fact that only one Gaussian~in one branch of the
interferometer! undergoes statistical fluctuations@see Fig. 3~a!#.
05210
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will be affected accordingly. We shall consider the case
‘‘slow’’ fluctuations, in the sense that each neutron cros
an approximately staticB field ~or a phase shifter of uniform
lengthL), but the intensity of the field~or the length of the
shifter! varies for different neutrons in the beam~different
‘‘events’’!. We will suppose that every neutron undergoe
shift D that is statistically distributed according to a distrib
tion law w(D). The collective ‘‘degree of disorder’’ of the
shifts D can be given a quantitative meaning in terms of t
entropy,

S52E dDw~D!ln„w~D!…. ~15!

a

ith

ve

FIG. 3. Wigner functions for different values of the standa
deviations in Eq. ~18!. ~a! Double Gaussian in an interferomete
~24!. ~b! Double Gaussian in a magnetic field~28!. From top to
bottom,s50, 0.6, 1.2, and 1.8 Å. The values of the other para
eters arex050, k051.7 Å21, d51.1 Å, andD0516.1 Å. Posi-
tion x and momentumk are measured in Å and Å21, respectively.
Notice the strong suppression of interference at large values of
mentum, both in~a! and~b!. In case~a! only one of the two Gaus-
sians interacts with the fluctuating phase shifter; moreover, the
terference term in Eq.~24! depends onx and the oscillating part of
the Wigner function is bent towards the negativex axis.
8-3
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On the other hand, the average Wigner function reads

Wm~x,k!5E dDw~D!W~x,k,D! ~16!

and represents a partially mixed state. The coherence p
erties of the neutron ensemble can be analyzed in terms
decoherence parameter@13#,

«512
Trr2

~Trr!2
512

2pE dxdkWm~x,k!2

S E dxdkWm~x,k! D 2 . ~17!

This quantity measures the degree of ‘‘purity’’ of a quantu
state: it is maximum when the state is maximally mix
(Trr2,Trr) and vanishes when the state is pure (Trr2

5Trr): in the former case the fluctuations ofD are large and
the quantum-mechanical coherence is completely lost, w
in the latter caseD does not fluctuate and the quantum
mechanical coherence is perfectly preserved. The param
~17! was introduced within the framework of the so-call
‘‘many Hilbert space’’ theory of quantum measuremen
@8,2# and yields a quantitative estimate of decoherence.
related quantity Trr2Trr2 ~which might be called the
‘‘idempotency defect’’! was first considered by Watanab
@14# many years ago. A measure of information for a qua
tum system has been recently introduced, which is relate
« and is more suitable than the Shannon entropy@15#.

One might naively think that the two quantitiesS and «
should at least qualitatively agree: in other words, the los
quantum-mechanical coherence should be larger when
neutron beam interacts with fluctuating shifts of larger e
tropy. Such a naive expectation turns out to be incorrect.
purpose is to investigate this problem. To this end, it is u
ful to consider some particular cases.

A. Gaussian noise

We first assume that the shiftsD fluctuate around their
averageD0 according to a Gaussian law:

w~D!5
1

A2ps2
expF2

~D2D0!2

2s2 G , ~18!

wheres is the standard deviation. The ratios/D0 is simply
equal to the ratiodB/B0 ~or dL/L0), dB(dL) being the stan-
dard deviation of the fluctuating magnetic field~length of
phase shifter! and B0 (L0) its average. The entropy of Eq
~18! is readily computed from Eq.~15!,

S5 1
2 ln~2pes2! ~19!

and is obviously an increasing function ofs.
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1. Single Gaussian

Consider now a neutron described by a Gaussian w
packet. If the phase shiftD fluctuates according to Eq.~18!,
the average Wigner function is readily computed by E
~16!, ~9!, and~18!,

Wm~x,k!5
1

p
A d2

d21s2
exp@22d2~k2k0!2#

3expF2
~x2x01D0!2

2~d21s2!
G ~20!

and its marginals~3! and ~4! are easily evaluated,

P~x!5
1

A2p~d21s2!
expF2

~x2x01D0!2

2~d21s2!
G , ~21!

P~k!5A2d2

p
exp@22d2~k2k0!2#. ~22!

Notice that the momentum distribution~22! is unaltered and
identical touf(k)u2 in Eq. ~7!: obviously, the energy of each
neutron does not change. Observe, on the other hand
additional spread in positiond85Ad21s2 ~Fig. 1! and no-
tice that the Wigner function and its marginals are alwa
normalized to 1.

The decoherence parameter~17! can be analytically
evaluated,

«512A d2

d21s2
, ~23!

and is a monotonic function ofs for every value ofd. This
behavior is in qualitative agreement with that of the entro
~19!. As expected, a more entropic distribution of pha
shifts entails a greater loss of quantum-mechanical cohere
for the neutron ensemble. The behavior of« vs d and s is
shown in Fig. 2~a!.

2. Double Gaussian in an interferometer

Consider now the double Gaussian state~10!, obtained
when a neutron beam crosses an interferometer. The ave
Wigner function~16! reads

Wm
int~x,k!5

exp@22d2~k2k0!2#

4p H expF2
x2

2d2G
1A d2

d21s2
expF2

~x1D0!2

2~d21s2!
G

12A d2

d21
s2

4

expF 2

S x1
D0

2 D 2

1k2d2s2

2S d21
s2

4 D G

8-4
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3cosS k
2d2D02xs2

2S d21
s2

4 D D J , ~24!

where we setx050 for simplicity. Its marginals~3! and ~4!
can both be computed analytically; in particular, the mom
tum probability distribution reads

P~k!5A d2

2p
exp@22d2~k2k0!2#
05210
-

F11expS 2
k2s2

2 D cos~kD0!G .
~25!

As one can see from Fig. 3~a!, interference is exponentially
suppressed at high values ofk and the oscillating part of the
Wigner function is bent towards the negativex axis. This is
due to thex dependence of the cosine term in Eq.~24!, which
entails different frequencies for different values ofx. The
decoherence parameter~17! reads
o any
«512
1

4N2 H 1

4 S 11A d2

d21s2D 1A d2

4d212s2S expF2
D0

2

4d212s2G1expF2
2k0

2d2s2

2d21s2G D J
2

1

2N2 SA d2

4d21s2
expF2

D0
214k0

2d2s2

2~4d21s2!
GcosF4k0D0d2

4d21s2G1
d2

4d21s2
expF2

D0
214k0

2d2s2

4d21s2 GcosF8k0D0d2

4d21s2G D
2

d2

N2A16d4112d2s21s4
expF2

~2d21s2!~D0
214k0

2d2s2!

16d4112d2s21s4 GcosF4k0D0d2~4d213s2!

16d4112d2s21s4 G , ~26!

where the normalization

N5E dxdkWm~x,k!5
1

2 F 11A d2

d21
s2

4

expS 2
D0

214d2s2k0
2

8S d21
s2

4 D D cosS d2

d21
s2

4

k0D0D G ~27!

represents the probability of detecting a neutron in the ordinary channel. The explicit expression~26! of the decoherence
parameter is involved and difficult to understand. Therefore,« is shown in Fig. 2~b! as a function ofd ands for fixed values
of k0 andD0: somewhat surprisingly, for some values ofd, even though the noises increases, the decoherence« decreases.

Observe also that« never reaches unity:«< 3
4 . This is due to the fact that one of the two Gaussians does not underg

fluctuations~there is a fluctuating phase shifter in only one of the two routes of the interferometer!: therefore, a part of the
Wigner function is not affected by noise, as one can see in Fig. 3~a!. We shall comment again on the peculiar features of« in
a while.

3. Double Gaussian in a magnetic field

If we consider a polarized neutron beam interacting with aB field perpendicular to its spin, Eq.~14! yields

Wm
magn~x,k,D!5

exp@22d2~k2k0!2#

4p HA d2

d21
s2

4

expF 2

S x2
D0

2 D 2

2S d21
s2

4 D G1A d2

d21
s2

4

expF 2

S x1
D0

2 D 2

2S d21
s2

4 D G
12 expF2

x2

2d2
2

k2s2

2 Gcos~kD0!J . ~28!

This Wigner function has the samek marginal~25! as the previous one~although thex marginals are different!. Also in this
case, one observes a strong suppression of interference at large values of momentum@9,11,13#, but without thex dependence
in the cosine. See Fig. 3~b!. In this case, the decoherence parameter~17! reads
8-5
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«512
1

4N2
A d2

4d21s2
expS 2

D0
214k0

2d2s2

4d21s2 D cosS 8k0D0d2

4d21s2D 2
1

4N2
A d2

4d21s2

3F11expS 2
D0

2

4d21s2D 1expS 2
4k0

2d2s2

4d21s2D G2
4

N2

d2

8d21s2
expS 2

D0
214k0

2d2s2

8d21s2 D cosS 8k0D0d2

8d21s2D . ~29!
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Again, the explicit expression of the decoherence param
is complicated and depends on several physical parame
it is therefore convenient to concentrate on a particular c
An experimental realization of a fluctuating shift~according
to a given statistical law! is easier with the magnetic-fiel
arrangement discussed in Sec. II B. Let us therefore cons
the experiment@11#, in which a polarized (1y) neutron en-
ters a magnetic field, perpendicular to its spin, of intens
B050.28 mT, confined in a region of lengthL557 cm.
The average neutron wave number isk051.731010 m21

and its coherence length~defined by a chopper! is d51.1
310210 m. By traveling in the magnetic field, the two ne
tron spin states are separated by a distanceD0

52mmB0L/\2k0
2516.1310210 m, one order of magnitude

larger thand. The behavior of« in Eq. ~29! is shown in Fig.
2~c! for these experimental values: observe that ford
*3 Å, « is not a monotonic function ofs: in other words,
for some values of the parameters, even though the noiss
increases, the decoherence« decreases. This is at varianc
with the behavior of the entropy~19! and with what one
might naively expect. We conclude that, in general, both
a double Gaussian in an interferometer and in a magn
field, the behavior of« does not agree with that of the en
tropy.

B. Sinusoidal fluctuations with increasingly less rational
frequencies

In order to shed some more light on the results of
preceding subsection, let us consider a different exam
which is more convenient for an experimental perspect
Suppose that the phase shift changes according to the l

D~ t !5D01D1@sin~Vt !1sin~r jVt !#, ~30!

wheret is time, V is a frequency much smaller thanv0 /L,
the inverse time of flight of the neutron in the shifter’s r
gion, D0 is the mean phase shift,D1(!D0) is the ‘‘fluctua-
tion’’ width ~see below!, andr j (0,r j,1) is a real number.
For the neutron ensemble~the beam!, the shifts will be dis-
tributed according to the law

w~D!5E dt f~ t !d„D2D~ t !…, ~31!

wheref (t) is the probability density function of the stocha
tic variable t. In our case,f (t)51/T in (0,T), where T
(@V21) is a sufficiently large time interval. In such a cas
by making use of Eq.~31!, the Wigner function can be ex
pressed as an ergodic average,
05210
er
rs;
e.

er

y

r
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e
e,
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,

Wm~x,k!5E dDw~D!W~x,k,D!

5
1

TET
dtW„x,k,D~ t !… ~T large!. ~32!

We stress thatD is treated like a random variable, althoug
strictly speaking, the underlying process is determinis
However, this is not a conceptual difficulty: in practice, o
just treats the neutron ensemble in an experimental run w
out looking at the correlations among different neutrons. T
same effects on the neutron ensemble would be obtaine
first generating a random variablet, uniformly distributed in
(0,T), then constructing the additional random variableD
according to Eq.~30!, and finally accumulating all neutron
in the experimental run. In this way, different neutrons a
uncorrelated. The distribution law of the shifts~30! can be
obtained by means of aB field,

B~ t !5B01B1@sin~Vt !1sin~r jVt !#. ~33!

As in the preceding section, we assume thatB is a slowly
varying function of time, so that each neutron experience
static field during its interaction. Observe that the sche
proposed in Eqs.~30!–~32! is not difficult to realize experi-
mentally. On the other hand, it would be complicated
obtain the same distribution of shifts with a phase shif
placed in one of the two routes of an interferometer.

We will study the coherence properties of the neutr
beam when it crosses a magnetic field made up of two ‘
creasingly less rational’’ frequencies, by choosing

r j5
f j

f j 11
, ~34!

where f j are the Fibonacci numbers

f j 115 f j1 f j 21 ~ f 05 f 151!. ~35!

This particular choice is motivated by the~naive! expectation
that an oscillating magnetic field~33! composed of mutually
less rational frequencies should provoke more decohere
on the neutron ensemble. Once again, this expectation
turn out to be incorrect. The ratios~34! tend to the golden
mean~the ‘‘most irrational’’ number@16#! as j increases,

r j ——→
j→`

r `5
A521

2 . ~36!
8-6
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In general, one cannot obtain an analytic expression for
probability density function~31!; however, an accurate nu
merical evaluation ofw(D) is possible: for every finite value
of j, r j is a rational number, so that one can integrate Eq.~31!
over the intervalT5 f j 112p/V. In Fig. 4, we show the re-
sults of our numerical analysis. The distribution functi
w(D) has a finite number of~integrable! divergences in its
interval of definition; as the order in the Fibonacci seque
becomes higher, the number of divergences in the inte
grows. In the j→` limit, i.e., for the golden meanr `

5(A521)/2, it is possible to apply the theorem on averag
for the ergodic motion on a torus@17# and find an analytica
expression ofw(D) in terms of an elliptic integral of the firs
kind ~see Appendix B!. The resulting distribution is a smoot
function with only one~integrable! divergence inD50 and
is plotted in Fig. 4~f!.

By applying the same technique utilized for the numeri
evaluation ofw, the entropy is computed according to th
formula

S52E dDw~D!ln„w~D!…52
1

TET
dtln@w„D~ t !…#,

~37!

FIG. 4. Phase shiftD in Eq. ~30! and distribution functionw(D)
in Eq. ~31!, for different values ofr j : ~a! r 15

1
2 ; ~b! r 25

2
3 ; ~c! r 3

5
3
5 ; ~d! r 45

5
8 ; ~e! r 55

8
13; ~f! r `5(A521)/2. In each figure,D1

52 ~we setD050 for clarity of presentation!: above, phase shif
D(t); below, distribution functionw(D). Notice that, by increasing
j ~index of the Fibonacci sequence!, the two frequencies becom
mutually ‘‘less rational,’’ the phase shiftD(t) becomes more ir-
regular, and its distribution functionw(D) more uniform.„The en-
tropy behaves accordingly, increasing forj 51, . . . ,5 @see Fig.
5~a!#…. Notice that the number of divergences of the distributi
function increases withj; as shown in Appendix B, in thej 5`
limit, the distribution becomes continuous with only one~logarith-
mic! divergence inD50 and can be expressed as an elliptic integ
~B6!.
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which is easily obtained by Eqs.~15! and ~31! ~using the
valueT5 f j 112p/V for the numerical evaluation!.

The decoherence parameter is computed from Eq.~17!,
first with the Wigner function~9! ~single Gaussian! and then
with the Wigner function~14! ~double Gaussian in a mag
netic field!: in both formulas, we used Eq.~32! and setD0
516.1310210 m, D152310210 m, and the same numeri
cal values of the preceding subsection fork0 andd @11#. Our
results are summarized in Table I and Fig. 5.

We notice that, although forj 51, . . . ,5,S is a monotoni-
cally increasing function of the Fibonacci number in the s
quence,« reaches a maximum forr j5

3
5 ~i.e., j 53). It is

remarkable that the maximum is obtained for the same
bonacci ratio in both cases~single and double Gaussian!.
Once again, the behavior of entropy and decoherenc
qualitatively different. Figure 5 should be compared to F
2: it is worth noting that in the case analyzed in this secti
unlike in Sec. III A, the behavior of entropy and decoheren
does not agree even when the neutron state is a single G
ian ~namely, a ‘‘classical’’ state!.

IV. CONCLUSIONS

Decoherence is a very useful concept that has rece
been widely investigated and has turned out to be very p
lific. It is intuitively related to the loss of ‘‘purity’’ of a
quantum-mechanical state and can be given a quantita
definition, as in Eq.~17!. However, we have seen that th
very notion of decoherence is delicate: in particular, it is n
correct to think that a quantum system, by interacting with
increasingly ‘‘disordered’’ environment, will suffer an in
creasing loss of quantum coherence. Our analysis has
performed by assuming that each neutron, during an exp

l

TABLE I. Entropy and decoherence.

j r j S « ~single Gaussian! « ~double Gaussian!

1 1
2 1.6165 0.52894 0.59545

2 2
3 1.7398 0.53166 0.62478

3 3
5 1.7458 0.53199 0.63184

4 5
8 1.9051 0.53173 0.62695

5 8
13 1.9434 0.53173 0.62695

FIG. 5. ~a! Entropy~37! vs j ~index in the Fibonacci sequence!.
~b! Decoherence parameter~17! vs j: case of a single Gaussian.~c!
Decoherence parameter~17! vs j: case of a double Gaussian in
magnetic field. Notice that, while the entropy is an increasing fu
tion of j for j 51, . . . ,5, thedecoherence parameter displays
maximum atj 53, both for a single and a double Gaussian.
8-7
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mental run, interacts with a constant magnetic field: the n
tron beam, on the average, undergoes decoherence.
‘‘quasistatic’’ approximation is only a working hypothes
and will be relaxed in future work. As emphasized at t
beginning of Sec. III B, this regime is easy to achieve exp
mentally in the limitV!v0 /L, whereV is a characteristic
frequency of the fluctuation and (v0 /L)21 is the time of
flight of the neutron in the phase shifter or in the magne
field. This approximation also simplifies~both conceptually
and technically! our theoretical analysis, without, howeve
having a substantial influence on our general conclusion
is worth stressing, in this respect, that the decoherence
rameter, defined in Eq.~17!, depends on the interaction an
not on the free Hamiltonian, at least in the physical situatio
investigated here~see Appendix A!.

Our quantitative definition of decoherence depends, a
should, on the very characteristics of the experimental se
the decoherence parameter is defined in terms of the ave
Wigner function~or equivalently the density matrix! of the
neutron ensemble, after the interaction with the appara
An experimental check of the features of the Wigner fun
tions discussed in this paper would require its tomograp
observation. Similar techniques are commonly applied
quantum optics@18# and would be available in neutron optic
as well, in particular for the experimental arrangement d
cussed in Sec. III B. However, we think that a better co
prehension of the effects analyzed in this paper could pr
ably be achieved by studying the marginals~or possibly
some other tomographic projection! of the Wigner function
and the visibility of the interference pattern. Additional wo
is in progress in this direction. From an experimental p
spective, an analysis of decoherence effects along the gu
lines discussed here would be challenging: although the c
cepts of decoherence and entropy are intuitively related, t
display some interesting differences. If properly understo
those situations in which a larger noise yields a more coh
ent quantum ensemble might lead to unexpected app
tions.
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APPENDIX A:

We prove that the decoherence parameter~17!, under
rather general conditions, does not depend on the free
lution of a quantum system. Let the Hamiltonian of a qua
tum system be

H5H01H1~a!, ~A1!

whereH0 andH1 are the free and interaction Hamiltonian
respectively, anda is a c number~that can fluctuate accord
ing to a given statistical law!. We assume that
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@H0 ,H1~a!#5 iC with @H0 ,C#5@H1~a!,C#50,
~A2!

whereC is in general an operator~independent ofa), so that
(\51)

e2 i t [H01H1(a)]5eit 2C/2e2 i tH 0e2 i tH 1(a). ~A3!

Consider now the density matrix at timet,

ra~ t !5e2 i t [H01H1(a)]r0eit [H01H1(a)] , ~A4!

wherer0 is the initial density matrix. From Eq.~A3!,

ra~ t !5eit 2C/2e2 i tH 0e2 i tH 1(a)r0eitH 1(a)eitH 0e2 i t 2C/2

~A5!

and the average overa yields

r~ t !5eit 2C/2e2 i tH 0S E daw~a!e2 i tH 1(a)r0eitH 1(a) D
3eitH 0e2 i t 2C/2, ~A6!

wherew(a) is the distribution function and the bar denot
average. Therefore,

Tr@r~ t !#5Tr@r int~ t !#, ~A7!

wherer int is the density matrix in the following interactio
picture:

r int~ t !5eitH 02 i t 2C/2r~ t !e2 i tH 01 i t 2C/25e2 i tH 1(a)r0eitH 1(a).
~A8!

This proves that the trace of the average density matrix d
not depend on the free evolution. The result~A7! can be
generalized to any function of the average density matrix

Tr@ f „r~ t !…#5Tr@ f „r int~ t !…#. ~A9!

This shows that the decoherence parameter defined in
~17! does not depend on the free evolution:

«5« int , ~A10!

as claimed at the end of Sec. II. This result can be applie
the case studied in Sec. III, whereH05p2/2m,H152m•B,
and the parametera is the intensity of the magnetic fieldB
~whose direction is supposed constant!. Notice that we are
considering wave packets that interact with a constant
homogeneous fieldB from the initial time t50 to the final
time t.mL/\k0, so that condition~A2! is fulfilled. The case
of a neutron wave packet in an interferometer is analogou
we assume that the phase shifter simply yields a phase~op-
tical potential approximation!.

APPENDIX B:

We compute here the distribution function~31! when
f (t)51/T andD(t) changes according to Eq.~30!, in the j
5` limit ~36!. The functionw(D) has a finite number of
~integrable! divergences in its interval of definition. Notic
that, as the order in the Fibonacci sequence becomes hig
the number of divergences in the interval grows and the
merical evaluation of the distribution function becomes mo
difficult. Let us introduce the two-component vector
8-8
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wj~ t !5~w1 ,w2!5vj t, where vj5~V,r jV!. ~B1!

The vectorwj performs a~quasi!periodic motion on the two-
dimensional torusT2. In particular, for everyfinite value ofj
the frequencies are dependent, i.e.,v2 /v15r jPZ, and the
orbits are closed. For larger values ofj, the number of wind-
ings in a period increases and the length of the periodic o
becomes larger. In thej→` limit, the two frequencies be
come independent and the resulting motion on the 2-to
becomes ergodic: the trajectory is everywhere dense and
formly distributed onT2. In this case, according to the the
rem on averages@17#, the time average of every integrab
function f (w) ~wherew[w`) coincides with its space aver
age, i.e.,

lim
T→`

1

TE0

T

dt f„w~ t !…5
1

~2p!2E0

2p

dw1E
0

2p

dw2f ~w!.

~B2!

Applying Eq. ~B2! to the function

f ~w!5d~D2D1@sinw11sinw2# !, ~B3!

we obtain

w~D!5 lim
T→`

1

TE0

T

dtd„D2D1@sin~Vt !1sin~r `Vt !#…

5
1

~2p!2E0

2p

dw1E
0

2p

dw2d~D2D1@sinw11sinw2# !
s

h
.

.

gy
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11

dsPS~s!PS~D/D12s!, ~B4!

wherePS is the sine distribution

PS~s!5
1

2pE0

2p

dwd~s2sinw!5
1

pA12s2
. ~B5!

After some algebraic manipulation, one finds

w~D!5
2

p2D1

FS arcsin
1

A11
uDu

2D1

,A12S D

2D1
D 2D ,

~B6!

whereF(b,g) is the elliptic integral of the first kind@19#,

F~b,g!5E
0

b

da
1

A12g2sin2a
. ~B7!

The limiting distribution function~B6! is plotted in Fig. 4~f!.
Observe that in Figs. 4~a!–4~f!, the number of diver-

gences increases so quickly that, in thej 5` limit ~golden
mean!, w(D) becomes a smooth function with only one~in-
tegrable! divergence in D50 @indeed w(D)
; ln(8D1 /uDu)/p2D1 for D→0#. In this sense, Berryet al.
coined the epigram ‘‘stochasticity is the ubiquity of catast
phe’’ @20#. ~Incidentally, notice the similarity of Fig. 4 with
Fig. 12 of @20#.!
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