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and the behavior of the visibility is scrutinized as a function of these parameters.
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I. INTRODUCTION

The wave function of two fermions is antisymmetric un-
der exchange of the two particles, as a consequence of the
Pauli exclusion principle. For this reason, the probability am-
plitude for their being spatially close together is small and
their correlated detections are reduced when compared to a
random sequence of classical particles. This very distinctive
quantum feature is named �antibunching� and has no classi-
cal analog. Notice that in general the two particles can be
emitted from totally incoherent sources.

The analogous phenomenon for bosons is a cornerstone in
the study of quantum correlations and was first observed in
astronomy, where it is known as the Hanbury Brown-Twiss
effect �1�. Photon second-order coherence effects �2–4�,
yielding bunching, are discussed in physics literature �5,6�,
and led to interesting applications in quantum imaging �7,8�
and lithography �9�.

The most relevant difference between the Bose-Einstein
and Fermi-Dirac statistics are the phase space densities �oc-
cupation numbers�, that change by several orders of magni-
tude. In a laser beam, one obtains values of order 1014, while
typical densities for thermal light, synchrotron radiation, and
electrons are of order 10−3; finally, for the most advanced
neutron sources, one obtains 10−15. These figures make it
very difficult to observe fermion antibunching. In addition,
for charged particles �electrons and pions�, additional Cou-
lomb repulsion effects should be considered, that tend to
reduce the visibility and mask the observation of the phe-
nomenon.

Quantum correlations have been detected in a series of
interesting experiments: In condensed-matter physics, where
the electronic states are confined within the Fermi surface
�10–12�, for superconductor emitters �13�, in the coincidence
spectrum of neutrons from compound-nuclear reactions at
small relative momentum �14,15�, as well as in pion pairs
emitted from a quark-gluon plasma �16�. Recently, anti-
bunching was observed on a beam of thermal neutrons emit-

ted from a nuclear reactor �17�. This can be considered as a
direct experimental evidence of free fermion antibunching,
in which an ensemble of free Fermi particles displays quan-
tum coherence effects. Other remarkable antibunching ex-
periments have been recently reported for neutral atoms,
both in a degenerate atomic Fermi gas �18� and in Fermi-
Bose gases �19�.

Huge numerical differences in phase space densities, like
the afore-mentioned ones, call for close scrutiny of the the-
oretical premises as well as dedicated experimental efforts.
Notice that these quantum statistical effects appear to play a
prominent role in phenomena that are characterized by fig-
ures that differ by almost 30 orders of magnitude. The
present study is motivated by this observation. We intend to
analyze the antibunching phenomenon in the correlated de-
tections of two neutral fermions, such as neutrons, emitted
by a generic thermal source at a given temperature. Notice
that bunching effects from �pseudo� thermal sources still
raise controversial interpretations �20� and are therefore
worth investigating from first principles.

Our main objective will be to analyze the spatial coher-
ence and in particular the coherence area and volume. Lateral
effects are becoming a critical issue, in view of a new gen-
eration of experiments. They were carefully analyzed in a
series of experimental papers on x-ray bunching �21�. For the
sake of concreteness, we will focus on fermions, but our
analysis can be very easily extended to bosons �by replacing
the energy distributions of the source and changing relevant
signs in the formulas�.

We will treat both the source �a thermal oven� and the
particle beam as fully �second� quantized systems and will
study the emission process at thermal equilibrium, when the
beam has reached its stationary configuration. This approach
will have the advantage of treating both the oven and the
fermion beam on an equal footing and of introducing the
properties of the source in a natural way.

II. SETUP AND OUTLINE

Before starting a detailed analysis, let us outline the main
features of the setup we have in mind and stress the main
points of our argument. Our setup is the simple one sche-
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matically shown in Fig. 1. Particles are emitted from a
source through a small window, go through a monochro-
mator �not shown�, and are detected by two detectors. We
count the number of coincident detections. At the initial time
t=0, the source is in the thermal equilibrium state at a finite
temperature and outside there is the vacuum. Starting from
this initial condition, we shall solve the dynamics of the
emission, so that a stationary beam of particles will be pre-
pared at t→�, after a transient period. The beam profile will
not be added “by hand,” but will be obtained by solving the
equations of motion, so that the coherence properties of the
emitted particles will reflect the dynamics of the emission.

The lateral features of the system affect the antibunching,
even when both detectors are placed on the longitudinal axis
and we shall look at the correlation in the longitudinal direc-
tion. To this end, the lateral size of the detector mouth must
be duly taken into account. We shall therefore implement the
lateral resolution of the detector, as well as the longitudinal
one, in the two-particle distribution function. The variables
and parameters that characterize the setup are summarized in
Table I.

We shall start by writing down the Hamiltonian of this
many-body system in Sec. III. This is the crucial part of the
present analysis, since it fully relies on dynamical consider-
ation. In order to facilitate the introduction of the character-
istics of the source, such as temperature, size of the window,

and so on, in a natural way, we shall adopt a two-field ap-
proach: One field describes the particles in the source and the
other one the emitted particles outside. The emission Hamil-
tonian �Hemission �which converts a particle in the source into
a particle outside and vice versa� is at the heart of our analy-
sis and must fully take into account all important features of
the experimental setup, as well as the main characteristics of
the physics of the emission process. The Hamiltonian below
will enable us to discuss the lateral coherence features of the
emitted beam, yet it will be simple enough to be �almost�
solvable. As we will see, the diffraction of the particles emit-
ted through the window governs the lateral coherence and is
controlled by the lateral size of the emitting window. Once
the Hamiltonian is written, one must “only” solve the equa-
tions of motion �and has no “freedom” anymore�.

The paper is organized as follows. The dynamics of the
emission is perturbatively solved in Sec. IV, under the as-
sumption of weak emissivity, namely weak coupling ��1,
and the stationary limit t→� realizes a nonequilibrium
steady state. The beam profile thus prepared is studied at a
large distance from the source in Sec. V. We then compute
the two-particle distribution function, or in other words, the
second-order correlation function, defined in Sec. VI. The
interplay between the singlet and triplet contributions deter-
mines to which extent the coincidence counts are reduced
�antibunching� when the two detectors are close to each
other. Indeed, the singlet contribution yields bunching and
the triplet one antibunching, with the latter 3 times larger
than the former. The detector sizes �resolutions� a and d are
implemented into the correlation functions, the saddle-point
approximation is carefully worked out for the case in which
the detectors are placed on the longitudinal z axis, and we
obtain a formula for the normalized two-particle distribution
function. The noncollinear case, with the two detectors
placed off the longitudinal axis, is also discussed.

The antibunching is then discussed and the coherence
properties are clarified in Sec. VII, on the basis of our for-
mula for the collinear case, and the effect of the temperature
of the source is scrutinized. The temperature effect is shown
to be very weak. The dependence of the antibunching corre-
lation function on the distance between the two detectors is
found to be controlled by the lateral monochromator window
and the longitudinal detector resolution, while the magnitude
of the antibunching effect is determined by the lateral size of
the source. Finally, a variety of experiments are analyzed in
Sec. VIII, in the light of the lateral coherence, and the main
results are summarized in Sec. IX.

III. HAMILTONIAN AND STATE OF THE SOURCE

Let us start with the Hamiltonian: We take

H = H0 + �Hemission, H0 = Hbeam + Hsource, �3.1a�

where

Hbeam = �
�=↑,↓

� d3k�kck�
† ck�, Hsource = �

�=↑,↓
� d3k�kak�

† ak�,

�3.1b�

beam of emitted particles
source emitting window detectors

FIG. 1. Coincidence between two detectors in the beam of emit-
ted particles: The interference of the two alternatives yields
antibunching.

TABLE I. Summary of the variables and parameters used in the
calculation.

z Longitudinal direction

x ,y Transverse directions

w Lateral size of the circular emitting window of the
source

wz Depth of the emitting region

k0 Average momentum at monochromator

�ki �i= � ,z� Monochromator window

a Lateral size of the circular mouth of the detector

d Detector resolution in the longitudinal direction

0 �origin� Center of the emitting region

r̄i �i=1,2� Centers of detector apertures

� Inverse temperature of the source

� Fermi level �in the source�
g�r� Emitting window function

f�k� Monochromator momentum-window function

Rr̄�r� Detector resolution function
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Hemission = �
�=↑,↓

� d3k� d3k��Tkk�ck�
† ak�� + Tkk�

� ak��
† ck�� .

�3.1c�

Not only the emitted particles but also the source is treated as
a second quantized dynamical system. The Hamiltonian of
the particles in the source is Hsource and that of the emitted
particles is Hbeam. The emission is dynamically described by
an emission Hamiltonian �Hemission: A particle of momentum
k� and spin � is annihilated by ak�� in the source and is
created by ck�

† outside with an amplitude �Tkk�, the meaning
of which will be described below. The creation and annihi-
lation operators obey the canonical anticommutation rela-
tions for fermions,

�ck�,ck���
† � = �ak�,ak���

† � = �����
3�k − k��, �ck�,ak���

† � = 0.

�3.2�

It is assumed that no spin flip occurs during the emission
process and that the emission is irrespective of the spin state
of the particle �Tkk� does not depend on ��: Generalizations
to more general cases are straightforward. The field operator
in the configuration space for the emitted particles is denoted
by

	��r,t� =� d3k
	�2
�3

ck�ei�k·r−�kt�. �3.3�

In the following discussion, the dispersion relations are as-
sumed to be �k=�k=k2 /2m.

In Eq. �3.1�, � is a small parameter, that will enable us to
work in the weak-coupling limit. Although this approach is
familiar in a variety of theoretical approaches aimed at ex-
plaining diverse experimental situations, a few words of ex-
planation are necessary in this case. We have in mind a situ-
ation in which an oven emits a beam of particles through a
small aperture �which we refer to as “source”�. Usually,
those particles that leave the source are monochromatized
and can travel in waveguides, undergoing all kinds of losses.
The parameter � globally accounts for all of these diverse
processes and �Hemission simply enables us to take a particle
with approximately the right characteristics in the oven and
put it in the final section of the beam. The smallness of the
opening and the total “efficiency” of the emission process
�from the oven to the region of space where the experiment
is practically done, passing through monochromators, optical
elements and/or waveguides, and undergoing losses� calls for
an approach in which � is a small parameter. We anticipate
that in all final formulas, where normalized distribution func-
tions will be studied, � will always simplify, making the final
results independent of the details of the apparatus �such as
the monochromatization procedure, reflection and transmis-
sion processes, losses in optical elements and waveguides,
and so on�. Of course, one must be able to retain all essential
elements in the analysis and final formulas. The quantity Tkk�
in Eq. �3.1� takes into account the action of the monochro-
mator and the size of the source, and will be defined in Eq.
�3.5�.

The Hamiltonian discussed in this section is to be consid-
ered as a phenomenological transfer Hamiltonian, conve-
niently tailored in order to discuss lateral size effects. It is
similar to a “tunneling” Hamiltonian �for a two-field formu-
lation of a tunneling process, see �22�� and can describe the
particle emission from a small opening.

A. Emission

We consider the following emission process. Only the
particles around the window of the source are emitted out-
side. That is, a particle in the momentum state 
k� �with kz
�0� is annihilated by ak� around the window of the source
and is converted into a particle outside by ck��

† . The emitting
region is specified by a function g�r� centered around the
window of the source that characterizes the lateral size of the
window. One may further put a monochromator f�k� after the
emission. The emission Hamiltonian is then given by

Hemission = �
�=↑,↓

� d3k�� d3kck��
† �k�
f�k�g�r���kz�
k�ak�

+ H.c. �3.4�

with the emission matrix

Tk�k = �k�
f�k�g�r���kz�
k�

= f�k����kz�� d3r

�2
�3g�r�e−i�k�−k�·r

= f�k��g̃�k� − k���kz� . �3.5�

The � function, ��kz�=1 for kz�0 and ��kz�=0 for kz
0,
accounts for the positivity of the longitudinal momentum kz.
In the following calculation, we assume Gaussian shapes for
the emitting region and the monochromator:

g�r� =
1

	�2
�3 det W2
e−r·W−2r/2, W2 = 
w2 0 0

0 w2 0

0 0 wz
2� ,

�3.6�

f�k� =
1

	4 �2
�3 det��K�2
e−�k−k0�·��K�−2�k−k0�/4,

��K�2 = 
��k��2 0 0

0 ��k��2 0

0 0 ��kz�2� , �3.7�

where w represents the lateral size of the window of the
source, wz is the depth of the emitting region, and �ki �i
= � ,z� characterize the monochromator. In the following,
we shall take k0= �0,0 ,k0�.

It is interesting to notice that the nonfactorized form �3.5�
of the interaction Hamiltonian will produce the required dif-
fraction effect. �A factorized emission Hamiltonian would
correspond to a point source, irrespectively of the state be-
fore the emission, and would not yield the desired lateral
effect. The choice of the Hamiltonian and the validity of our
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working assumptions will be continuously checked through-
out the whole calculation.� A particle with momentum k in
the source is converted into a particle with momentum k�
outside. The momentum transfer is governed by the Fourier
transform g̃�k�−k� of the “interface” function g�r� and is
ruled by the size of the window. A smaller window yields
larger momentum transfer and results in a larger divergence
of the emitted beam. This point will be crucial in the follow-
ing discussion on the lateral coherence of the beam. The
beam profile is therefore a direct consequence of the dynam-
ics and is not artificially imposed at the outset. We also no-
tice that the longitudinal component of momentum is not
necessarily preserved during the emission process, as conser-
vation of the longitudinal momentum prevents beam diver-
gence. This motivates the choice of the form factor.

B. State of the source

Having written the Hamiltonian of the emission process,
it is straightforward to introduce also the properties of the
source. The initial thermal state of the source at a finite tem-
perature �−1 is characterized by

�ak�
† ak���� = N��k������

3�k − k��, N��� =
1

e���−�� + 1
.

�3.8�

In the present paper, we shall focus for concreteness on the
Fermi distribution. However, we can think of a more general
distribution N��k�. In fact, many of the formulas below re-
main valid as long as the initial state is stationary with re-
spect to H0, admits the Wick decomposition, and N��k� is a
slowly varying function around k0.

IV. DYNAMICS OF EMISSION

The Heisenberg equations of motion read

i
d

dt
ck��t� = �kck��t� + �� d3k�Tkk�ak���t� ,

i
d

dt
ak��t� = �kak��t� + �� d3k�Tk�k

� ck���t� . �4.1�

By formally integrating the second equation and inserting it
into the first, we obtain the equation for ck��t�,

i
d

dt
ck��t� = �kck��t� + �� d3k�Tkk�e

−i�k�tak��

− i�2�
0

t

dt�� d3k�Kkk��t − t��ck���t�� ,

�4.2�

where

Kkk��t� =� d3k�Tkk�e
−i�k�tTk�k�

� . �4.3�

The integro-differential equation �4.2� is conveniently solved
by Laplace transformation and the solution is given by

ck��t� =� d3k�Gkk��t�ck��

− i��
0

t

dt�� d3k�� d3k�Gkk��t − t��Tk�k�e
−i�k�t�ak��,

�4.4�

where

Gkk��t� = �
CB

ds

2
i
Ĝkk��s�est, �4.5a�

Ĝkk�
−1 �s� = �s + i�k��3�k − k�� + �2K̂kk��s� ,

K̂kk��s� =� d3k�
Tkk�Tk�k�

�

s + i�k�
, �4.5b�

with CB running parallel to the s-imaginary axis �Bromwich
path�.

Nonequilibrium steady state. To take the stationary limit
t→�, it is convenient to move to the interaction picture
c̃k��t�=e−iH0tck��t�eiH0t. This transformation does not affect
the correlation functions of our initial state �thermal equilib-
rium inside the source and vacuum outside�, since it is in-
variant under the free evolution e−iH0t. We obtain

�ck1�1

† �t�ck2�2
�t�� = �c̃k1�1

† �t�c̃k2�2
�t�� →t→�

�2��1�2� d3kN��k��
0

�

dt1�G�t1�T�k1k
� e−i�kt1�

0

�

dt2�G�t2�T�k2kei�kt2. �4.6�

For small � and arbitrary t, one obtains �see Appendix A�

Gkk��t� = �3�k − k��e−i�kt + O��2� , �4.7�

and in the weak-coupling regime we have
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�ck1�1

† �t�ck2�2
�t��

→t→�
�2��1�2� d3kN��k�

Tk1k
�

�k1
− �k + i0+

Tk2k

�k2
− �k − i0+

+ O��4� . �4.8�

All of the other correlation functions are constructed from
this two-point function, through the Wick theorem for an
initial thermal state.

It is instructive to write the correlation function �4.8� in
the configuration space as

�	�1

† �r1,t�	�2
�r2,t�� = ��1�2

�t
�1��r1
r2�

→t→�
�2��1�2� d3kN��k��̂k

��r1��̂k�r2�

+ O��4� , �4.9�

where

�̂k�r� =� d3k�
	�2
�3i

Tk�k

�k� − �k − i0+eik�·r �4.10�

is the Laplace transform of the free evolution of a wave
packet,

�̂k�r,s� = �
0

�

dt�k�r,t�e−st,

�k�r,t� =� d3k�
	�2
�3

Tk�kei�k�·r−�k�t�, �4.11�

evaluated on the energy shell s=−i�k+0+, i.e., �̂k�r�= �̂k�r ,
−i�k+0+�. A particle with momentum k in the source is dif-
fracted and propagates outside in the form of the wave

packet �k�r , t�. The sum over k in formula �4.9� yields the
incoherent sum of such wave packets and a sort of “density
matrix.”

V. BEAM PROFILE

It is interesting to observe that the one-particle wave func-
tion �4.10� can be expressed as a superposition of spherical
waves originating from different points of the emitting re-
gion,

�̂k�r� = ��kz�f�− i��� d3r0

�2
�3g�r0��̂k,r0

�0� �r� , �5.1�

with

�̂k,r0

�0� �r� =� d3k�
	�2
�3i

1

�k� − �k − i0+eik�·�r−r0�eik·r0

= m	2

eik·r0+ik
r−r0


i
r − r0

. �5.2�

We intend to derive an expression which is valid far from the
emitting region. Equation �4.10� reads as

�̂k�r� =
1

	�2
�3i
�

0

�

dpp2� d2p̂
T�pp̂�k

�p − �k − i0+eipr�p̂·r̂�.

�5.3�

For r→�, the phase p̂ · r̂=cos � is stationary at �=0 and 
,
and the saddle-point approximation around these points
yields

�̂k�r� � −
1

	2

�

0

�

dpp2� T�pr̂�k

�p − �k − i0+eipr�
0

�

duue−pru2/2 −
T�−pr̂�k

�p − �k − i0+e−ipr�
0

�

dvve−prv2/2�
= −

1
	2
r

�
−�

�

dpp
T�pr̂�k

�p − �k − i0+eipr, �5.4�

which asymptotically behaves as

�m	2
��kz�f�kr̂�g̃��kr̂�
eikr

ir
, �5.5�

where �3.5� is substituted for Tpk and

�kr̂ = kr̂ − k �5.6�

represents the momentum transfer from k �before emission�
to that directed toward position r with the same magnitude k
�after emission�. The Gaussian function

g̃��kr̂� =
1

�2
�3e−�kr̂·W2�kr̂/2 �5.7�

shows that particles with momentum k in the source prefer to
propagate in the same direction as k outside, but with some
diffraction determined by the size of the window of the
source.

VI. CORRELATION FUNCTIONS

We compute the spin-summed one- and two-particle dis-
tributions in the emitted beam, defined, respectively, by
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�t
�1��r� = �

�=↑,↓
�	�

†�r,t�	��r,t�� = 2�t
�1��r
r� �6.1�

and

�t
�2��r1,r2� = �

�1,�2=↑,↓
�	�1

† �r1,t�	�2

† �r2,t�	�2
�r2,t�	�1

�r1,t��

= 4�t
�1��r1
r1��t

�1��r2
r2� − 2�t
�1��r1
r2��t

�1��r2
r1� ,

�6.2�

where �t
�1��r1 
r2� was introduced in �4.9�. We are interested

in the normalized two-particle distribution function with de-
tector resolutions,

C̄t�r̄1, r̄2� =
�̄t

�2��r̄1, r̄2�
�̄t

�1��r̄1��̄t
�1��r̄2�

= 1 −
Īt�r̄1, r̄2�

�̄t
�1��r̄1��̄t

�1��r̄2�
, �6.3�

where

�̄t
�1��r̄� =� d3rRr̄�r��t

�1��r� = 2� d3rRr̄�r��t
�1��r
r� ,

�6.4a�

�̄t
�2��r̄1, r̄2� =� d3r1Rr̄1

�r1�� d3r2Rr̄2
�r2��t

�2��r1,r2� ,

�6.4b�

and

Īt�r̄1, r̄2� = 2� d3r1Rr̄1
�r1�� d3r2Rr̄2

�r2��t
�1��r1
r2��t

�1��r2
r1�

�6.4c�
are defined in terms of the resolution function of the detector
Rr̄�r�, which is assumed to be Gaussian,

Rr̄�r� =
1

	�2
�3 det D2
e−�r−r̄�·D−2�r−r̄�/2, D2 = 
a2 0 0

0 a2 0

0 0 d2� .

�6.5�

The quantity a characterizes the lateral size of the circular
mouth of the detector and d the resolution in the longitudinal

direction. The “interference term” Īt�r̄1 , r̄2� gives rise to a
reduction in the two-particle distribution function, that is,
antibunching. For bosons, the minus sign in Eqs. �6.2� and
�6.3� would be replaced by a plus sign, and the coincidence
count would be enhanced, exhibiting bunching. All the for-
mulas below are easily switched to their bosonic counter-
parts by flipping the negative contribution of the interference
term to a positive one.

A. Singlet and triplet contributions

Before we compute the normalized two-particle distribu-
tion function �6.3�, let us look at the structure of the two-
particle distribution �6.2� in the stationary beam,

�t
�2��r1,r2� →t→�

�4� d3k1� d3k2N��k1
�N��k2

��4
�̂k1
�r1�
2
�̂k2

�r2�
2 − 2�̂k1

� �r1��̂k1
�r2��̂k2

� �r2��̂k2
�r1��

= �4� d3k1� d3k2N��k1
�N��k2

��3
�k1,k2

�−� �r1,r2�
2 + 
�k1,k2

�+� �r1,r2�
2� , �6.6�

where

�k1,k2

��� �r1,r2� =
1
	2
��̂k1

�r1� �̂k1
�r2�

�̂k2
�r1� �̂k2

�r2�
�

�

�6.7�

are the symmetrized and antisymmetrized two-particle wave
functions. Formula �6.6� for the two-particle distribution
shows that 3/4 are contributed by the antisymmetric wave
function while 1/4 by the symmetric one. This is because the
thermal source is a complete mixture of the triplet and sin-
glet spin states, the former being associated with an antisym-
metric wave function in space, while the latter with the sym-
metric one, for the state of the fermions as a whole to be
antisymmetric. A similar consideration applies to bosons, for

which the symmetrized and antisymmetrized wave functions
should be interchanged.

B. Detector resolution

Let us now compute the normalized two-particle distribu-

tion function C̄st�r̄1 , r̄2� in �6.3� in the stationary beam. The
subscript “st” will henceforth denote quantities evaluated in

the stationary limit, e.g., C̄st�r̄1 , r̄2�=limt→� C̄t�r̄1 , r̄2�. In the
main part of this section, we shall employ an approximation
which is nonsystematic but can nonetheless capture the es-

sential features of the lateral effects of C̄st. Its consistency
and validity will be examined in Sec. VI E.

We need to evaluate the following components of the cor-
relation functions in �6.4�: By expanding r around the center
of the detector, r= r̄+�r , for �r� r̄,
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r � r̄ + r̂̄ · �r , r̂ � r̂̄ +
1

r̄
Pr̂̄�r , �kr̂ � �kr̂̄ +

k

r̄
Pr̂̄�r , �6.8�

with Pr̂ a projection operator which projects a vector v onto a perpendicular direction to r̂ by Pr̂v=v− r̂�r̂ ·v�, we obtain

� d3rRr̄�r��̂k1

� �r��̂k2
�r� �

m2

�2
�5r̄2��k1z�f�k1r̂̄���k2z�f�k2r̂̄�e−�k1r̂̄·W2�k1r̂̄/2e−�k2r̂̄·W2�k2r̂̄/2e−i�k1−k2�r̄

�� d3�r
1

	�2
�3 det D2
e−�r·Br̄

−2
�r/2e−�k1�k1r̂̄+k2�k2r̂̄�·W2Pr̂̄�r/r̄e−i�k1−k2�r̂̄·�r

= Ak1k2
�r�Zk1k2

�r�
1

r̄2e−i�k1−k2�r̄, �6.9�

where

Ak1k2
�r̄� =

m2

�2
�5

1

	det�1 + �k1
2 + k2

2�D2Pr̂̄W2Pr̂̄/r̄2�

�e−�k1r̂̄·W2�k1r̂̄/2e−�k2r̂̄·W2�k2r̂̄/2

�e�k1�k1r̂̄+k2�k2r̂̄�·W2Pr̂̄Br̄
2Pr̂̄W2�k1�k1r̂̄+k2�k2r̂̄�/2r̄2

�ei�k1−k2�r̂̄·Br̄
2Pr̂̄W2�k1�k1r̂̄+k2�k2r̂̄�/r̄, �6.10a�

Zk1k2
�r̄� = ��k1z�f�k1r̂̄���k2z�f�k2r̂̄�e−�k1 − k2�2r̂̄·Br̄

2r̂̄/2,

�6.10b�

and

Br̄
−2 = D−2 + �k1

2 + k2
2�Pr̂̄W2Pr̂̄/r̄2. �6.10c�

Zk1k2
�r̄� is responsible for the longitudinal effects and

Ak1k2
�r̄� for the lateral effects. The one-particle distribution

and the interference term in the two-particle distribution with
detector resolutions are then given by

�̄st
�1��r̄� � 2�2 1

r̄2� d3kN��k�Akk�r̄�Zkk�r̄� �6.11�

and

Īst�r̄1, r̄2� � 2�4 1

r̄1
2r̄2

2� d3k1� d3k2N��k1
�N��k2

�Ak1k2
�r̄1�

�Ak1k2

� �r̄2�Zk1k2
�r̄1�Zk1k2

� �r̄2�e−i�k1−k2��r̄1−r̄2�.

�6.12�

C. Single-particle distribution

Let us place our detectors on the longitudinal z axis, r̄
= �0,0 , z̄�. In this case,

r̂̄ = 
0

0

1
�, Pr̂̄ = 
1 0 0

0 1 0

0 0 0
� ,

Br̄
2 =


a2

1 + a2w2�k1
2 + k2

2�/z̄2 0 0

0
a2

1 + a2w2�k1
2 + k2

2�/z̄2 0

0 0 d2
� ,

�6.13�

and therefore,

Ak1k2
�r̄� =

m2

�2
�5

1

1 + a2w2�k1
2 + k2

2�/z̄2

�e−w2k1�
2 /2−wz

2�k1 − k1z�
2/2e−w2k2�

2 /2−wz
2�k2 − k2z�

2/2

�ea2w4�k1k1� + k2k2��2/2�z̄2+a2w2�k1
2+k2

2��, �6.14a�

Zk1k2
�r̄� = ��k1z�f�k1r̂̄���k2z�f�k2r̂̄�e−�k1 − k2�2d2/2.

�6.14b�

Now the single-particle distribution reads

�̄st
�1��r̄� � �2 2m2

�2
�5z̄2� d3k
N��k���kz�f2�kr̂̄�
1 + 2a2w2k2/z̄2

�e−w2k�
2 /�1+2a2w2k2/z̄2�e−wz

2�k − kz�
2

= �2 2m2

�2
�4z̄2�
0

�

dkk2 N��k�f2�kr̂̄�
1 + 2a2w2k2/z̄2

��
0


/2

d� sin �e−w2k2sin2 �/�1+2a2w2k2/z̄2�e−wz
2k2�1 − cos ��2

.

�6.15�

In order to estimate the integral over � by a Gaussian ap-
proximation, we introduce a new integration variable � by
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w2k2

1 + 2a2w2k2/z̄2sin2 � + wz
2k2�1 − cos ��2

= � w2k2

1 + 2a2w2k2/z̄2 + wz
2k2�sin2 � . �6.16�

The above integral over � in �6.15� is reduced to the follow-
ing form:

�p + q��
0


/2 d�

	p2 cos2 � + q2 sin2 �
eln�sin � cos ��−�p+q�sin2 �,

�6.17a�

p =
w2k2

1 + 2a2w2k2/z̄2 , q = wz
2k2. �6.17b�

Notice that it is important to exponentiate all factors that
change considerably in the integration region for the Gauss-
ian approximation to be well posed. The exponent is ex-
panded around its stationary point,

sin2 �0 =
1

2�p + q�
�1 + p + q − 	1 + �p + q�2� , �6.18�

and is approximated by a quadratic function of the form

ln�sin � cos �� − �p + q�sin2 �

�
1

2
ln�	1 + �p + q�2 − 1

2�p + q�2 �
−

1

2
�1 + p + q − 	1 + �p + q�2�

− 2	1 + �p + q�2�� − �0�2. �6.19�

The remaining slowly varying factor is estimated at �0 and
we obtain

	 	1 + �p + q�2 − 1

p2 + q2 + �p − q��	1 + �p + q�2 − 1�
e−�1+p+q−	1+�p + q�2�/2

��
0


/2

d�e−2	1+�p + q�2�� − �0�2
, �6.20�

which, for large p�1, is well approximated by

1

2	p2 + q/2
	


e
�

1

2p
	


e
for p2 � q . �6.21�

Thus, the single-particle distribution �6.15� is evaluated as

�̄st
�1��r̄� � �2 2m2

�2
�4w2z̄2�
0

�

dkN��k�f2�kr̂̄�p�p + q�

��
0


/2 sin � cos �d�

	p2 cos2 � + q2 sin2 �
e−�p+q�sin2 �

� �2 m2

�2
�4w2z̄2
	


e
�

0

�

dkN��k�f2�kr̂̄� . �6.22�

In the last line, it has been implicitly �and reasonably� as-
sumed that the monochromator f�kr̂̄� extracts, in effect, only
those momenta for which the inequality

w2k2

1 + 2a2w2k2/z̄2 � max�1,wzk� �6.23�

holds.
If the beam is well monochromatized around a given mo-

mentum k0 and the distribution N��k� is a slowly varying
function there, the one-particle distribution function �6.22� is
further estimated for the Gaussian monochromator �3.7� as

�̄st
�1��r̄� � �2 m2

�2
�4w2z̄2
	


e
N��k0

��
−�

�

dkf2�kr̂̄�

= �2 m2

�2
�5w2z̄2��k��2
	


e
N��k0

� . �6.24�

D. Two-particle correlation function

When the two detectors are placed on the z axis,
i.e., r̂̄1= r̂̄2= �0,0 ,1�= r̂̄, the interference term �6.12� reads
as

Īst�r̄1, r̄2� � �4 2m4

�2
�10z̄1
2z̄2

2� d3k1� d3k2

N��k1
�N��k2

���k1z���k2z�f2�k1r̂̄�f2�k2r̂̄�

�1 + a2w2�k1
2 + k2

2�/z̄1
2��1 + a2w2�k1

2 + k2
2�/z̄2

2�

�e−�k1 − k2�2d2
e−i�k1−k2��z̄1−z̄2�e−w2k1�

2 −wz
2�k1 − k1z�

2
e−w2k2�

2 −wz
2�k2 − k2z�

2

�ea2w4�k1k1� + k2k2��2/2�z̄1
2+a2w2�k1

2+k2
2��ea2w4�k1k1� + k2k2��2/2�z̄2

2+a2w2�k1
2+k2

2��

= �4 2m4

�2
�10z̄1
2z̄2

2� d3k1� d3k2

N��k1
�N��k2

���k1z���k2z�f2�k1r̂̄�f2�k2r̂̄�

�1 + a2w2�k1
2 + k2

2�/z̄1
2��1 + a2w2�k1

2 + k2
2�/z̄2

2�

�e−�k1 − k2�2d2
e−i�k1−k2��z̄1−z̄2�e−p1k1�

2 −q1�k1 − k1z�
2
e−p2k2�

2 −q2�k2 − k2z�
2
eck1�·k2�, �6.25�
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where

pi = w2 −
1

2
� a2w4

z̄1
2 + a2w2�k1

2 + k2
2�

+
a2w4

z̄2
2 + a2w2�k1

2 + k2
2�
�ki

2, qi = wz
2 �i = 1,2� �6.26a�

and

c = � a2w4

z̄1
2 + a2w2�k1

2 + k2
2�

+
a2w4

z̄2
2 + a2w2�k1

2 + k2
2�
�k1k2. �6.26b�

Integrations over the two azimuthal angles around the longitudinal axis yield a modified Bessel function of the first kind,

2
�
0

2


d�12e
ck1�k2� cos �12 = �2
�2�

n=0

�
1

�n!�2� c2

4
�n

k1�
2n k2�

2n = �2
�2I0�ck1�k2�� . �6.27�

The remaining integrations over k1� and k2� can be performed just as before and we obtain �cf. �6.15� and �6.21��

Īst�r̄1, r̄2� � �4 2m4

�2
�8z̄1
2z̄2

2�
0

�

dk1k1
2�

0

�

dk2k2
2e−�k1 − k2�2d2

e−i�k1−k2��z̄1−z̄2�

��
n=0

�
�c2/4�n

�n!�2 �
i=1,2

N��ki
�f2�kir̂̄�

1 + a2w2�k1
2 + k2

2�/z̄i
2�−

�

�pi
�n�

0


/2

d�i sin �ie
−piki

2 sin2 �i−qiki
2�1 − cos �i�

2

� �4 2m4

�2
�8z̄1
2z̄2

2�
0

�

dk1k1
2�

0

�

dk2k2
2e−�k1 − k2�2d2

e−i�k1−k2��z̄1−z̄2��
n=0

�
�c2/4�n

�n!�2 �
i=1,2

N��ki
�f2�kir̂̄�

1 + a2w2�k1
2 + k2

2�/z̄i
2�−

�

�pi
�n 1

2piki
2	


e

= �4 m4

2�2
�8z̄1
2z̄2

2




e
�

0

�

dk1�
0

�

dk2

N��k1
�N��k2

�f2�k1r̂̄�f2�k2r̂̄�

�1 + a2w2�k1
2 + k2

2�/z̄1
2��1 + a2w2�k1

2 + k2
2�/z̄2

2�
e−�k1 − k2�2d2

e−i�k1−k2��z̄1−z̄2�

p1p2 − c2/4

= �4 m4

2�2
�8w4z̄1
2z̄2

2




e
�

0

�

dk1�
0

�

dk2

N��k1
�N��k2

�f2�k1r̂̄�f2�k2r̂̄�

1 + a2w2�k1
2 + k2

2��1/2z̄1
2 + 1/2z̄2

2�
e−�k1 − k2�2d2

e−i�k1−k2��z̄1−z̄2�. �6.28�

For the well-monochromatized case,

Īst�r̄1, r̄2� � �4 m4

2�2
�8w4z̄1
2z̄2

2




e

N2��k0
�

1 + a2w2k0
2�1/z̄1

2 + 1/z̄2
2�
�

−�

�

dk1�
−�

�

dk2f2�k1r̂̄�f2�k2r̂̄�e−�k1 − k2�2d2
e−i�k1−k2��z̄1−z̄2�

= �4 m4

2�2
�10w4z̄1
2z̄2

2��k��4




e

N2��k0
�

1 + a2w2k0
2�1/z̄1

2 + 1/z̄2
2�

1
	1 + 4��kz�2d2

exp�−
�z̄1 − z̄2�2

1/��kz�2 + 4d2� , �6.29�

and we end up with the analytical formula for the normalized
two-particle distribution function,

C̄st�r̄1, r̄2� = 1 −
1

2

1

1 + a2w2k0
2�1/z̄1

2 + 1/z̄2
2�

1
	1 + 4��kz�2d2

�exp�−
�z̄1 − z̄2�2

1/��kz�2 + 4d2� . �6.30�

This is our central result. Its bosonic counterpart is readily
obtained by just flipping the minus sign in front of the sec-
ond term.

Before studying this formula numerically, it is worth ana-
lyzing its range of validity.

E. Consistency of the approximations

One might wonder if the approximation and procedure we
adopted when we performed the integration over r in �6.9�
are self-consistent, because, as some careful reader might
have realized, we have partly kept second-order terms in �r
in the exponent of the integrand of �6.9�, while only first-
order corrections were considered in the expansions �6.8�.
Actually, we implicitly assumed that �r=r− r̄ is a small
quantity, in order to keep only second-order terms in �r in
the exponent, so that the integrals could be evaluated by
Gaussian integrations. Stated differently, it is not clear
whether we are allowed to expand the exponent of the inte-
grand around r̄, since this is the stationary point of the ex-
ponent of Rr̄�r�, but is not necessarily that of the integrand.
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In order for the approximation to be consistent, we first must
find the true stationary or saddle point of the exponent of the
integrand, rs, and then expand it around rs, keeping all
second-order terms in r−rs.

It is not difficult to derive the relation that the saddle point
rs of the exponent of the integrand

F�r� = −
1

2
�r − r̄� · D−2�r − r̄� −

1

4
�k1r̂ − k0� · ��K�−2�k1r̂ − k0�

−
1

4
�k2r̂ − k0� · ��K�−2�k2r̂ − k0� −

1

2
�k1r̂ · W2�k1r̂

−
1

2
�k2r̂ · W2�k2r̄ − i�k1 − k2�r �6.31�

must satisfy. This reads as


0 = �F�r�
rs
= − D−2�rs − r̄� −

k1

2rs
Pr̂s

��K�−2�k1r̂s − k0�

−
k2

2rs
Pr̂s

��K�−2�k2r̂s − k0� −
k1

rs
Pr̂s

W2�k1r̂s

−
k2

rs
Pr̂s

W2�k2r̂s
− i�k1 − k2�r̂s. �6.32�

The saddle point rs is therefore the solution of the equation

rs = r̄ − e�rs� , �6.33�

with

e�r� =
1

r
D2Pr̂u�r� + i�k1 − k2�D2r̂ , �6.34a�

u�r� = �k1
2 + k2

2��W2 +
1

2
��K�−2�r̂ −

k1 + k2

2
��K�−2k0

− W2�k1k1 + k2k2� . �6.34b�

This equation is iteratively solved to yield, after the first
iteration,

rs � r̄ − e�r̄� = z̄��1 − i�k1 − k2�
d2

z̄2 � r̂̄ +
a2w2

z̄2 �k1k1 + k2k2��� .

�6.35�

Notice that for this iterative solution to be a good approxi-
mation, its deviation from r̄ must be a small quantity relative
to z̄= 
r̄
. Actually, this expression is still valid, after the sec-
ond iteration, up to the second order in a / z̄ and d / z̄.

Since we obtain

rs � z̄�1 − i�k1 − k2�
d2

z̄2 � and r̂s � r̂̄ +
a2w2

z̄2 �k1k1 + k2k2��

�6.36�

up to O�a2 / z̄2� and O�d2 / z̄2�, the saddle-point value of the
exponent, F�rs�, is easily estimated to be

F�rs� = −
1

2
�k1 − k2�2d2 − i�k1 − k2�z̄ −

1

2
w2�k1�

2 + k2�
2 �

+
a2w4

2z̄2 �k1k1 + k2k2��
2 −

�k1 − k0�2

4��kz�2 −
�k2 − k0�2

4��kz�2

−
1

2
wz

2��k1 − k1z�2 + �k2 − k2z�2� . �6.37�

We then approximate the exponent by a quadratic form

F�r� � F�rs� +
1

2!�i,j �xi − xsi��xj − xsj�� �2F�r�
�xi � xj

�
rs

�6.38�

to perform the Gaussian integration. The covariance matrix
�the coefficient matrix of the quadratic term� reads as

1

2!�i,j �xi − xsi��xj − xsj�� �2F�r�
�xi � xj

�
rs

= − „�r − rs��
t z − zs…�M b

bt �
���r − rs��

z − zs
�

= − ���z − zs� +
1

�
�r − rs�� · b�2

− �r − rs�� · �M −
bbt

�
��r − rs��, �6.39�

which yields, after integrations over r−rs,

	


�
	 
2

det�M − bbt/��
. �6.40�

Within the validity of the approximation adopted here, this
factor is estimated to be

	�2
�3 det D2�1 +
a2w2�k1

2 + k2
2�

z̄2 �k1k2
+

i�k1 − k2�a2

z̄ − i�k1 − k2�d2�−1

,

�6.41�

where

�k1k2
= 1 +

1

2w2��k��2 −
1

2w2��kz�2�1 −
k0�k1 + k2�

k1
2 + k2

2 �
−

wz
2

w2�1 −
k1k1z + k2k2z

k1
2 + k2

2 � . �6.42�

It is worth mentioning that we have obtained the same value
as before �see, for example, �6.14�� for the saddle-point value
of the exponent �6.37�, within the validity of our approxima-
tion �up to O�a2 / z̄2� and O�d2 / z̄2��. The only correction to
Ak1k2

�r� in �6.14a� is to replace its denominator by the quan-
tity in the large parentheses in �6.41�,
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1 +
a2w2�k1

2 + k2
2�

z̄2 → 1 +
a2w2�k1

2 + k2
2�

z̄2 ��k1k2
+

2

w2�k1
2 + k2

2��
−

3d2

z̄2 +
i�k1 − k2�a2

z̄ − i�k1 − k2�d2 . �6.43�

If we take, however, the same Gaussian approximation for
the momentum integrations as in Sec. VI C, by which the last
term on the right-hand side of �6.42� is estimated to be �
−wz

2 /2w4�k1
2+k2

2�, and consider the well-monochromatized
case, a few corrections remain. Actually, it can be easily
shown that the single-particle distribution �6.24� has further
to be divided by a factor 1+ �a2 / z̄2��k0

2 / ��k��2� and the de-
nominator in the interference term �6.29� must be corrected
by

1 + a2w2k0
2� 1

z̄1
2 +

1

z̄2
2�

→ 1 + a2w2k0
2� 1

z̄1
2 +

1

z̄2
2��1 +

1

w2��k��2� . �6.44�

It is remarkable and important to note that these corrections

do not change the final result for the normalized two-particle
distribution function �6.30�, illustrating the consistency and
validity of the approximation and procedure we adopted
there.

F. Lateral correlation at the lowest order
for a noncollinear arrangement

So far, we have investigated the lateral effects when the
source and the two detectors are collinearly arranged. In or-
der to bring antibunching to light, the second-order expan-
sion of the exponent around the saddle point was necessary.
It is interesting to note that, if the two detectors are placed
off the longitudinal z axis, lateral effects can be seen even in
the lowest order with respect to 1 / r̄1 and 1 / r̄2. Indeed, when
the detectors are placed on r̄1= �r̄1 sin �d cos � ,
r̄1 sin �d sin � , r̄1 cos �d�, r̄2= �−r̄2 sin �d cos � ,
−r̄2 sin �d sin � , r̄2 cos �d�, the normalized two-particle
distribution function �6.3� is given by

C̄st�r̄1, r̄2� = 1 −
D1��d�

2	D2��d�D3��d�
exp�−

w2k0
2��k��2 sin2 2�d

2D1��d�D2��d�
−

��kz�2��k��2�r̄1 − r̄2�2

D3��d�
� , �6.45�

provided the beam of particles is well monochromatized and
the two inequalities w�wz, wk�1 are satisfied. Here the
auxiliary functions D1, D2, and D3 are defined as

D1��d� = ��kz�2 sin2 �d + ��k��2 cos2 �d

+ 2wz
2��kz�2��k��2�1 − cos �d�2, �6.46a�

D2��d� = D1��d� + 2w2��kz�2��k��2 sin2 �d,

�6.46b�

D3��d� = D2��d� + 4a2��kz�2��k��2 sin2 �d

+ 4d2��kz�2��k��2cos2 �d. �6.46c�

As can clearly be seen, the two-particle distribution does
depend on the lateral size w of the source. The derivation is
discussed in Appendix B.

Now we consider two particular cases. In the first case
where �d=0, one has D1�0�=D2�0�= ��k��2 and D3�0�
= ��k��2�1+4��kz�2d2�. Thus, �6.45� reduces to the lowest-
order terms of �6.30� with respect to 1 / z̄1 and 1 / z̄2,

C̄st�r̄1, r̄2� = 1 −
1

2	1 + 4��kz�2d2
exp�−

�z̄1 − z̄2�2

1/��kz�2 + 4d2� ,

�6.47�

where we have set z̄1= r̄1 and z̄2= r̄2. In the second case,
where r1= �x̄ , ȳ , z̄� and r2= �−x̄ ,−ȳ , z̄�, the two-particle distri-
bution reads as

C̄st�r̄1, r̄2� = 1 −
D̃1�x̄, ȳ, z̄�

2	D̃2�x̄, ȳ, z̄�D̃3�x̄, ȳ, z̄�

�exp�−
2w2k0

2��k��4�x̄2 + ȳ2�z̄2

D̃1�x̄, ȳ, z̄�D̃2�x̄, ȳ, z̄�
� ,

�6.48�

where the functions D̃1, D̃2, and D̃3 are

D̃1�x̄, ȳ, z̄� = r̄2D1��d�

= ��kz�2�x̄2 + ȳ2� + ��k��2z̄2

+ 2wz
2��kz�2��k��2�r̄ − z̄�2, �6.49a�

D̃2�x̄, ȳ, z̄� = r̄2D2��d�

= D̃1�x̄, ȳ, z̄� + 2w2��kz�2��k��2�x̄2 + ȳ2� ,

�6.49b�

D̃3�x̄, ȳ, z̄� = r̄2D3��d�

= D̃2�x̄, ȳ, z̄� + 4��kz�2��k��2�a2�x̄2 + ȳ2� + d2z̄2� ,

�6.49c�

and r̄=	x̄2+ ȳ2+ z̄2. The geometrical configuration of noncol-
linear detectors is not the usual one and will not be discussed
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any further. It might be important for electron antibunching
from superconducting emitters �23�.

VII. LONGITUDINAL, LATERAL, AND TEMPERATURE
EFFECTS ON ANTIBUNCHING

The normalized two-particle distribution function

C̄st�r̄1 , r̄2�, evaluated on the basis of the expressions �6.22�
and �6.28�, is shown in Figs. 2–4. The two-particle distribu-
tion �the number of coincidence counts� is always suppressed
when the two detectors are close together. The dips in the
figures represent antibunching.

It is clear from the expression �6.2� for the two-particle
distribution that the number of coincidences is reduced to
one-half of that naively expected on the basis of the counts
by the single detectors, when the two �ideal� point detectors
are at the same point. This is understood by the expression
�6.6�: The triplet spin states accompany the antisymmetric
wave function in space, yielding antibunching, while the sin-
glet spin state accompanies the symmetric wave function in
space, yielding bunching. The interplay of these contribu-
tions �three-fourths from the antibunching and one-fourth
from bunching� results in the minimum value 0.5�=1−3 /4
+1 /4� of the normalized two-particle distribution function.
The width of the dip, on the other hand, is governed by the
width of the spectrum of the emitted particles, as is clear
from the analytical formula �6.30� or from the Fourier-
integral representation of the interference term in �6.12�.

Let us next look at the effects of the detector resolutions.
Not only the longitudinal resolution of the detectors d �Fig.

2� but also the lateral size of the detectors a affects the vis-
ibility of the antibunching �Fig. 3�, although we are looking
at the coincidences between the two detectors located along
the longitudinal axis. The width of the dip is broadened by
the longitudinal resolution of the detectors d, while it is not
by the lateral size a.

The analytical formula �6.30� clearly reveals how the
resolutions of the detectors affect the coincidence counts. It
also shows that the detectors can be regarded as point detec-
tors when

a �
z̄

	2wk0

, d �
1

2�kz
, �7.1�

and these quantities characterize the lateral and longitudinal
coherence lengths, respectively. Clearly, the above condi-
tions agree with those derived in classical literature �6�.

The temperature of the source affects antibunching in a
way that deserves a few words of explanation. The visibility
�namely, the depth of the dip� is temperature independent, as
a consequence of the antisymmetry of the fermionic state à
la Pauli’s principle: Indeed, antisymmetry is exact, both for
pure and mixed states, and is preserved even at very high
temperatures, where the fermionic state is totally mixed. See
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FIG. 2. �Color online� Normalized two-particle distribution

function C̄st�0,0 , z̄1 ;0 ,0 ,160w� vs the longitudinal detector coordi-

nate z̄1. C̄st is evaluated in the stationary state on the basis of the
expressions �6.22� and �6.28�, with the Gaussian detectors located at
r̄1= �0,0 , z̄1� and r̄2= �0,0 ,160w�. We focus here on the effect of the
longitudinal resolution of the detector, d. The parameters are k0

=20w−1, �kz=0.5w−1, a=0, and from bottom to top �in the dip�
d /w=0,1 ,2 ,3 ,4 ,5 �in units �=1 and m=1�. We set �=5mw2 /�2

�a low temperature� and the Fermi level �= �k0+�kz�2 /2m
�210�2 /mw2 �just above the momentum window�. Note that in this
case p�400 in �6.17� and the condition �6.23� imposes wz�20w.
The values based on the numerical integrations of �6.15� and �6.25�
without the Gaussian approximation are also shown by dots for d
=0 and 5w. These were checked to be independent of wz for small
wz.
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FIG. 3. �Color online� �a� Same as in Fig. 2 but with d=0 and
from bottom to top a /w=0,1 ,2 ,3 ,4 ,5. We study here the effect of
the lateral size of the detector, a. Note that p�225 for a=5w in
�6.17� and the condition �6.23� imposes wz�11w. The values based
on the numerical integrations of �6.15� and �6.25� without the
Gaussian approximation are also shown by dots for a=0 and 5w
and were checked to be independent of wz for small wz. �b� Depth of

the antibunching dip, 1− C̄st�0,0 ,160w ;0 ,0 ,160w�, as a function of
a. All the parameters are the same as in �a�.
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Fig. 4�a�. This is clear in our formulas and figures: The pref-
actor −1 /2 does not depend on any details of the source or
the experimental setup. See, e.g., Eq. �6.6�: In the second
line, irrespectively of the temperature distribution N��k�,
when 
r1−r2
→� the interference term �second term in
brackets� goes to zero, while at r1=r2 it is equal to one-half
of the background term �first term in brackets�. On the other
hand, the width of the dip depends on temperature and even
strongly by the location of the monochromator window with
respect to the Fermi level, as can be clearly seen in Fig. 4�b�.
As a consequence, the dip becomes narrower as temperature
is increased and the effects of antibunching becomes more
difficult to detect.

VIII. APPLICATION TO EXPERIMENTS

It is useful to summarize the meaning of our analysis.
Equations �6.1� and �6.2� yield the one- and two-particle dis-
tributions in the beam, that are expressed in terms of the
fermionic operators. Equations �4.9� and �6.6� then express

these quantities in terms of the “wave functions” �̂k�r� and of
the temperature-dependent function N��k�. If the Fermi dis-
tribution is plugged in, all formulas apply to fermions: Oth-
erwise, the analysis in Secs. IV–VII is general �modulo some
sign changes� and can be applied to bosons as well.

It is interesting to apply our final result �6.30� to some
interesting experimental situations. It is necessary to stress
that our analysis is strictly valid only for experiments such
that the beam of emitted particles travels in vacuum. If this
situation closely resembles the experimental one, then our
equations apply; otherwise, additional care is required in or-
der to explain the experimental data. In some experiments,
such as those in which correlation in the current intensities
are observed �10,11�, our formulas cannot be applied and a
different analysis is required �23�.

Let us start from an analysis of the electron experiment
�12�. One infers the values a�2 mm, w�18 nm, k0
�1011 m−1, z�10 cm. By plugging these values in Eq.
�6.30�, one can see that the first of the two factors multiply-
ing the exponential is of order 10−4. Moreover, the coherence
time is �tcoh�32 fs, while the response time of the detectors
is �tdet�26 ps, which yield a value �1 /300 for the second
factor in front of the exponential. The global factor multiply-
ing the exponential is therefore of order 10−6, which makes
the observation of the phenomenon quite complicated. In-
deed, the authors had to apply a lateral magnification tech-
nique �nominally of order �104� in order to observe anti-
bunching. Notice also that in our formulas the Coulomb
repulsion is neglected. This is a delicate issue that would
require additional investigation.

Let us now look at the neutron experiment �17�. The rel-
evant values are a�1 cm, w�1 cm �a mosaic crystal was
used in order to reflect the beam into the apparatus�, k0
�1010 m−1, z�10 m. The beam coming out of an oven
travels in waveguides for about 100 m, is then monochroma-
tized through back scattering by a perfect crystal, and illu-
minates the whole mosaic crystal on a region of the order of
a few cm2, the back reflection being coherent only on regions
of order ��m2 that are uniformly distributed in the whole
volume. By plugging the numerical values of the parameters
in Eq. �6.30�, the first factor is of order 10−10. Moreover, by
comparing the coherence time of the neutron wave packet
�tcoh�20 ns with the response times of the detectors �tdet
�0.1 �s �two different types of detectors were used, with
response times that differ by a factor 10–20�, one obtains a
second factor of order �10−1 �or smaller by a factor 10 for
the other type of detectors�, yielding a very small antibunch-
ing dip. It is interesting to observe that if we take w
�1 �m �the size of a monocrystal in the mosaic�, by Eq.
�6.30� the first factor is of order 10−2, the second factor re-
mains identical and one obtains an antibunching dip of a few
percent, which can be brought to light by deconvolution and
is in agreement with the experimental data. An exhaustive
analysis of the physical effects of the mosaic crystal used in
back reflection is involved and will be presented elsewhere.

Another interesting experiment is that performed with x
rays �21�. An important part of this experiment is devoted to
the analysis of the lateral coherence features of the beam.
The setup involves the values k0�7�1010 m−1, z�70 m,
while the detector size was changed in the range a
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FIG. 4. �Color online� �a� Same as in Fig. 2 but with a=0, d
=0, and from bottom to top � / �mw2 /�2�=5,0.2,0.05. We analyze
here the effect of the temperature, �−1. The values based on the
numerical integrations of �6.15� and �6.25� without the Gaussian
approximation are also shown for � / �mw2 /�2�=5 and 0.05 by dots,
and were checked to be independent of wz for small wz. �b� Particle
emission �from the oven into the beam� is proportional to the over-
lap of the form factor of the monochromator �bell-shaped curve�
and the Fermi distribution function in the oven �steplike function�.
The effective width of the overlap is inversely proportional to the
width of the �antibunching� dip in �a�.
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�10–400 �m. The authors observed a reduction of the
bunching peak very similar to that described in our Fig. 3�b�,
as a function of the size of the detector mouth a, and esti-
mated the lateral coherence length of the beam from the
width of the plot, obtaining a source size of order w
�20 �m. The longitudinal coherence length is known to be
��coh�2 mm, while the length of the photon bunch is
��det�5 mm: By plugging these values in our Eq. �6.30�,
the first factor is �0.9 for a�10 �m, while the second one
is �0.4, so that �1 /2��0.4�0.9�0.18, which explains well
the observed data �a positive bump �0.25.�

Finally, it is interesting to look at some experiments done
with thermal optical photon, in order to study both their cor-
relations and imaging. Experiments of this kind were widely
debated during the last few years �7,8,20,24�. We shall focus
on the experiment �25�, in which the source is a He-Ne laser
�in other similar experiments a green-doubled Nd:YAG laser
was used�. One estimates a�30 �m, w�1 mm, k0
�107 m−1, z�150 mm. The pseudothermal source is ob-
tained by randomizing the phase of the photon field by
means of a rotating ground-glass disk �so that the expression
random source would probably be more appropriate�. The
first factor in Eq. �6.30� is therefore �0.1 while the second
one is essentially 1 ��tdet�500 ps, yielding ��det
�0.15 m, which is to be compared to the much larger co-
herence length of the laser�. This yields an overall dip of
good visibility. Unfortunately a quantitative comparison with
the experimental data is difficult because the authors, being
interested in the change of the width of the second-order
correlation function with the source size, only plotted a
�re�normalized correlation function.

This brief summary of experimental data shows that our
analysis and final formulas agree well with most experiments
performed so far, with different particles. In some cases a
comparison is more complicated and/or requires additional
information. One phenomenon that we find of interest, but
still lacks experimental confirmation, is our prediction that
for fermionic systems we expect that the visibility of second-
order interference effects should show no dependence on
temperature, as explained in Fig. 4. We emphasized at the
end of Sec. VII that this is due to the exactness of Pauli’s
principle �yielding perfect antisymmetrization� even for
mixed states.

IX. CONCLUSIONS, COMMENTS, AND PERSPECTIVES

We analyzed antibunching in a beam of noninteracting
fermions and investigated the behavior of the visibility as a
function of the size of the source and the detectors, as well as
the temperature of the source. These parameters are critical
and play a prominent role in experimental applications. Our
analysis makes use of Gaussian functions both for the emit-
ting region of the source and the detector, and is adapted to
an approximately cylindrically symmetric situation, with cir-
cular detector placed close to the longitudinal axis. This is
the relevant situation in most experiments, in particular with
neutrons and electrons �where however additional Coulomb
effects, as well as more specific emission features of the
source need to be scrutinized�. It is also worth noticing that

in the observation of pion correlations �16� the experimental
data have been exploited to determine the dimension and the
expansion dynamics of the pion “source” �fireball produced
in central Pb-Pb collisions, which is expected to be a droplet
of quark gluon plasma at the freeze-out point�. Clearly, our
approach can prove to be quite useful in such a situation as
well, when source size and temperature are not known.

Let us look at possible applications and future perspec-
tives. First, we emphasize that although our analysis was
performed for fermions, all formulas can be easily translated
to the case of bosons, enabling one to scrutinize interesting
experiments in quantum imaging and lithography. Some re-
cent applications make use of chaotic or pseudothermal light
sources, to which our formalism immediately applies �7–9�.

Other possible applications are in solid state physics,
where, as a consequences of the symmetrization procedure of
the many-body wave function, entanglement should be
present in bulk matter, raising delicate problems in relation
to its detection and extraction �26–28�. Since one should get
entangled neutron pairs within the coherence volume of the
wave packet �antibunching being observed within the same
coherence volume�, these pairs could be used as very effi-
cient “probes” for entanglement in solids in future experi-
ments. This is clearly relevant for quantum-information pro-
cessing and for tests of the Bell inequalities.

Finally, we mention some interesting speculations in neu-
trino physics and the structure of the universe, where, as a
consequence of entanglement formation, the hypothesis of a
collisionless fluid of classical point particles can be critically
reexamined, yielding a “quantum overpressure,” with signifi-
cant consequences during the nonlinear structure formation
epoch at low redshifts �29�. It is remarkable that independent
ideas can bear consequences in very diverse fields.
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APPENDIX A: G(t) IN THE WEAK-COUPLING REGIME

Let us prove �4.7�. We write the matrix given in �4.5b� as

Ĝ−1�s� = D̂�s� + �2K̂�s�, D̂kk��s� = �s + i�k��3�k − k�� .

�A1�

Let us show that

�1 + �2K̂�s�D̂−1�s��−1 �A2�

does not have poles in the weak-coupling regime, i.e.,

Det�1 + �2K̂�s�D̂−1�s�� � 0, �A3�

for a sufficiently small �. Indeed, the determinant is evalu-
ated as

Det�1 + �2K̂�s�D̂−1�s�� = eTr ln�1+�2K̂�s�D̂−1�s��, �A4�

which reads, in the weak-coupling regime, as

=1 + �2 Tr�K̂�s�D̂−1�s�� + O��4�

= 1 + �2� d3k
K̂kk�s�
s + i�k

+ O��4�

= 1 + �2� d3k� d3k�

Tkk�


2

�s + i�k��s + i�k��
+ O��4� . �A5�

Let us look for a zero of the determinant on the first Rie-
mannian sheet, by setting s=−i�−� /2,

Det�1 + �2�K̂D̂−1��− i� − �/2��

= 1 − �2� d3k� d3k�

Tkk�


2

��k − � + i�/2���k� − � + i�/2�

+ O��4� . �A6�

Assume now that the square of the emission matrix in the
energy representation

���,��� = �2
�2� d3k� d3k�
Tkk�

2���k − �����k� − ���

�A7�

does not contain any “nonlocal” part ���−��� and has the
properties

���,��� → 0 for �,�� → 0,� �A8�

�assuming some good continuity property for ��� ,����. For
such a “reasonable” emission matrix Tkk�, the integral in the
second term of �A7�,

�
0

� d�1

2

�

0

� d�2

2


���1,�2�
��1 − � + i�/2���2 − � + i�/2�

, �A9�

is convergent for any � and �, and the determinant can al-
ways be made nonzero by choosing a sufficiently small �.
The pole of

Ĝ�s� = D̂−1�s��1 + �2K̂�s�D̂−1�s��−1, �A10�

therefore, comes from the first factor D̂kk�
−1 �s�, i.e., spole

=−i�k, and we are allowed to expand the nonsingular second
factor as a power series of �, yielding

Gkk��t� = �3�k − k��e−i�kt + O��2� . �A11�

APPENDIX B: TWO-PARTICLE DISTRIBUTION
IN A NONCOLLINEAR ARRANGEMENT

Here we briefly sketch the derivation of �6.45�. Remem-
bering

r̄1 = �r̄1 sin �d cos �, r̄1 sin �d sin �, r̄1 cos �d� ,

�B1a�

r̄2 = �− r̄2 sin �d cos �,− r̄2 sin �d sin �, r̄2 cos �d� ,

�B1b�

the functions Zk1k2
�r̄� and Ak1k2

�r̄� read as

Zk1k2
�r̄� = ��k1z�f�k1r̂̄���k2z�f�k2r̂̄�e−�k1 − k2�2r̂̄·D2r̂̄/2,

�B2a�

Ak1k2
�r̄� =

m2

�2
�5e−��k1r̂̄·W2�k1r̂̄+�k2r̂̄·W2�k2r̂̄�/2. �B2b�

By substituting �B2� into �6.11� and �6.12� and introducing
spherical coordinates, we obtain

�̄st�r̄� = �2 2m2

�2
�5r̄2�
0

�

dkk2N��k�f2�kr̂̄�

��
0


/2

d� sin ��
0

2


d�e−�kr̂̄·W2�kr̂̄, �B3�

Īst�r̄1, r̄2� = �4 2m4

�2
�10r̄1
2r̄2

2�
0

�

dk1k1
2�

0

�

dk2k2
2N��k1

�N��k2
�

�f�k1r̂̄1�f�k2r̂̄1�f�k1r̂̄2�f�k2r̂̄2�

�e−i�k1−k2��r̄1−r̄2�e−�k1 − k2�2�r̂̄1·D2r̂̄1+r̂̄2·D2r̂̄2�/2

�J�k1; r̄1, r̄2�J�k2; r̄1, r̄2� , �B4�

where

J�k; r̄1, r̄2� = �
0


/2

d� sin ��
0

2


d�e−��kr̂̄1
·W2�kr̂̄1

+�kr̂̄2
·W2�kr̂̄2

�/2.

�B5�

Note that, when r̂̄1 and r̂̄2 satisfy �B1�, one has

f�kr̂̄1� = f�kr̂̄2� =
1

��2
�3��kz�2��k��4�1/4

�exp�−
k2 sin2 �d

4��k��2 −
�k cos �d − k0�2

4��kz�2 �
� f�k,�d� , �B6�
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and r̂̄1 ·D2r̂̄1= r̂̄2 ·D2r̂̄2=a2 sin2 �d+d2 cos2 �d.

1. First-order correlation

Let us first consider the case where r=r1. Since

�kr̂̄ · W2�kr̂̄ = w2k2�sin2 �d + sin2 ��

+ wz
2k2�cos �d − cos ��2

− 2w2k2 sin �d sin � cos�� − �� , �B7�

one has

�
0


/2

d� sin ��
0

2


d�e−�kr̂̄·W2�kr̂̄

= e−p sin2 �d�
0


/2

d� sin �e−p sin2 �−q�cos �d − cos ��2

��
0

2


d�e2p sin �d sin � cos��−��, �B8�

where p=w2k2 and q=wz
2k2. The integral over � yields a

modified Bessel function of the first kind,

�
0

2


d�e2p sin �d sin � cos��−�� = 2
I0�2p sin �d sin ��

= 2
�
m=0

�
�p sin �d sin ��2m

�m!�2 .

�B9�

Therefore, with the aid of the trick used in �6.28�, we have

�
0


/2

d� sin ��
0

2


d�e−�kr̂̄·W2�kr̂̄

= 2
e−p sin2 �d �
m=0

�
�p2 sin2 �d�m

�m!�2

��
0


/2

d� sin2m+1 �e−p sin2 �−q�cos �d − cos ��2

= 2
e−p sin2 �d �
m=0

�
�p2 sin2 �d�m

�m!�2 �−
�

�p
�m

��
0


/2

d� sin �e−p sin2 �−q�cos �d − cos ��2
. �B10�

Hereafter, the integral over � is evaluated when p�q and
p�1. By changing the integration variable, we have

�
0


/2

d� sin �e−p sin2 �−q�cos �d − cos ��2

=
e−p�1+q cos2 �d/�p−q��

	p − q

���
q cos �d/	p−q

1

dxex2
+ �

1

	p−q+q cos �d/	p−q

dxex2� .

�B11�

The first term is of order of e−p /	p. Integrating by parts, the
second term becomes

e−p�1+q cos2 �d/�p−q��

	p − q
�

1

	p−q+q cos �d/	p−q

dxex2

=
e−q�cos �d − 1�2

2�p − q + q cos �d��1 +
1

2�	p − q +
q cos �d

	p−q �2�
−

3e

4

e−p�1+q cos2 �d/�p−q��

	p − q

+
e−p�1+q cos2 �d/�p−q��

	p − q
�

1

	p−q+qcos �d/	p−q

dx
3ex2

4x4 ,

�B12�

where the second and third terms are, respectively, O�1 / p3/2�
and O�e−p /	p�, and the last term can be shown to be
O�p−5/4�. Thus, one has

�
0


/2

d� sin �e−p sin2 �−q�cos �d − cos ��2

=
e−q�cos �d − 1�2

2�p − q + q cos �d�
+ O�p−5/4�

=
e−q�cos �d − 1�2

2p
+ O�p−5/4� . �B13�

By substituting �B13� into �B10� and retaining the leading
order terms in 1 / p, we have

�
0


/2

d� sin ��
0

2


d�e−�kr̂̄·W2�kr̂̄

= 2
e−p sin2 �d �
m=0

�
�p2 sin2 �d�m

�m!�2 �−
�

�p
�me−q�cos �d − 1�2

2p

= 
e−p sin2 �de−q�cos �d − 1�2 �
m=0

�
�p2 sin2 �d�m

�m!�2

m!

pm+1

=



p
e−p sin2 �d−q�1 − cos �d�2

ep sin2 �d =



w2k2e−wz
2k2�1 − cos �d�2

.

�B14�

Then, the one-particle correlation is
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�̄st�r̄� = �2 m2

�2
�4w2r̄2�
0

�

dkN��k�f2�k,�d�e−wz
2k2�1 − cos �d�2

.

�B15�

When r̄= r̄2, we obtain the same result. This is the denomi-
nator of Eqs. �6.3� and �6.45�.

2. Second-order correlation

Because �B1� leads to

1

2
��kr̂̄1

· W2�kr̂̄1
+ �kr̂̄2

· W2�kr̄2
�

= p�sin2 �d + sin2 �� + q�cos �d − cos ��2,

�B16�

the auxiliary function J�k ; r̄1 , r̄2� is evaluated as

J�k; r̄1, r̄2� = 2
�
0


/2

d� sin �e−p�sin2 �d+sin2 ��−q�cos �d − cos ��2

=



w2k2e−w2k2 sin2 �de−wz
2k2�1 − cos �d�2

, �B17�

where we have used �B13� in the second equality. Thus, in
terms of f�kj ,�d� �j=1,2�,

Īst�r̄1, r̄2� = �4 m4

2�2
�8w4r̄1
2r̄2

2�
0

�

dk1�
0

�

dk2N��k1
�N��k2

�

�f2�k1,�d�f2�k2,�d�e−i�k1−k2��r̄1−r̄2�

�e−�k1 − k2�2�a2 sin2 �d+d2 cos2 �d�

�e−�k1
2+k2

2��w2 sin2 �d+wz
2�1 − cos �d�2�. �B18�

This is the numerator of Eqs. �6.3� and �6.45�.

3. Well-monochromatized case

If the beam of particles is well-monochromatized and the
distribution N��k� is a slowly varying function there, we
have

�̄st�r̄� = �2 m2

�2
�4w2r̄2N��k0
��

−�

�

dkf2�k,�d�e−wz
2k2�1 − cos �d�2

= �2 m2

�2
�5w2r̄2��k��	D1��d�
N��k0

�

�exp�−
k0

2

2��kz�2�1 −
��k��2cos2 �d

D1��d�
�� , �B19�

where the Gaussian k-integration has been carried out with
the aid of

−
k2 sin2 �d

2��k��2 −
k2cos2 �d − 2k0k cos �d + k0

2

2��kz�2

− wz
2k2�1 − cos �d�2

= −
D1��d�

2��kz�2��k��2k2 +
k0cos �d

��kz�2 k −
k0

2

2��kz�2 .

�B20�

On the other hand, we have

Īst�r̄1, r̄2� = �4 m4

2�2
�8w4r̄1
2r̄2

2N2��k0
�

��
−�

�

dk1�
−�

�

dk2f2�k1,�d�f2�k2,�d�

�e−i�k1−k2��r̄1−r̄2�e−�k1 − k2�2�a2 sin2 �d+d2 cos2 �d�

�e−�k1
2+k2

2��w2 sin2 �d+wz
2�1 − cos �d�2�. �B21�

In terms of K= �k1+k2� /2 and k=k1−k2, one has

− �
j=1

2 � kj
2 sin2 �d

2��k��2 +
kj

2cos2 �d − 2k0kjcos �d + k0
2

2��kz�2 �
− i�k1 − k2��r̄1 − r̄2� − �k1 − k2�2�a2 sin2 �d + d2 cos2 �d�

− �k1
2 + k2

2��w2 sin2 �d + wz
2�1 − cos �d�2�

= −
D2��d�

��kz�2��k��2K2 +
2k0 cos �d

��kz�2 K −
k0

2

��kz�2

−
D3��d�

4��kz�2��k��2k2 − ik�r̄1 − r̄2� , �B22�

and, thus,

Īst�r̄1, r̄2� = �4 m4

2�2
�10w4r̄1
2r̄2

2��k��2	D2��d�D3��d�
N2��k0

�

�exp�−
k0

2

��kz�2�1 −
��k��2 cos2 �d

D2��d�
� −

��kz�2��k��2�r̄1 − r̄2�2

D3��d� � . �B23�

By plugging �B15� and �B18� into �6.3�, we obtain the normalized two-particle distribution function �6.45�.
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