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Photon distribution at the output of a beam splitter for imbalanced input states
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5Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland

(Received 8 October 2015; published 26 February 2016)

In the Hong-Ou-Mandel interferometric scheme, two identical photons that illuminate a balanced beam splitter
always leave through the same exit port. Similar effects have been predicted and (partially) experimentally
confirmed for multiphoton Fock-number states. In the limit of large photon numbers, the output distribution
follows a (1 − x2)−1/2 law, where x is the normalized imbalance in the output photon numbers at the two output
ports. We derive an analytical formula that is also valid for imbalanced input photon numbers with a large total
number of photons, and focus on the extent to which the hypothesis of perfect balanced input can be relaxed,
discussing the robustness and universal features of the output distribution.
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I. INTRODUCTION

Two identical photons, impinging on a balanced beam
splitter, always leave through the same exit port, due to the
Hong-Ou-Mandel (HOM) interference [1,2]. Similar effects
can be observed for multiphoton Fock-number states: Photons
will leave the beam splitter only in certain configurations, for
example, such that the difference between the occupations
of the exit ports is even, while an odd difference never
occurs [3–5]. These results have been partially experimentally
confirmed for photons [6], although the existence of the
odd-even structure was not demonstrated. Similar effects have
been discussed for atomic Bose-Einstein condensates [7,8], in
terms of spin dynamics, modeled by the population imbalance.

In this article we shall investigate the photon distribution
at the output ports of a balanced beam splitter when the
input state is a product of number states. If the numbers of
photons at the two input ports are perfectly balanced, the
output distribution follows a (1 − x2)−1/2 law, where x is
the normalized imbalance in the output photon numbers at
the two output ports [see Eq. (8) in the following]. However, it
is interesting to ask what happens when the input photon state
is not perfectly balanced. This is relevant because of practical
reasons, as photon numbers may fluctuate, say, according to
a Poisson distribution, but also in view of future possible
applications. We shall prove that the output distribution is
robust, and some of its features remain unchanged, even if
the hypothesis of perfectly balanced input is relaxed. In fact,
we will focus on the extent to which such hypothesis can be
relaxed.

Our interest in these phenomena is threefold. On one
hand, they offer perspectives in applications, as the output
distribution can be viewed as a generalized NOON state [9], in
the sense that photons bunch and tend to exit the beam splitter
at only one of its output ports. These states have remarkable
applications in metrology [10], as they lead to the Heisenberg
limit. Also, the general features that emerge from our analysis
are reminiscent of typical behavior [11–13] in optics and
cold atomic physics [14–16], bearing consequences on the

foundations of statistical mechanics [17–19]. Finally, there are
remarkable similarities with the physics of continuous-time
quantum walks, where rigorous results have been obtained
[20,21].

The main result of this article will be the evaluation of the
photon distribution at the output ports of a beam splitter, when
the total number of impinging photons is large and imbalanced.
We will formulate the problem exactly and then display its
asymptotic features. In Sec. II we introduce notation and set up
the mathematical description of a beam splitter. The balanced
input case is solved in Sec. III, while the imbalanced input
case is solved in Sec. IV. The universal features that emerge in
the latter case are discussed in Sec. V, where the (average)
output distribution is shown to follow a (1 − x2)−1/2 law,
with x being the normalized imbalance in the output photon
numbers at the two output ports. On average, this law is robust,
namely insensitive to the input imbalance (the upper limit to
the fluctuations being Poissonian). The statistical fluctuations
are further analyzed in Sec. VI, where the characteristics of the
two-body correlation function of the probability distribution
are computed. We conclude in Sec. VII by discussing further
perspectives and possible applications.

II. BEAM SPLITTER

Consider the beam splitter in Fig. 1, where na and nb

photons illuminate ports a and b, respectively. Let the total
number of photons be fixed na + nb = N , and the input state
be given by |na,nb〉 = |na,N − na〉. We intend to study the
photon distribution at the output ports, namely the amplitude of
having ma and mb photons at output ports a and b, respectively.
Since the beam splitter preserves the total number of photons,
the output photon numbers ma and mb are also constrained as
ma + mb = N .

We are interested in the large-N limit, but let us start by
recalling what happens in the simplest case (na,nb) = (1,1).
Then, the output is either (ma,mb) = (2,0) or (0,2). Only
the two extreme cases appear, while the balanced output
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FIG. 1. A beam splitter: na and nb photons illuminate ports a and
b, respectively, and the total number of photons is fixed na + nb = N ;
ma and mb photons exit through ports a and b, respectively. The
input and output imbalances read Ny = na − nb and Nx = ma − mb,
respectively.

(ma,mb) = (1,1) is suppressed. This is the HOM interference
[1,2], due to photon bunching. If the input photon number

N is greater than 2, the two-peak structure in the probability
distribution is blurred, but a similar structure remains in the
large-N limit. Moreover, such a structure will be shown to
be very robust against the fluctuations in the imbalance in the
input photon numbers.

The action of the beam splitter is described by the unitary
operator

Û = e−ξ (â†b̂−b̂†â) = eĴ− tan ξ eĴ3 ln cos ξ e−Ĵ+ tan ξ , (1)

where ξ = π/4 for a 50:50 beam splitter, Ĵ3 = â†â − b̂†b̂,
Ĵ+ = â†b̂, and Ĵ− = b̂†â = Ĵ

†
+ [22], with â and b̂ being the

canonical annihilation operators of photons in the two modes.
The input state |na,N − na〉 is obtained from the (normalized)
state |0,N〉 by [22,23]

|na,N − na〉 =
√

(N − na)!

na! N !
(Ĵ+)na |0,N〉. (2)

The amplitude to get output |ma,N − ma〉 reads

〈ma,N − ma|Û |na,N − na〉 = 1

N !

√
(N − ma)! (N − na)!

ma! na!
(cos ξ )2ma−N 〈0,N |(Ĵ−)maeĴ− sin ξ cos ξ e−Ĵ+ tan ξ (Ĵ+)na |0,N〉

=
√

(N − ma)!

ma!

(cos ξ )2ma−N

√
na! (N − na)!

(
∂

∂α

)ma

[αna (1 + αβ)N−na ]

∣∣∣∣
α=sin ξ cos ξ,β=− tan ξ

≡ AN (x,y) (Nx = ma − mb = 2ma − N,Ny = na − nb = 2na − N ), (3)

where we have introduced the normalized imbalances y and x in the input and output photon numbers, respectively, both ranging
in −1 � x,y � 1. This is our starting formula.

III. BALANCED PHOTON INPUT y = 0

We first consider the balanced-input case y = 0. This implies that the total photon number N is even, and only even output
imbalances Nx are allowed. The evaluation of the last factor yields [ma = (N/2)(1 + x)](

∂

∂α

) N
2 (1+x)[

α
N
2 (1 + αβ)

N
2
]∣∣∣∣

α=1/2,β=−1

=
[

N
2 (1 + x)

]
!

2πi

∮
dz

z
N
2 (1 − z)

N
2(

z − 1
2

) N
2 (1+x)+1

=
[

N
2 (1 + x)

]
!

2π

(
1

2

) N
2 (1−x) ∮

dθ e−i N
2 (1+x)θ (1 − e2iθ )

N
2

= (−1)
N
4 (1+x)

[
N
2 (1 + x)

]
!

(
1

2

) N
2 (1−x)

(
N
2

N
4 (1 + x)

)
, (4)

where the quantity N
4 (1 + x) is assumed to be integer;

otherwise we get a null result. Therefore, the amplitude is
found to be expressed analytically as

AN (x,0) = (−1)
N
4 (1+x)

√[
N
2 (1 + x)

]
!
[

N
2 (1 − x)

]
!

2
N
2
[

N
4 (1 + x)

]
!
[

N
4 (1 − x)

]
!

(5)

for integer ma

2 = N
4 (1 + x); otherwise AN (x,0) = 0. This

formula is exact and coincides with the result obtained in
Ref. [3], where an analogy is drawn with the vector model [24].

Since the amplitude identically vanishes every two (“even”)
points, the probability distribution appears as a rapidly oscil-
lating function of x. Observe that the odd and even branches
of Eq. (5) compete at the edges |x| = 1 of the distribution,
yielding wild oscillations. See the upper panel in Fig. 2, where
the distribution

PN (x) = N

2
|AN (x,y)|2 (6)

is plotted for N = 600 and y = 0. [Recall that the amplitude
AN (x,y) vanishes every two points and this is why we need
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FIG. 2. Output distributions PN (x) in Eq. (6), based on the
approximate formula (21) (red squares) and exact numerical eval-
uation (blue bullets), with N = 600 for different input imbalances
Ny = 0,12,24. Note that

√
N = √

600 � 24.5. All distributions are
symmetric in x and are plotted only for x � 0. Since N = 600 is even,
only even output imbalances Nx are allowed, and PN (x) vanishes for
Nx = 0, ±4, ±8, . . . when y = 0. In all panels, the upper (black)
dashed curve is the upper envelope of PN (x) for the balanced input
case y = 0 based on Eq. (5), and the lower (red) dotted curve is
P (x) = (1/π )(1 − x2)−1/2 given in Eq. (8). Since the approximation
is very good, the discrepancy between the approximate formula
(red squares) and the exact numerical evaluation (blue bullets) is
invisible except for |x| ∼ 1. The plots display only every tenth value
(upper figure) or every sixth value (middle and bottom figures)
along the x axis in order to underline the discrete character of the
distributions.

a normalization factor N/2 for PN as a function of x.] This
distribution has a comblike structure, oscillating between its
local maxima [square of Eq. (5)] and 0. We will come back to
this observation when we will consider the imbalanced-input
case with y �= 0 [see Eq. (22)]. Notice that even though the
computations were performed for N = 600, we display 1 point
every 10 points in the figure in order to better emphasize the
discrete character of the plot.

The asymptotic behavior of AN (x,0) for large N is easily
evaluated by using the Stirling formula,

AN (x,0) ∼ (−1)
N
4 (1+x) 2√

πN (1 − x2)
1
4

. (7)

The average between the upper and lower envelopes of PN (x)
in the upper panel of Fig. 2 for y = 0 is just half of the upper
envelope,

P (x) = 1

π
√

1 − x2
, (8)

which is normalized
∫ 1
−1 P (x)dx = 1, and is plotted in Fig. 2

(dotted line).

IV. IMBALANCED PHOTON INPUT y �= 0

The evaluation of Eq. (3) for nonvanishing y is more
involved and requires the calculation of the last factor in
Eq. (3). Let us first focus on this factor and rewrite it as(

∂

∂α

) N
2 (1+x)[

α
N
2 (1+y)(1 + αβ)

N
2 (1−y)

]∣∣∣∣
α=1/2,β=−1

=
[

N
2 (1 + x)

]
!

2π
2− N

2 (1−x)i−
N
2 (1−y)I N

2 y, (9)

where

In ≡ 2N

∮
dθ

(
sin

θ

2

) N
2 −n(

cos
θ

2

) N
2 +n

e−i N
2 xθ , (10)

with n = Ny/2. It is not difficult to derive the recursion
relation

In =
N
2 − n − 1
N
2 + n + 1

In+2 − iNx
N
2 + n + 1

In+1. (11)

A. Sub-Poissonian case: n = o(
√

N)

Equation (11) is exact. For n 	 N , n in the coefficients can
be neglected altogether and Eq. (11) reduces to

I (0)
n ∼ I

(0)
n+2 − 2ixI

(0)
n+1. (12)

[As we shall see in the following subsection, this amounts
to requiring n = o(

√
N ), namely sub-Poissonian imbalance.]

The solution to this approximate recursion relation is easily
found and yields an explicit expression for I (0)

n as a function
of the two initial terms I0 and I1,

I (0)
n = pn − qn

p − q
I1 − pq(pn−1 − qn−1)

p − q
I0. (13)

The two parameters p and q are given by

p, q = ix ±
√

1 − x2 = ±e
±i tan−1 x√

1−x2 , (14)

so that the function I (0)
n is found to be approximately given,

for small n 	 N , by

I (0)
n ∼ i(−i)n

sin
[
n
(

π
2 + tan−1 x√

1−x2

)]
√

1 − x2
I1

+ i(−i)n−1
sin

[
(n − 1)

(
π
2 + tan−1 x√

1−x2

)]
√

1 − x2
I0. (15)
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The term I0 is essentially the same as in the balanced-input
case,

I0 = 2πi
N
2 (−1)

N
4 (1+x)

(
N
2

N
4 (1 + x)

)
0

, (16)

where the subscript 0 signifies that the lower entry in the
binomial is an integer; otherwise the term vanishes. The
calculation of I1 is a bit involved but can be done explicitly.
We rewrite the relevant integral in the following way:∮

dθ e−i N
2 (1+x)θ (1 − e2iθ )

N
2

1 + eiθ

1 − eiθ

= i(−2i)
N
2

∮
dθ

[
(sin θ )

N
2 −1 + ix(sin θ )

N
2
]
e−i Nx

2 θ , (17)

which is easily integrated, yielding

I1 =2πi1− N
2

[
2(−1)

N
4 (1−x)− 1

2

( N
2 − 1

N
4 (1 + x) − 1

2

)
0

+ x(−1)
N
4 (1−x)

(
N
2

N
4 (1 + x)

)
0

]
. (18)

Let us postpone the corresponding solution for the amplitude
AN to the following subsection.

B. Poissonian case: n = O(
√

N)

The above estimation (15) is valid only when the corrections
of order n/N do not accumulate to give a correction of
order 1. Since there are n factors, each of which contributes
a correction of order n/N to In, the approximation is valid
for n = o(

√
N ). However, when n = O(

√
N ), one needs to

take these contributions into account. This can be achieved by
plugging the ansatz

In = I (0)
n e

fn
N (19)

into Eq. (11), and by expanding the recursive formula in n/N .
One gets

fn+1 � f0 + n(n + 1) −→ fn � n2. (20)

so that the solution in Eq. (15) must be simply multiplied
by the factor en2/N = eNy2/4. This factor is crucial when one
deals with the Poissonian case, while it can be neglected when
n = o(

√
N ). Putting everything together, we finally arrive at

the analytic expression for the amplitude

AN (x,y) ∼ − 1

2
N
2

√[
N
2 (1 + x)

]
!
[

N
2 (1 − x)

]
![

N
2 (1 + y)

]
!
[

N
2 (1 − y)

]
!
e

N
4 y2

{
sin

[
Ny

2

(
π
2 + tan−1 x√

1−x2

)]
√

1 − x2

[
2(−1)−

N
4 (1+x)− 1

2

( N
2 − 1

N
4 (1 + x) − 1

2

)
0

+ x(−1)
N
4 (1+x)

(
N
2

N
4 (1 + x)

)
0

]
+

sin
[(

Ny

2 − 1
)(

π
2 + tan−1 x√

1−x2

)]
√

1 − x2
(−1)

N
4 (1+x)

(
N
2

N
4 (1 + x)

)
0

}
, (21)

where the subscript 0 signifies that the lower entry in the binomial [be it N
4 (1 + x) − 1

2 or N
4 (1 + x)] is an integer; otherwise

the term vanishes. This expression is one of our main results: It is valid for 0 � Ny 	 N and reduces to the previous result (5)
when y = 0. (Incidentally, we notice that only the condition 0 � Ny 	 N is required, so that in practice N need not be very
large.) Observe the presence of a nontrivial x dependence appearing in the sinusoidal function once the input imbalance has been
incorporated. Roughly speaking, one expects that about Ny/2 oscillations appear in the probability distribution. For negative
input imbalance −N 	 Ny < 0, a similar expression is obtained, with the variable y replaced by |y| and multiplied by a phase
factor (−1)

N
2 (1+x) [see Eq. (3) with ξ = π/4].

The corresponding distribution PN (x) defined in Eq. (6) is plotted in Fig. 2, for N = 600 and the input imbalances Ny = 12
(middle panel) and 24 (bottom panel). Note that

√
N = √

600 � 24.5. In the figures, we display 1 point every 6 points for
Ny > 0 (while 1 point every 10 points for Ny = 0), in order to better emphasize the discrete character of the plot. The agreement
is excellent, as one starts to observe deviations only for |x| ∼ 1. The distribution PN (x) displays again rapid (point by point)
oscillations, but one notices the presence of two slowly oscillating envelopes, that are obtained if one separately joins points for
integer N

4 (1 + x) + 1
2 and points for integer N

4 (1 + x).

For large N , the amplitude is approximated by the following function [apart from the total phase (−1)
N
2 (1+x) for negative y],

AN (x,y) = − 2√
πN

e
N
4 y2

(1 + y)
N
4 (1+y)(1 − y)

N
4 (1−y)(1 − y2)

1
4

×
(

(−1)
N
4 (1+x)+ 1

2

∣∣∣∣
0

sin
[

N |y|
2

(
π
2 + sin−1 x

)]
√

1 − x2
(1 − x2)

1
4 − (−1)

N
4 (1+x)

∣∣∣∣
0

cos

[
N |y|

2

(
π

2
+ sin−1 x

)]
1

(1 − x2)
1
4

)
,

(22)

where the subscript 0 signifies that the exponent of (−1)
is an integer; otherwise the term preceding the vertical bar
vanishes. The expression (22) is our second main result, being
a consequence of Eq. (21) under the Stirling approximation.

It is interesting to notice the competition of two behaviors
at the edges |x| = 1: When N

4 (1 + x) + 1
2 is an integer the

distribution vanishes, while when N
4 (1 + x) is an integer the

distribution diverges like (1 − x2)−
1
4 . This is reminiscent of
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the balanced input case with y = 0 [see comments after
Eq. (5)].

V. COMMENTS ON THE IMBALANCED-INPUT CASE

Starting from the approximate formula (22), the average
between the two slowly oscillating envelope curves can be
estimated to be given by the function P (x) in Eq. (8), for
any Ny2 � 1. In this sense, the function P (x) appears to be
universal, in this context. Let us elaborate on this idea.

Let the initial input state be randomly picked up among
states with input imbalance Ny with equal probability. Assume
that the input imbalance is bounded by a parameter n = o(N ),
that is, |y| � n/N 	 1 for large N . Then the average distri-
bution reads

1

n + 1

∑
−n�Ny�n

N

4
|AN (x,y)|2 ≡ PN (x), (23)

where the summation is taken over n + 1 even values of Ny

(and n is assumed to be an even number, for simplicity).
In the sub-Poissonian case n = o(

√
N ) we can disregard

the exponential factor e− N
4 y2

arising from the prefactor in
Eq. (22) and take the average of the following quantities
(φ = π

2 + sin−1 x):

1

n + 1

n
2∑

k=− n
2

sin2 |k|φ
(1 − x2)

= 1

2(1 − x2)

(
1 − sin[(n + 1)φ]

(n + 1) sin φ

)
,

1

n + 1

n
2∑

k=− n
2

cos2 |k|φ = 1

2

(
1 + sin[(n + 1)φ]

(n + 1) sin φ

)
. (24)

Plugging these results in Eq. (23) one gets

PN (x) = 1

π

[
1

2

(
1 − sin

[
(n + 1)

(
π
2 + sin−1 x

)]
(n + 1)

√
1 − x2

)
1√

1 − x2

∣∣∣∣∣
N
4 (1+x)+ 1

2 =integer

+ 1

2

(
1 + sin

[
(n + 1)

(
π
2 + sin−1 x

)]
(n + 1)

√
1 − x2

)
1√

1 − x2

∣∣∣∣∣
N
4 (1+x)=integer

⎤
⎦. (25)

This is our third and last main result. We see that the oscillating
behavior appearing alternatively at Nx = 0,±4,±8, . . . and
at Nx = ±2,±6, . . . is canceled if we look at the average
distribution (or more practically, if we are unable to distinguish
the number states |ma,mb〉 and |ma ± δm,mb ∓ δm〉 at the
output ports), which can be viewed as a universal quantity

PN (x)|typical = 1

π

1√
1 − x2

= P (x), (26)

where Nx is an even number. The amplitude of the oscillations
in PN (x) vanishes as 1/n for large input imbalance n. This
result is still valid in the Poissonian case, when n = O(

√
N ):

In such a case, the exponential factor e− N
4 y2

must be included
and the average procedure can be conducted through Gaussian
integrations.

VI. TWO-BODY CORRELATION OF THE PROBABILITY
DISTRIBUTION (STATISTICAL FLUCTUATIONS)

The quantity P (x) in Eq. (26) is a common feature of
all output distributions, being robust against the imbalance

in the input photon numbers (the upper tolerable imbalance
being Poissonian). It is then interesting to study the effect of
statistical fluctuations.

Consider a physical quantity f (x) that is a function of the
output imbalance x. Such a quantity can be the x representation
of an operator O, f (x) = 〈x|O|x〉. Its statistical properties are
governed by the variance of its expectation value over the
probability distribution PN (x) and over the input imbalance y,

δ2f (x) = 〈f 2(x)〉 − 〈f (x)〉2

=
∫

dx dx ′f (x)f (x ′)(PN (x)PN (x ′) − PN (x) PN (x ′)),
(27)

where 〈f (x)〉 = ∫
dx f (x)PN (x) and the average · · · over y

is defined in Eq. (23). The terms in parentheses represent the
correlation function of the probability distribution and are not
difficult to evaluate, for the averages over y can be calculated
by explicitly summing up all possible integers Ny, like in
Eq. (24). The result is

PN (x)PN (x ′) − PN (x) PN (x ′)

= 1

π2
√

(1 − x2)(1 − x ′2)

ε(x,x ′)
8(n + 1)

(
sin[(n + 1)(φ + φ′)]

sin(φ + φ′)
+ sin[(n + 1)(φ − φ′)]

sin(φ − φ′)
− 2

n + 1

sin[(n + 1)φ]

sin φ

sin[(n + 1)φ′]
sin φ′

)
,

(28)

where φ = π
2 + sin−1 x, φ′ = π

2 + sin−1 x ′, and

ε(x,x ′) =
⎧⎨
⎩

+1 both N
4 (1 + x) and N

4 (1 + x ′) are integers or both N
4 (1 + x) + 1

2 and N
4 (1 + x ′) + 1

2 are integers,

−1 both N
4 (1 + x) and N

4 (1 + x ′) + 1
2 are integers or both N

4 (1 + x) + 1
2 and N

4 (1 + x ′) are integers,
0 otherwise.

(29)
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NAKAZATO, PASCAZIO, STOBIŃSKA, AND YUASA PHYSICAL REVIEW A 93, 023845 (2016)

The range of input imbalance fluctuations −n � Ny � n

is assumed here to extend to a sub-Poissonian region
n = o(

√
N ). Therefore, for large n, the above correlation

function decays at most like 1/n, realizing a typical behavior
δ2f (x) → 0. Clearly, if one is unable to count the exact number
of photons at the output ports, then the relevant probability
distribution is given by the average (26), that has lost the y

dependence, and thus no correlation survives.

VII. CONCLUDING REMARKS

We investigated the photon distribution at the output of
a beam splitter for balanced and imbalanced input states.
Equations (21), (22), (25), and (26) generalize the Hong-Ou-
Mandel scheme, according to which two identical photons that
illuminate a balanced beam splitter always leave through the
same exit port. In the limit of large N , the output distribution
follows a (1 − x2)−1/2 law, and the output state can be viewed
as a generalized NOON state, as photons tend to appear at
only one of the output ports. We have seen that such an output
distribution is robust and reminiscent of typical statistical
behavior.

Our results are linked to the results obtained in
Refs. [20,21]: A beam splitter Hamiltonian implements a
continuous-time quantum walk describing perfect state trans-
fer in spin chains [25]. This fact allows one to directly apply

them also to spin dynamics under the exchange interaction. In
the context of the recent research in multiparticle multimode
quantum walks, it would be very interesting to extend our
results to the case of multimode interferometers and mixed
Fock input states.
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