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Abstract. Three different manifestations of the quantum Zeno effect are discussed,
compared and shown to be physically equivalent. We look at frequent projective mea-
surements, frequent unitary “kicks” and strong continuous coupling. In all these cases,
the Hilbert space of the system splits into invariant “Zeno” subspaces, among which
any transition is hindered.

1 Introduction

The quantum Zeno phenomenon [IJ2] is usually viewed as the effect of repeated
projections [3] on a quantum system. It is, however, a more general phenomenon,
that can be best understood in terms of the dynamical time evolution of quan-
tum systems and fields [4]. Indeed, a projection & la von Neumann is just a
handy way to “summarize” the complicated physical processes that take place
during a quantum measurement. The latter is performed by an external (macro-
scopic) apparatus and involves complicated interactions with the environment.
The external system performing the observation need not be a bona fide detec-
tion system, that “clicks” or is endowed with a pointer. It is enough that the
information on the state of the observed system be encoded in some external
degrees of freedom. Moreover, the interaction between the system and its en-
vironment can be fast (as compared to any other timescales involved) or slow.
In the former case one says that a “spectral decomposition” a la Wigner takes
place [5l6] [namely a rapid (and unitary) physical process that associates differ-
ent (external) states to different values of the observable being measured]; in the
latter case one says that a “continuous” measurement process occurs [7J84].

For instance, a spontaneous emission process is often a very effective mea-
surement, for it is irreversible and leads to an entanglement of the state of the
system (the emitting atom or molecule) with the state of the apparatus (the
electromagnetic field). The von Neumann rules arise when one traces away the
photonic state and is left with an incoherent superposition of atomic states. In
the light of these observations, it became clear in the 80’s that the main physical
features of the Zeno effect would still be apparent if one would formulate the
measurement process in more realistic terms, introducing a physical apparatus,
a Hamiltonian and a suitable interaction with the measured system, with no
explicit use of projection operators.

More to this, once one has realized that the quantum Zeno effect (QZE) is a
mere consequence of the dynamics and cannot be ascribed to the “collapse” of
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the wave function, one would like to understand which features of the dynamical
process are essential for observing a QZE. It turns out that not only a bona fide
detection scheme, but even irreversibility is unnecessary. In fact, any interactions
— and not only those that can be considered as a measurement process of some
sort — that considerably affect the system (in a sense to be made more precise
in the following) provoke QZE. Therefore, the QZE appears in a much broader
context than its original formulation, whenever a strong disturbance dominates
the time evolution of the quantum system.

The aim of this article is to discuss three different manifestations of QZE. We
start in Sect.[2 with general (projective) measurements, then extend in Sect. Bl
the notion of QZE to the case of unitary kicks [9] and finally discuss in Sect.
(unitary) continuous interactions [10]. We show in Sect. Blthat, in all these cases,
the system is forced to evolve in a set of orthogonal (“Zeno”) subspaces of the
total Hilbert space. The quantum Zeno subspaces are completely determined by
the disturbance: they are nothing but its invariant subspaces; in the two latter
cases (unitary kicks and continuous coupling) they are the eigenspaces of the
interaction. An example is considered in Sect. [6] and discussed in Sect. [l We
conclude with a rapid overlook in Sect. [3.

2 Projective Measurements

We first consider the case of bona fide measurements, described by projection
operators ¢ la von Neumann [3]. The measurements are in general:

e “incomplete”, in the sense that some outcomes may be lumped together (for
instance because the measuring apparatus has insufficient resolution); this
means that the projection operator that selects a particular lump is multidi-
mensional (and in this sense the information gained on the measured observ-
able is incomplete);

e “nonselective”, in the sense that the measuring apparatus does not select the
different outcomes, but simply destroys the phase correlations between some
states, provoking the transition from a pure state to a mixture.

See, for example, [T112].

Let us outline the extension [L0] of Misra and Sudarshan’s theorem [1] on
the QZE to the case of incomplete and nonselective measurements. Let Q be a
quantum system, whose states belong to the Hilbert space H and whose evolution
is described by the superoperator

Uip=U(t)pU(t),  U(t) = exp(—iHt) (1)

where p is the density matrix of the system and H a time-independent lower-
bounded Hamiltonian. Let
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be an orthogonal resolution of the identity and P, = H,, the relative subspaces.
The associated partition on the total Hilbert space is

H =D Ha (3)

The nonselective measurement is described by the superoperator

and the evolution after N measurements in a time ¢ is governed by the superop-
erator

o (pl_-yt/N) (PUt/N) (PUt/N) _ (PUt/N)N. (5)

Ntimes

We perform a first, preparatory measurement, so that the initial state is

Ppo =Y PupoPn. (6)

n

By assuming the time-reversal invariance and the existence of the strong limits
(t >0)

Vult) = lim [PnU <t>]N, lim Vo(t) = P, Vi, (7)

N—oo N t—0+

one can show that the operators V,(t) exist for all real ¢ and form a semigroup
and that the final state, engendered by the limiting superoperator

Vi = lim Vt( ), (8)

N—o0
is

tho—ZV HeoVi(t), with > ViE)Va(t)=> Puo=1. (9)

The components V,(t)po V] (t) make up a block diagonal matrix: the initial den-
sity matrix is reduced to a mixture and any interference between different sub-
spaces H,, is destroyed (complete decoherence). Moreover,

pu(t) = Tr[p(t)P] = Tr [Vn(t)pov,i(t)] =Tr[poPn] = pn(0), Vn. (10)

In words, probability is conserved in each subspace and no probability “leakage”
between any two subspaces is possible: the total Hilbert space splits into invariant
“Zeno” subspaces H,, and the different components of the density matrix evolve
independently within each sector. One can think of the total Hilbert space as
the shell of a tortoise, each invariant subspace being one of the scales. Motion
among different scales is impossible. (See Fig. [[ in the following.) Misra and
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Sudarshan’s seminal result is reobtained when p, (0) = 1 for some n, in (I0): the
initial state is then in one of the invariant subspaces and the survival probability
in that subspace remains unity.

An important particular case is when the Hamiltonian is bounded ||H|| < oo.
Then each limiting evolution operator V,, () in (@) is unitary within the subspace
H,, and has the form

Vn(t) = [PnU(t/N)Pn]N =P, exp(_iPnHPnt)- (11)

lim
N—o00
More generally, if H,, C D(H) (which is trivially satisfied for a bounded H),
then the resulting Hamiltonian P, H P, is self-adjoint and V,(t) is unitary in
H,. When the above condition does not hold, one can always formally write the
limiting evolution in the form (II), but has to define the meaning of P, HP,, and
study the self-adjointness of the limiting Hamiltonian P, H P, [I3|/14].

In any case, with the necessary precautions on the meaning of operators and
boundary conditions, the Zeno evolution can be written

V,(t) = P, exp(—iHzt) | (12)

where

Hy=PH=Y P,HP,, (13)

is the “Zeno” Hamiltonian.

3 Unitary Kicks

The formulation of the preceding section hinges upon projections ¢ la von Neu-
mann. Projections are (supposed to be) instantaneous processes, yielding the
collapse of the wave function (an ultimately nonunitary process). However, one
can obtain the QZE without making use of nonunitary evolutions [6], by ex-
ploiting Wigner’s idea of spectral decomposition [A]. In this section we further
elaborate on this issue, obtaining the QZE by means of a generic sequence of
frequent instantaneous unitary processes, that need not be spectral decomposi-
tions. We will only give the main results, as additional details and a complete
proof, which is related to von Neumann’s ergodic theorem [I5], can be found in
[9].

Consider the dynamics of a quantum system Q undergoing N “kicks” Ukjcx
(instantaneous unitary transformations) in a time interval ¢

o= it ()] [t ()] - ()]

Ntimes

In the large N limit, the dominant contribution is U/, . One therefore considers
the sequence of unitary operators

N
t
Vi (t) = UN Un(t) = UIK, [UkickU (Nﬂ : (15)
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and its limit

U(t) = lim Vy(t) (16)
N—oo
One can show that
U(t) = exp(—iHzt), (17)
where .
H,=PH =) P,HP, (18)

is the Zeno Hamiltonian, P, being the spectral projections of Uy;cx

Ukick = Z e" P, (e7Pn £ e ™ forn #1) (19)

Incidentally, notice that in this case the map Hy = PH is the projection onto
the centralizer (commutant)

Z (Ugick) = { X [X, Uxicx] = 0}. (20)

In conclusion

Un(t) ~ Ué\ifckb{(t) = Ulf\ifck exp(—iHzt) = exp <—i Z N\, P, + PnHPnt> .
(21)

The unitary evolution ([I4) yields therefore a Zeno effect and a partition of
the Hilbert space into Zeno subspaces, like in the case of repeated projective
measurements discussed in Sect. 2l The appearance of the Zeno subspaces is a
direct consequence of the wildly oscillating phases between different eigenspaces
of the kick and hinges upon a mean ergodic theorem. This is equivalent to a
procedure of randomization of the phases. We will see a similar situation in the
next section, in terms of a strong continuous coupling. Notice that if a projection
is viewed as a shorthand notation for a spectral decomposition [BlJ6], the above
dynamical scheme includes, for all practical purposes, the usual formulation of
the quantum Zeno effect in terms of projection operators.

It is superfluous to stress the analogy of the approach outlined in this section
with the seminal papers on quantum maps and quantum chaos [16]. In this
context, see [17].

4 Continuous Coupling

The formulation of the preceding sections hinges upon instantaneous processes,
that can be unitary or nonunitary. However, as explained in the introduction,
the basic features of the QZE can be obtained by making use of a continuous
coupling, when the external system takes a sort of steady “gaze” at the system
of interest. The mathematical formulation of this idea is contained in a theorem



146 Paolo Facchi and Saverio Pascazio

[I8/10] on the (large-K) dynamical evolution governed by a generic Hamiltonian
of the type

Hy = H+ KH,, (22)

which again need not describe a bona fide measurement process. H is the Hamil-
tonian of the quantum system investigated and H. can be viewed as an “addi-
tional” interaction Hamiltonian performing the “measurement.” K is a coupling
constant.

Consider the time evolution operator

Uk (t) = exp(—iHt). (23)

In the “infinitely strong measurement” (“infinitely quick detector”) limit K —
00, the dominant contribution is exp(—iK H,t). One therefore considers the lim-
iting evolution operator

Ul) = Klim exp(iK Hct) Uk (t), (24)

—00

that can be shown to have the form
U(t) = exp(—iHzt), (25)

where
Hy,=PH =) P,HP, (26)

is the Zeno Hamiltonian [projection of the system Hamiltonian H onto the cen-
tralizer Z(H.)], P, being the eigenprojection of H,. belonging to the eigenvalue

M
H. = Znan (M # Nm, forn#m) . (27)

This is formally identical to (I3) and (I8). In conclusion, the limiting evolution
operator is

Uk (t) ~ exp(—iK Hot)U(t) = exp (—i > Ktn, P, + PnHPnt> . (28)

n

whose block-diagonal structure is explicit. Compare with (ZI]). The above state-
ments can be proved by making use of the adiabatic theorem [19]. It is also worth
emphasizing interesting links with the quantum evolution in the strong coupling
limit [20].

The idea of formulating the Zeno effect in terms of a “continuous coupling” to
an external apparatus has often appeared in the literature of the last two decades
[7121]. However, the first quantitative estimate of the link with the formulation
in terms of projective measurements is rather recent [8] (see also [4]).
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5 Dynamical Superselection Rules

Let us briefly consider the main physical implications. In the N — oo (K — 00)
limit the time evolution operator U(t) becomes diagonal with respect to Ugick or
H,

[U(t), Ukick] = 0, [U(t),H.] =0, (29)

a superselection rule arises and the total Hilbert space is split into subspaces
‘H,, which are invariant under the evolution. The dynamics within each Zeno
subspace H,, is essentially governed by the diagonal part Hz P, = P,HP, of
the system Hamiltonian H [the remaining part of the evolution consisting in a
sector-dependent phase] and the probability to find the system in each H,

pu(t) = T [p(t) Pa] = Tr [U(t)pod} (1) P2] = Tr [U(0)po P (1)
= Tr [po Pu] = pn(0) (30)

is constant. As a consequence, if the initial state is an incoherent superposition
of the form (), then each component will evolve separately, according to

p(t) =U(t)pold (1) Z Vn( (31)

with V,,(t) = P, exp(—iP, H P,t), which is exactly the same result (9)-(II) found
in the case of projective measurements. In Fig. [l we endeavored to give a picto-
rial representation of the decomposition of the Hilbert space in the three cases
discussed (projective measurements, kicks and continuous coupling).

Notice, however, that there is one important difference between the nonuni-
tary evolution discussed in Sect. [2 and the dynamical evolution discussed in
Sects. Blid: indeed, if the initial state pg contains coherent terms between any
two Zeno subspaces H,, and H,,, P,poPp # 0, these vanish after the first pro-
jection (@) in Sect. & P,p(0")P,, = 0 [the state becomes an incoherent super-
position p(0) # po, whence Trp(01)? < Trpg]. On the other hand, such terms
are preserved by dynamical (unitary) evolution analyzed in Sects. Blf4], and do
not vanish, even though they wildly oscillate. For example, consider the initial
state

po = (Pn + P)po(Pr + Pp), PhpoPy # 0. (32)

By @1l) and (28) it evolves into

p(t) = Vu(t)poVi(t) + Vi (t) po Vi, (2)

+ e NOTAmY, () pg VI (8) + N AT AV (oY), (33)
p(t) = Vu(t)po VL () + Vi () po Vi, ()

+ e K=ty (#)po VL () 4 KTty (6)pe Vi), (34)

respectively, at variance with (@) and (31I), respectively. Therefore Trp(t)? = Trp3
for any ¢ and the Zeno dynamics is unitary in the whole Hilbert space H. We
notice that these coherent terms become unobservable in the large-NN or large-
K limit, as a consequence of the Riemann-Lebesgue theorem (applied to any
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Fig. 1. The Hilbert space of the system: a dynamical superselection rule appears as
the number of measurements N or the number of kicks N or the coupling K to the
apparatus are increased

observable that “connects” different sectors and whose time resolution is finite).
This interesting aspect is reminiscent of some results on “classical” observables
[22], semiclassical limit [23] and quantum measurement theory [24/11].

It is worth noticing that the superselection rules discussed here are de facto
equivalent to the celebrated “W3” ones [25], but turn out to be a mere conse-
quence of the Zeno dynamics. For a related discussion, but in a different context,
see [26].

6 An Example

One of the main potential applications of the quantum Zeno subspaces con-
cerns the possibility of “freezing” the loss of quantum mechanical coherence and
probability leakage due to the interaction of the system of interest with its en-
vironment. Let us therefore look at an elementary example in the light of the
three different formulations of the Zeno effect summarized in Sects. 2l In the
following, it can be helpful to think of the Zeno subspace H; as the quantum
computation subspace (qubit) that one wants to protect from decoherence.
Consider a 3-level system in Hgys = C3

(a] = (1,0,0), (0] =(0,1,0), (| =(0,0,1) (35)
and the Hamiltonian
02, 0
H = 1(|a) (0] + [b)(al) + 22(b){c] + [} () = | 1 0 25 | (36)

0 2 0
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Zeno subspace
a

R

S

Fig. 2. Three level system undergoing measurements (P; not indicated). We explicitly
showed the Zeno subspace H1

We perform (incomplete, nonselective) projective measurements (P, + P, = 1)

100 000
Py =|a){a|+ |b){b|=( 010 ] , Py=|e){c|]=|000] , (37)
000 001

yielding the partition (@), with dimH; = 2, dimHs = 1. The evolution operators

(1) read

0 t0
Vl = P1 EXp(—ileplt) = P1 exp —1 .Qlt 00
0 00

cos {21t —isin {21t 0
= | —isinfit cosfit 0],

0 0 0
000
VQ :PQEXP(_'I:PQHPQt) :P2: 000 (38)
001
and the Zeno Hamiltonian ([I3)) is
02,0
Hy =P HP,+PHP,=| (7, 00 ]. (39)
0 00

The initial state (6 evolves according to ([@): in the Zeno limit (N — o), the
subspaces H; and Hs decouple. If the coupling (2, is viewed as a caricature of the
loss of quantum mechanical coherence, the subspace H; becomes “decoherence
free” [27]. See Fig. &1

In order to understand how unitary kicks yield the Zeno subspaces, consider
the 4-level system in the enlarged Hilbert space Hgys @ span{|M)}

<a’| - (1703070)7 <b| = (07 1a070)a <C| - (0703 170)7 <M| = (070707 1) (40)
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Zeno subspace
a

2 20U i
¢ 22 g M

Fig. 3. Three level system undergoing frequent unitary kicks that couple one of its
levels to an “external” system M. (A\; = 0.) We explicitly indicated the Zeno subspace
Hi

and the Hamiltonian

)

2 o
o O OO

2

0
H = 21(Ja){bl + ) al) + Q2()(el + ) 0l) = | T ) (41)
0 0 0

This is the same example as (BH)-(B8]), but we added a fourth level |M). We now
couple | M) to |¢) by performing the unitary kicks

e~ 0 0 0
7’L‘)\1
L — e —idz([e)(M|+|M){c]) — 0 e 0 0
Ukick = € P t+e 0 0 cos Ay —isin Ay
0 0 —isinAy cosAg
_ Z e~ p, (42)

n=1,+

where \; # Ay = Ay = —A_ # A\ (otherwise arbitrary), and the subspaces are
defined by

1000
0100
0000
000 O
_ (£ M){c[£(M]) 11000 0
Fe= 2 20001 +1 " (43b)
00£1 1

(PL+P_-+P.=1)
In the Zeno limit (N — oo) the subspaces H1, H4+ and H_ decouple due to
the wildly oscillating phases O(N). See Fig. Bl The Zeno Hamiltonian (Ig]) reads
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Zeno subspace
a

NEHE

K
C MQL

Fig. 4. Three level system with one of its levels strongly coupled to an “external”
system M. We explicitly indicated the Zeno subspace 1

0 2,00
B |2 000
Hy =Y P,HP, = 0 000l (44)

0 000

and the evolution (2)) is

Un(t) ~ exp (—i > NAP, + PnHPnt>
NX 2t 0 0
2t N\ 0 0
0 0 0 Nx
0 0 NX 0

=exp |—1 (45)

A natural choice, yielding no phases in the (Zeno) subspace of interest, is A\; =
O, )\2 =1:

0 2t00
Un(t) ~exp |—i Qolt 8 8](3[
0 0 NO
cos {1t —isin (Nt 0 0
- ZSl(r)lglt Cosoglt CO(S)N —is(i)nN ' (46)
0 0 —isin N cos NV

Finally, in order to understand how the scheme involving continuous mea-
surements works, add to (I]) the Hamiltonian (acting on Hgys @ span{|M)})

KH, = K(je)(M] + |M)(c]) = —K(P,-P), (47)

0
0
K
0

cooco
cocoo
N o oo



152 Paolo Facchi and Saverio Pascazio

where Py are the same as in (43h). The fourth level |M) is now “continuously”
coupled to level |¢), K € R being the strength of the coupling [28]. As K is
increased, level |M) performs a better “continuous observation” of |c), yielding
the Zeno subspaces. The eigenprojections of H, [see (27)]

He=mPr+n-P- +n Py (48)

are again (43a)-(43L), with n; = 0,7+ = +1. Once again, in the Zeno limit
(K — o0) the subspaces H1, H4 and H_ decouple due to the wildly oscillating
phases O(K). See Fig. @l The Zeno Hamiltonian Hy is given by (Z6) and turns
out to be identical to (@4)), while the evolution (28) explicitly reads

Uk (t) ~ exp (—i > Ktn, P, + PnHPnt>

0 2t 0 O
— exp | —i /Mt 0 0 0
0 0 0 Kt
0 0 Kt O
cos Nt —isin (Nt 0 0
_ —gsin {21t cos 21t 0 0 (49)
0 0 cos Kt —isin Kt
0 0 —isin Kt cos Kt

[Compare with ([@8): Kt plays the role of N.] It is interesting to notice that with
our choice 71 = 0 there are no spurious phases in the (Zeno) subspace of interest.

7 More Examples

7.1 Simplified Scheme

Level |M) and the enlarged Hilbert space Hqys @ span{|M)} are not necessary
for our discussion. They were introduced in the example of the previous section
only for the sake of clarity. Consider, instead of (42), the kicks in the original
Hilbert space Hgys = C?

Ulie = €M P+ 72 Py (e7™1 £ g7i2) (50)

performed on the three-level system (BE)-(B7). A straightforward analysis yields,
in the Zeno limit N — oo, the decomposition Hi @ Hs. In addition, if Ay =
0,A2 =1, then

Ubige = P1 +e7'Py = e 72 = g7ilo)(c] (51)

and no spurious phases appear.
Analogously, consider instead of (A7), the Hamiltonian in Hgys

H.=mPi+m2P, (m #12) (52)
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added to (BO) in the three-level scheme (BH)-(B7). One obtains again, in the
N — oo limit, the decomposition H; @ Hs. In addition, if n; = 0 and 7y = 1,
then

H; = Py = |c)(c| (53)

(a very simple situation) and no fast oscillating phases appear.

7.2 Spontaneous Decay in Vacuum

As we explained in the previous section, one of the most interesting potential
applications of the quantum Zeno subspaces concerns the possibility of freezing
decoherence, viewed as loss of phase correlation and/or probability leakage to
the environment. The model outlined in the previous section is too simple to
schematize a genuine decoherence process. For instance, take (@))+H7), exem-
plified in Fig. @} the continuous coupling K does not freeze the decay of level |b)
onto level |¢), it simply hinders the Rabi transition |b) < |c). A better model
would be

0 0 0
o0 b0
0 7,1 —i2/t2y K
0 0 K 0

HK = Hdecay + KHC = (54)

This describes the spontaneous emission of level |b) into a (structured) contin-
uum, which in turn is resonantly coupled to a fourth level |M) [4]. The quantity
v represents the decay rate to the continuum and 77 = (25 1is the Zeno time
[29] (convexity of the initial quadratic region). Notice, incidentally, that the Zeno
time can be consistently defined also for open quantum systems [30].

This case is relevant for quantum computation, if one is interested in pro-
tecting a given subspace (#H1) from decoherence, by inhibiting spontaneous emis-
sion. A somewhat related example is considered in [31]. A proper analysis of this
model yields to the following main conclusions: as expected, when the Rabi
frequency K is increased, the spontaneous emission from level |b) (to be “pro-
tected” from decay/decoherence) is hindered. However, the real problem are the
relevant timescales: in order to get an effective “protection” of level |b), one needs
K > 1/717. More to this, if the decaying state |b) has energy w; # 0, an inverse
Zeno effect [3334] may take place and the requirement for obtaining the QZE
becomes even more stringent [34], yielding K > 1/72v. Both these conditions
can be very demanding for a real system subject to dissipation. For instance,
typical values for spontaneous decay in vacuum are vy ~ 10%71, 72 ~ 107292
and 1/72v ~ 10?%s~! [29]. The situation can be made more favorable by us-
ing cavities. In this context, model (54) yields some insights in the examples
analyzed in [27] and [32], but we will not further elaborate on this point here.

We emphasize that the case considered in this subsection is not to be re-
garded as a toy model. The numerical figures we have given are realistic and
the Hamiltonian (B4) is a good approximation of the decay process at short (for
the physical meaning of “short”, see [434)35]) and intermediate times (it is not
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valid for very large times, where a power law should appear). Related interest-
ing proposals, making use of kicks or continuous coupling in cavity QED, can be
found in [36]. We stress, once again, that the key issue to address is that of the
physically relevant numerical figures and timescales.

7.3 Decohering Levels

The example analyzed in Sect. Blessentially aimed at clarifying that the dynamics
in a given subspace H; = span{|a),|b)} can be decoupled from the dynamical
evolution in the total space. However, it is worth stressing that level |a) played
no role in our discussion. As a matter of fact, level |a) was simply introduced for
convenience, as only level |b) was interacting with other levels/systems. Clearly,
in a more general framework, one should look at the decoherence effects on all
levels that are coupled to other systems and/or to the environment.

8 Outlook

We have endeavored to clarify that the main physical features of the quantum
Zeno effect are not peculiar to a quantum measurement process, but can be
framed in a much broader context if one replaces the projections by a suitable
(kicked or continuous) interaction of the system under investigation (possibly
with an apparatus). However, obviously, whenever the interaction describes a
bona fide measurement process performed by a physical apparatus, one can make
use of projection operators d la von Neumann, if such a description turns out to
be simpler and more economic. This is the principle of Occam’s razor.

A number of important issues have not been discussed in the present article.
Among these, the reach and practical importance of the experiments on the QZE
B1/38J39] and the physical meaning of the mathematical expressions “N — 00”
and “K — oo” [B4l[4], that may involve delicate quantum field theoretical issues
[40]. We will not elaborate on this here, but warn the reader that the expression
“large N” and “large K” should not be taken lightheartedly, as they are directly
related to the physically relevant timescales characterizing the evolution. This
is the key issue to address, in view of possible applications.
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