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Quantum Zeno dynamics of a field in a cavity
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We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent
interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms
probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement
leads to nontrivial field evolutions and to the generation of interesting nonclassical states, including mesoscopic
field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context
of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from

state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the
practical implementation of this dynamics and assess its robustness by numerical simulations including realistic
experimental imperfections. We comment on the various perspectives opened by this proposal.
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I. INTRODUCTION

The evolution of a quantum mechanical system can be sig-
nificantly slowed down by a series of frequent measurements
[1]. This effect, named after the Eleatic philosopher Zeno [2],
has attracted widespread attention during the last 20 years,
since Cook proposed to test it on oscillating (two-level)
systems [3]. This was a simplified version of the seminal
idea by Misra and Sudarshan [2], who had in mind genuinely
unstable systems, but it had the important quality of making
the quantum Zeno “paradox” (as it was originally considered)
amenable to experimental test.

The quantum Zeno effect (QZE) has been successfully
demonstrated in many experiments on various physical sys-
tems, such as rf transitions between ionic hyperfine levels (the
first test of Cook’s proposal) [4], rotation of photon polar-
ization [5], Landau-Zener tunneling [6], nuclear spin isomers
[7], level dynamics of individual ions [8], optical pumping
[9], preservation of spin polarization in gases [10], quantum
computing qubits undergoing decoherence [11], Bose-Einstein
condensates [12,13], optical systems [14], NMR [15], control
of decay in optical wave guides [16], and cavity quantum
electrodynamics (CQED) [17]. Other experiments have also
been proposed, involving neutron spin in a waveguide [18]
and superconducting qubits [19].

Remarkable applications of the QZE have been realized or
proposed, such as the control of decoherence [11,20], state
purification [21], implementation of quantum gates [22], and
entanglement protection [23]. QZE can also inhibit entan-
glement between subsystems, making a quantum evolution
semiclassical [24]. Other proposed applications consist of
radiation absorption reduction and dosage reduction in neutron
tomography [25], control of polarization [26], and other
general strategies to control decoherence [27].

In all these experiments or experimental proposals, repeated
projective measurements block the evolution of the quantum
system in a nondegenerate eigenstate of the measured ob-
servable, so that the system is frozen by QZE in its initial
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state. However, more general phenomena can take place, for
example, when the measurement does not confine the system in
a single state, but rather in a multidimensional (quantum Zeno)
subspace of its Hilbert space. This gives rise to a quantum Zeno
dynamics (QZD) [28]: The system evolves in the projected
subspace under the action of its (projected) Hamiltonian.

No experiment has been performed so far to test the QZD.
This would be important in view of possible applications, for
example, in decoherence and quantum control. We proposed
in Ref. [29] a possible implementation of QZD in a CQED
experiment. In this proposal, the field in the cavity undergoes
a QZD under the joint action of a coherent source coupled to
the mode (responsible for the Hamiltonian coherent evolution)
and of a repeated photon-number selective measurement or
unitary evolution. This process is based on the spectroscopic
interrogation of the dressed levels of a single atom coupled
to the cavity mode. These repeated operations create two
orthogonal subspaces in the field’s Hilbert space, with photon
numbers larger or smaller than a chosen value s. QZD takes
place in one of these subspaces.

We also proposed in Ref. [29] that this procedure could lead
to interesting methods towards the synthesis and manipulation
of nonclassical states. In this article, we explore these ideas
even further and detail some subtle mechanisms involved
in the dynamical evolution inside the Zeno subspace. We
show, in particular, that the quantum Zeno dynamics can
be used to produce mesoscopic field state superpositions
(MFSSs), quantum superpositions of coherent components
with different amplitudes. Such highly nonclassical states
are quite interesting for explorations of the quantum-classical
boundary [30].

We start by introducing notations and by sketching the main
ideas in Sec. II. We explore the mechanisms of the confined
dynamics and introduce the key idea of the “exclusion circle”
in phase space in Sec. III. The notion of phase space tweezers
and scenarios of state manipulation are analyzed in Sec. IV.
Finally, we look at interesting perspectives on state synthesis

©2012 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.86.032120

J. M. RAIMOND et al.

in Sec. V. We further discuss practical implementation, which
can be realized with a state-of-the-art apparatus in Sec. VI,
where we also compare orders of magnitude and perform a
few realistic simulations. Conclusions and perspectives are
given in Sec. VII.

II. GENERAL PRINCIPLES

In this section we describe the principle of a quantum Zeno
dynamics experiment in the cavity quantum electrodynam-
ics context. The first subsection (I A) exposes the general
principle of the method and introduces useful notations. The
method could be used in a variety of experimental settings,
and particularly in circuit QED [31]. However, for the sake
of definiteness, we will discuss it in the framework of a
microwave CQED experiment under construction at Ecole
Normale Supérieure (ENS) involving circular Rydberg atoms
and superconducting millimeter-wave cavities. We discuss the
general features of this experiment in Sec. IIB. We then
describe how QZD may be implemented in this framework
using repeated photon-number selective measurements (II C)
or photon-number selective unitary “kicks” (II D).

A. Generalities and notation

A QZD can be achieved either by repeated (possibly unread)
measurements of an observable with degenerate eigenvalues,
leading to a nonunitary evolution, or by repeated actions of a
Hamiltonian kick with multidimensional eigenspaces, always
leading to a global unitary evolution.

These two procedures, if quite different, can be shown
to be equivalent in the N — oo limit, where N is the
number of operations in a finite time interval ¢ [20] (for N
finite, differences can appear between them). This can be
understood by noticing that a Hamiltonian kick acts unevenly
on different components of the wave function. In the simplest
case, it attaches a different phase to each of them. These
phases accumulate quickly and make transitions between
these components difficult. This procedure thus implements
an effective superselection rule in the N — oo limit. A similar
mechanism is at the origin of the quantum Zeno superselection
rule [32], based on Wigner’s “spectral decomposition” [33],
namely, the association of a different branch of the wave
function to each eigenvalue of the observable to be measured, a
unitary process which yields for the system the same dynamics
of repeated measurements for any N.

Both measurements and kicks are supposed to take place
“instantaneously,” namely, on a time scale that is the shortest
one in the problem at hand. We will discuss here both proce-
dures before focusing on the latter, whose implementation in
CQED turns out to be the easiest.

The first procedure consists in N repetitions of a sequence
involving the evolution under the action of a Hamiltonian H for
atime v = t/N, generating the unitary U(t) = exp(—i Ht/h),
followed by a projective measurement. The action of this
measurement is represented by the projectors P, [34], cor-
responding to the obtained result 1 (3 u P = D). If the initial
state is contained in the eigenspace associated to g, the
measurement gives almost certainly wo for each sequence,
in the large N and short 7 limit. The evolution is then confined
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in the Zeno subspace defined by P,,, which is in general
multidimensional. The evolution in this subspace reads:

UN@) =[P, U@/N) — e H2tiip, | (1)
for N — oo, where
Hy = P, HP,, 2)

is the Zeno Hamiltonian [28].

In the second procedure, the system undergoes a strobo-
scopic evolution, alternating short unitary evolution steps,
governed by U(t), with instantaneous unitary kicks Uk . The
succession of N steps yields the unitary:

UI((N)(I) =[UxU@/N)NN ~ U[](Ve—iHZf/h 3)
for N — oo, where
HZ = Z PHHP s (4)
m

the P, being the (multidimensional) eigenprojections of Uk
(Ug P, = e*#P,) [20]. The evolution is mainly due to the
repeated kicks, each of them yielding a finite effect in a very
short (in the limit infinitesimal) time. This major contribution
to the dynamics has been factored out in Eq. (3). Note that for
t = 0 the two sides of this equation are equal for any N.

We observe that, by suitably choosing P,, or Uk in
Egs. (1) and (3), respectively, one can modify the system
evolution by tailoring the QZD, leading to possible remarkable
applications. We shall analyze here both schemes and discuss
the experimental feasibility of the procedure (3)and (4),
related to the so-called “bang-bang” control [35] used in
NMR manipulation techniques [36]. The related mathematical
framework is familiar in the context of quantum chaos [37].

B. A cavity-QED setup

Our proposal for QZD implementation [29] is based on
the photon-number selective spectroscopic interrogation of
the dressed levels for a single atom coupled to a high-quality
cavity. In the ENS experiments, a very high-Q superconduct-
ing millimeter-wave cavity is strongly coupled to long-lived
circular Rydberg states. The long lifetimes of both systems
are ideal for the realization of experiments on fundamental
quantum effects [30].

In all experiments realized so far, the atoms were cross-
ing the centimeter-sized cavity mode at thermal velocities
(=250 m/s). The atom-cavity interaction time is thus in
the few tens of us range. It is long enough to result
in an atom-cavity entanglement and short enough so that
atoms crossing successively the cavity carry a large flux of
information about the field state. This information can be used
for the implementation of ideal quantum measurements [38]
or for quantum feedback experiments [39]. However, this
short interaction time is not compatible with a photon-number
selective interrogation of the dressed level structure at the heart
of our QZD proposal.

The ENS group is thus developing a new experiment with
slow Rydberg atoms interacting for a long time with the cavity
mode. Its scheme is represented in Fig. 1. The Fabry-Perot
cavity C [40] is made up of two superconducting mirrors facing
each other (only one is shown in Fig. 1 for the sake of clarity). It
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FIG. 1. (Color online) Scheme of the planned ENS cavity QED
setup.

sustains a nondegenerate Gaussian mode at a frequency close
to 51.1 GHz (6 mm wavelength). The mode has a Gaussian
standing-wave envelope, with a waist w = 6 mm. Field energy
damping times T, up to 130 ms have been reached by cooling
the mirrors down to 0.8 K. At this temperature, the residual
blackbody field corresponds to n,;, = 0.05 photons in the mode
on the average.

The cavity is resonant with the transition between the
two circular Rydberg levels e and g, with principal quantum
numbers 51 and 50, respectively. These levels have a lifetime
of the order of 30 ms, much longer than the typical atom-cavity
interaction times considered in this article (up to a few ms).
Atomic relaxation thus plays a negligible role.

The atoms are prepared by laser and radio-frequency
excitation [30] out of a slow vertical atomic beam crossing the
cavity in an atomic fountain arrangement. A Raman velocity
selection performed on the slow beam emanating from a
2D-MOT source placed under the cavity makes it possible
to selectively address atoms that are near the turning point of
their ballistic trajectory at the cavity center. They thus reside
in the mode’s waist for a time of the order of 10 ms, limited
only by their free fall.

Excitation lasers are focused in C, delimiting a small
volume. The initial position of the atoms is thus well known.
The time required for the atomic preparation is short (about
50 ws). It is important to note that this preparation does not
involve any field close to resonance with the cavity mode. It can
thus be performed without affecting the field quantum state.

At the end of their interaction with the field, the atoms can be
detected by the field ionization method inside the cavity itself.
They are ionized by a field applied across eight electrodes
circling the cavity and the resulting ions are routed towards a
detector, which produces a macroscopic signal. The method
is state-selective, since the ionizing field depends upon the
principal quantum number. A simpler scheme can be used to
perform an unread detection of the atoms, by merely ionizing
them with a field applied directly across the cavity mirrors.
Note that the centimeter-sized gaps between the ionizing
electrodes enable us to couple millimeter-wave sources to the
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atoms or to the cavity mode (through its residual diffraction
loss channels).

In the following subsections, we show how this basic
setup can be used for implementing the two QZD modes
introduced in Sec. IT A, involving either repeated photon-
number selective measurements or repeated photon-number
selective fast unitary evolutions.

C. QZD by repeated measurements

The coherent evolution of the field in C is produced by a
classical source S resonantly coupled with C [30] (Fig. 1).
This evolution is described by the Hamiltonian (we use an
interaction representation eliminating the field phase rotation
at cavity frequency):

H = aa' + a*a, 5)

where o is the source amplitude and @ (af) the photon
annihilation (creation) operator. If this evolution proceeds
undisturbed for a time interval #, a coherent state with an
amplitude £ will “accumulate” in the cavity, under the action
of the unitary displacement operator:

U(t) = D) = exp(éa' —&*a),

We now periodically interrupt this evolution over a total
time ¢+ by N measurements performed at very short time
intervals T = ¢/N such that || = |—iat/h| < 1. Each mea-
surement involves a new atom prepared initially in the circular
level h, with principal quantum number 49. Microwave pulses
produced by the source S’ probe the transition from % to g,
at a frequency close to 54.3 GHz. Note that this transition is
widely out of resonance from C. It can thus be probed without
altering the mode state. Moreover, level 4 is impervious to the
cavity field.

Level g instead is strongly coupled to the cavity mode. In the
resonant case, the atom-cavity Hamiltonian in the interaction
picture reads:

£ =—iat/h. (6)

nQ ;
V= —-(le)(gla +Ig){ela’), ™)

where €2 is the vacuum Rabi frequency (2 /27 = 50kHz). The
atom-cavity Hamiltonian eigenstates are the dressed states:

1
|+, n) ﬁ(le,n 1) & [g.n)),
where the former (latter) entry in each ket refers to the atom
(cavity mode). The splitting between the dressed states |+, 1)
ishQ/n.

The pulse sent by the source S’ thus actually probes
the transition between the level |h,n) (whose energy is
independent of the atom-cavity coupling) and the dressed
states |£, n). The level structure is shown in Fig. 2. The
frequency of the |h,n) — |+, n) transition depends upon the
photon number #.

Let us chose a specific photon number s > 1. The source
S’ is tuned to perform a ¢ = r Rabi pulse on the |h,s) —
|+, s) transition. It is detuned from the bare 4 — g transition
frequency by £./s /2. In principle, we can chose the amplitude
and duration 8¢ of this interrogation pulse so that it has no
appreciable effect on the transition between |h,s) and |—, s)

lg,0), n>1, (8

032120-3



J. M. RAIMOND et al.

—I1+,3)
—1-,3)
Y ——
—1-,2)
|h’2> - Q |+’1>
fl v
|h.1)
‘ —18,0)
|h,0) ————

FIG. 2. (Color online) Dressed states of the atom-cavity system.
The arrow indicates the photon-number selective transition addressed
by S’ fors = 1.

or between |h,n) and |+, n) with n # s. This requires 1/t <
Q|v/s £ 1 — /s|. Along enough atom-cavity interaction time
is thus essential for the selective addressing of a single dressed
atom transition.

Finally, the source S’ ideally performs the transformations:

U5|h,S>:—i|+,S), US|+’S)=_i|hvs>7 (9)

and
Us|—,s) = |—, ). (10)

If the cavity contains a number of photons » different from s,
then

Uslh,n) = |h,n), Us|x,n)=|%,n), @m#s). (1)

In conclusion,

US = —i (lhvs)(—'_’S' + |+7S)(h’s|)+ PJ_,
PLZﬂ_|has><hﬂs|_|+ﬂs)(+ﬂs|' (12)

This is a unitary process: Us Uj = UJUS = 1.

We now examine the global evolution. Assume that the
cavity is initially in its ground state and the atom in 4. The
joint atom-cavity state is |h,0). After the first time interval ,
it becomes

e*iHT/hUl,O) — ch(r)|h,n>, (13)

where H is given by Eq. (5). Note that H does not involve any
atomic operator. Therefore, & is not affected by the coherent
cavity evolution. The coefficients ¢, () are those of a coherent
state with a small amplitude 8 = —iat/h. After this “free”
evolution for a short time 7, the atom undergoes the = Rabi
pulse driven by S’ (12):

ch(f)lh,m —ic(Dl+,s). 14
n#s

Use™ 7" h,0) =

At this point, the atom is detected inside the cavity and its state
recorded. Since |B] is very small, the probability for having s
photons or more is small. With a large probability, the atom is
thus found in 4. This is our measurement: It makes sure that
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the number of photons in the cavity is not s. The cavity field
is accordingly almost always projected onto

= aln), (15)
n#s

within a trivial normalization factor. One can thus summarize

the action of U; followed by the measurement of /) by the

projection

(h|Use™ 7" h)

P =1—|s)(s]| (16)

acting on the field state alone, since
e M0y = " eu(T)In) (17)

n#s

[in terms of operators, we get from Eq. (12) that, in the photon
Hilbert space, (h|Us|h) =1 — |s)(s]].

The Zeno procedure consists in the alternating evolution
under the action of the free Hamiltonian (5) and the projection
(16):

UMt = (Pe MMV 1 =1/N, (18)

which has to be understood as an evolution of the cavity field
only. When N is large, one gets UIE,N)(t) — Uy(t), where

Uy = e 'Hzt/hp 19)

is the QZD generated by the the Zeno Hamiltonian (2). Note
that

P=P<s+P>s’ (20)

where P_(P.;) is the projection onto the photon number
states with less (more) than s photons. Since H can create or
annihilate only one photon at a time, one has P_,H P.; = 0,
whence

HZ:P<sHP<s+P>SHP>s:H<5+H>s- (21)

Here H_; is the restriction of the Hamiltonian H to the photon
subspace H.; = P_;H, spanned by the photon number states
|0}, ...,|s — 1), and H- the restriction to the subspace H-
containing more than s photons.

Under the QZD, field states restricted to H_, and H.
remain confined in these subspaces, |s) realizing a hard “wall”
between them. Strictly speaking, PH = H_; ® H., forms
a single Zeno subspace, within which evolution is coherent.
For example, the coherence of the state (|n) + |p))/+/2, with
n < s and p > s is fully preserved under the Zeno dynamics.
However, transitions between H _; and H. ; are forbidden, due
to the form of the interaction Hamiltonian. If the initial state is
contained in only one of the two sectors, H _; or H, it will be
confined to it. In the following, we shall focus on this situation.
Note that, if C is initially in the vacuum state, with s = 1, the
system remains inside H_.1, i.e., in |0), and we recover the
QZE [17].

Of course, for a finite t (hence, a finite 8) there is at each
step a small but finite probability for finding s photons in the
cavity and, hence, the atom in another state than /. In this case,
the cavity field is projected onto the s photon Fock state, and
the Zeno procedure is abruptly interrupted. The probability of
occurrence of such an event goes to zero when t is close to
zero. For practical purposes, T should be chosen small enough
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to make this event unlikely in the planned duration of the
experiment.

Note also that, as long as the QZD is not interrupted by
such an event, the atom is always found in 4. It is thus not
mandatory to actually record the atomic state at the detection
time. Merely tracing over the final atomic state leads to the
same results for the QZD of the field (in practical terms this
means that the atom can be simply ionized by a field applied
across the cavity mirrors, before being replaced by a new one
for the next QZD step). In fact, as shown in the next subsection,
it is not even necessary to detect the atom at all.

D. QZD by repeated unitary kicks

The same Zeno dynamics can be implemented by making
use of a single atom, without any detection. Now, S’ is tuned to
perform a 2 Rabi pulse on the |k,s) — |+, s) transition. As
before, the pulse amplitude is weak enough (and its duration
correspondingly long enough) not to appreciably affect |i,n)
with n # s. This yields the transformation:

Uslh,n) = (=1)* |h,n), (22)

and U, = 1 on all the other states. The atom always ends up in
h, while the field experiences the selective kick Uy = U, with

U, =1-2|s)(s|, UU/ =UU, =1. (23)
Such a photon-number dependent Rabi pulse [41] was used

with s = 1 for a single-photon QND detection [42] and for a
CNOT gate in CQED [43]. The evolution (3) reads:

UL (1) = (U U@ ~ UN etz (24)

where t = Nt. As explained after Eqs. (3) and (4), the domi-
nant contribution is due to the kicks and is factored out in the
above expression.

The Zeno Hamiltonian (4) is

Hy =Y P,HP, (25)
pn==
P_=|s)(s|, P.= P+ P, (26)

which also satisfies Eq. (21). Once again, there is a hard wall
at n = s, preventing transitions between H_; and H.

E. Interrogation by a generic Rabi pulse

We have seen that a QZD can be obtained both when S’
drives a  Rabi pulse, as in Sec. II C, or a 2z Rabi pulse, as in
Sec. IID. We show here that a generic pulse with an arbitrary
Rabi angle ¢ yields essentially the same physical effects.

For a generic Rabi pulse, §’ performs a unitary kick acting
on the atom-cavity system, which mixes |&,s) with |+, s) and
would create atom-field entanglement if C would contain s
photons. The corresponding unitary operator reads:

Us = exp [—i%(|h,8)(+,s|+ |+,s)(h,s|)]. 7
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For ¢ = m, it reduces to the unitary of Sec. IIC, while it
reduces to that of Sec. IID for ¢ = 27. The diagonalization
of U, leads to

U=e"P, +¢"P_+ P, (28)

with
gy = s E 1)
:t ﬁ 9

and P, =1 — P, — P_. In the large N limit, for ¢ # 0, the
Zeno dynamics is generated by

Py = fus)(u+l, (29)

H;, =P ,HP,+P HP + P HP,. (30)
Since (14 |alus) = 0, the Zeno Hamiltonian reduces to
H;,=P HP,. 3D

The unitary (27) admits an invariant subspace of the range
of the eigenprojection P, belonging to the eigenvalue +1. Its
projection s |k) (h| ® (P-s; + P-;), the same as for a 27 pulse.
Starting from an atom in |k) and a field in H.; or H., we
obtain a QZD leaving the atom in |A) and the field in its initial
subspace.

Under perfect QZD, the cavity never contains s photons
and the atom and field are never entangled by the interrogation
pulse. This discussion holds in principle for all nonzero values
of ¢ (0 < ¢ < 2m) in the N — oo limit. For finite values of
N, QZD is not properly achieved if ¢ is very small, each kick
operation being too close to 1. Numerical simulations, to be
presented in Sec. III D, fully confirm this qualitative argument.

III. CONFINED DYNAMICS IN QZD

We have shown that the QZD establishes a hard wall in
the Hilbert space, corresponding to the Fock state |s). In
qualitative terms, this hard wall can be viewed in the phase
space (Fresnel plane) as an “exclusion circle” (EC) with a
radius /s. In this section, we examine the QZD starting with
an initial coherent field located either inside or outside the EC.
This deceptively simple situation leads to the generation of a
nonclassical MFSS, quantum superposition of distinguishable
mesoscopic states.

A. Phase space picture

Summarizing the main results of the preceding section, the
Zeno dynamics consists in replacing the “free” Hamiltonian
(5) with the Zeno Hamiltonian (4):

HZ:ZPMHPH:P>xHP>s+P<sHP<x- (32)
"

For definiteness, let us assume that s = 4, identifying the
two subspaces Hz = P_,H = span{|0),|1),]2),|3)} and H, =
span{|5),|6),|7), ...}. In the photon-number states basis {|n)},
the only nonvanishing matrix elements of the annihilation and
creation operators are

(n — 1laln) = (nla’ln — 1) = V/n, (33)
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with n > 1. The matrix representations of H and Hy thus read:

0 « 0 0 0 0 0
of 0 J2a 0 0 0 0
0 V2o 0 3o 0 0 0
0 0 V3* 0 Vda O 0 -
H=119 0 0 Vada* 0 3« 0 —
0 0 0 0 V50* 0 6o
0 0 0 0 0 ~6a* 0

respectively. The two subspaces Hz and H; do not com-
municate anymore in an ideal QZD situation. If the system
is initially in Hz, it cannot make a transition to H’ and
vice versa. Of course, this simple picture holds only in the
limit of a true QZD, with an infinitesimally small time t
between kicks and a very small displacement per step S.
We numerically examine the validity of this approximation
in Sec. III D.

We simulated in Ref. [29] the QZD in cavity QED by
applying Eq. (24) [as already explained, Eq. (18) would have
been equivalent] with the unitary (6) and by making use of
Wigner’s representation in phase space [44].

We summarize here the main results of our simulations.
Figure 3 presents three sequences of 10 snapshots of the
Wigner function W(§) separated by intervals of five steps,
for s = 6 and 8 = 0.1. The Wigner function is defined by

1 .
W = / (Re& — ylg|Re & + ) MM 4y (35)

o being the density matrix of the photon field, obtained by
tracing out the atomic variable.

In Fig. 3(a) the field is initially in its vacuum state
|0) € H<¢. Its amplitude increases along the real axis (free
dynamics). When this amplitude reaches>~2, between 15 and
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0 « 0 0 0 0 0
af 0 2« 0 0 0 0

0 V2o 0 320 0 0

0 0 V3* 0 0 0 0

O 0 0 00 0 0 =Hz, (34
0 0 0 0 0 0 +6a

0 0 0 0 0+6a* 0

20 steps, the coherent state “collides” with the EC of radius V6
(dashed line in Fig. 3). The field amplitude stops growing and
undergoes a very fast & phase shift between steps 20 and 30.
At step 25, the field is in a MFSS, quantum superposition of
two components with opposite phases. The fringes inside the
EC are the signature of the quantum coherence. At step 35, the
field state is nearly coherent again with an amplitude close to
—2. It then resumes its motion from left to right along the real
axis, going through |0) around step 45 and heading towards
its next collision with the EC. The long-term dynamics will be
discussed in Sec. III C.

QZD in H. ¢ is illustrated in Fig. 3(b), with snapshots of the
field Wigner function for s = 6 and an initial coherent state
| = —5). The field collides with the EC after 20 steps. It
undergoes a QZD-induced 7 phase shift being, after 25 steps,
in a MFSS. After 30 steps, the state is again nearly coherent
with a positive amplitude and resumes its motion along the
real axis. After 45 steps, its amplitude is slightly larger than
4.5. It would be —0.5 in the case of free dynamics.

Finally, in Fig. 3(c), the field state collides tangentially
with the EC. The parts of the Wigner function that come
closest to the EC propagate faster than the others. The state is
distorted and squeezed (albeit by a moderate amount) along
one direction.

(@ o 5 10 15 20 25 30 35 40 45
3T = — T B ———7| 3
=1 ® | o] Lk L B > ',' s . - » . L
= | . ' 0.6
(b) ° Re® 0.4
6 6 o2
&/P L L L . 1 » i» . .
-6 -6
h 102
(©) ° Re® ©
6 6 0.4
5 : : ; : ; 0.6
-6 > -6
™ Re(®)

FIG. 3. (Color online) (a) QZD dynamics in H_¢. Ten snapshots

of the field Wigner function W () obtained after a number of steps

indicated above each frame. The cavity is initially in its vacuum state, s = 6 and § = 0.1. The EC is plotted as a dashed line. (b) QZD dynamics

in H.¢. Same as (a) with an initial « = —5 amplitude. (c) Same as (b),

frames correspond to the same step numbers as in (a). From Ref. [29].

with an initial amplitude @« = —4 + i /6. In (b) and (c) the successive
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B. Phase inversion mechanism

We now show that the main feature of the evolution of the
Wigner function, the fast phase shift during the collision with
the EC, can be understood via a semiclassical argument. Let
us set @ =i/+/2 in Eq. (5) for simplicity. We get that the
Hamiltonian,

H=ia-a)/V2=p, (36)

is simply the momentum operator. Thus, by the spectral
theorem,

s—1
PPy =) In)inlpln')(n'|

H_; =
n.n'=0
= X10.E,_11(Hho) P X10.E,_1(Hho.)s (37)
where
Hyo = 56> + p?) (38)

is the harmonic oscillator quantum Hamiltonian (with m =
o = 1), whose energy is forced to be less than E;_; =
h(s — 1/2) by the characteristic function x [xa(x) =1 if
x € A, and O otherwise].

For large quantum numbers, we can approximate H_; by
its classical limit, which reads

h(x,p) = p xpo.r1(r), (39)
where r = /x2 4+ p? and R = /2E,_;. This Hamiltonian

describes the motion of an ultra-relativistic particle (energy
proportional to momentum) confined in phase space by a hard
wall at » = R (nonholonomic constraint).

The Hamilton equations of motion are

i = xjo.r(r) — paR(r)f, (40)

p= paRmf, A1)

where g is the Dirac delta function at R. If the particle is
not on the EC, i.e., r < R, the delta function vanishes and the
equations of motion become

=1 p=0, (42)

whose solution is

X=xo+t, p=po, (43)

Xxo and pg being the initial position and momentum, respec-
tively. The particle is thus proceeding at a constant velocity
along the x axis. When it hits the EC, the evolution is
dominated by the singular contributions, proportional to the
delta function, in Egs. (40) and (41), namely,

xoc—pg, pocp)r—c, (44)

that yield a motion along the circle r = R at a very high speed
(infinitely large in the limit of an infinitely sharp confinement
inside the EC). The particle reappears on the other side of the
EC (with the same momentum p = p() and resumes its motion
along the x axis at a constant velocity. The collision on the EC
thus realizes, in this semiclassical picture, a reflection around
the imaginary axis of the phase space, transforming x + ip
into —x + ip. The corresponding trajectories are qualitatively
sketched in Fig. 4(a).
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FIG. 4. (Color online) Trajectories in classical phase space.
(a) Motion inside the EC; (b) motion outside the EC.

A cloud of such particles would thus evolve globally as the
field Wigner function inside the EC. This explains the phase
inversion (or, more precisely, phase “reflection”) mechanism
of Fig. 3(a): The Wigner function hits the right-hand side of
the EC and almost instantaneously reappears on the left-hand
side. Of course, the transient creation of an MFSS involving
a quantum superposition of two large fields with opposite
phases and the appearance of an interference pattern inside
the EC (Fig. 3(a), frame 25) cannot be accounted for in this
classical picture.

When the particle is initially outside the EC, the evolution
is generated by the Hamiltonian:

h(x,p) = p[1 = xjo.r1(N)], (45)

and the conclusions are identical. When the particle hits the
EC, it moves very quickly to the other side [Fig. 4(b)]. This
explains the fast motion of the components of the Wigner
function that come closer to the EC, in Figs. 3(b) and 3(c).

C. Long-term evolution

We now analyze the long-term evolution of the field
energy when the state is initially inside the EC. In this
case, only a finite set of Bohr frequencies is involved in the
evolution, which is thus expected to be quasiperiodic [30].
State distortions, however, eventually accumulate and damp
the oscillations of the field amplitude. This phenomenon was
numerically investigated in Ref. [29] and will now be analyzed
in greater detail.

Without loss of generality, one can consider « real and write

H=a(d +a) :aZ\/n+l(|n)(n+ 1|+ |n+ 1)(n]).
n=0

(46)

Indeed, Hamiltonians (5) and (46) are unitarily equivalent via
U(p) = eiva'a, ¢ being the phase of « in Eq. (5). They have
thus the same spectrum and generate the same dynamics.

Let us look first at rather small values of s. For s = 4, all
properties of the Zeno dynamics in Hz depend on those of the
matrix

1 0 0
0 V2 0
V2 0 3
0 V3 0

H<s = P<sHP<s = (47)

S o = O
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which has four nondegenerate eigenvalues ZoA, =

+av/3 4+ 46 and *ar_ = +av/3 — /6, so that the Zeno

dynamics of a generic observable is a quasiperiodic motion
on a four-dimensional torus. We get

po(t) = [(0le™" ="/ |0)
= L[(A3 — Deoswr_t 4+ (1 — A2)cos wh1]%,
(48)
pi(t) = S0 sinwh_t 4 A_sinwi 1), (49)
pa(t) = %(COS wh_t — coswA )%, (50)
p3(t) = S0y sinwr_t — A_sinwiy 1), (51)

where w = «/h. Thus, the population of the number states are
quasiperiodic. We have

A 1
- 6+—H_5%

, (52)

so that Ay /A_ >~ 22/7 up to a few per mil. Therefore, the
populations almost return to their initial value after a time

2 2 59.2
T =2 ”(:7 ”): . (53)
WA+ WA _ w

For larger values of s, the calculations become analytically
unmanageable. However, the main conclusions remain valid
and the features of the evolution qualitatively identical.

The average photon numbers as a function of wt for s = 4
and s = 6 are displayed in Fig. 5. We observe at long times a
quantum revival [30] at wr ~ 59.2 and wt >~ 150, respectively.

D. Limits of QZD and applications

We have so far assumed a perfect confinement inside
the EC. It can be obtained only in the limit of vanishingly
small displacements S at each step and for nonvanishing
interrogation pulse Rabi angles ¢. In a real experiment, the
preparation and interrogation take a finite time, and thus
the displacement per step cannot be made arbitrarily small.
We have explored the corresponding limits of the QZD by
extensive numerical simulations. We focus here on the typical
example of a dynamics inside the EC with s = 6 [Fig. 3(a)].

The calculations have been performed using the quantum
optics package for MATLAB [44]. The field Hilbert space
is truncated to the first 60 Fock states. The initial cavity
state is the vacuum. Each step involves a translation by an
amplitude B (chosen real positive without loss of generality). It
is followed by a Rabi interrogation pulse with an angle ¢ on the
|h, 6) — |+, 6) transition for an atom remaining motionless at
cavity center. No atomic detection is performed and the same
atom is used for all elementary steps. No other experimental
imperfections (cavity relaxation, finite selectivity of the Rabi
pulse, etc.) are taken into account. They will be discussed in
Sec. VL.

To assess the quality of the confinement, we compute the
evolution for a number of steps N = I[2+/6/8] (where I
stands for the integer part), corresponding to the first return of

PHYSICAL REVIEW A 86, 032120 (2012)

- NN
hn o W

Photon number
=

o <
o W

0 10 20 30 40 50 60
ot (rad)

Photon number

0 20 40 60 80 100 120 140
ot (rad)

FIG. 5. (Color online) Average number of photons as a function

of wt = at/h. Upper panel: s = 4, lower panel: s = 6. Note in both

cases the recurrence of the photon number oscillation at wt ~ 59.2
and wt >~ 150, respectively.

the field state close to the vacuum. We compute the fidelity
F =Tr(cop) (54

of the final field state o with respect to the reference state
0, obtained after the same number of steps in an ideal QZD
(evolution in an Hilbert space strictly limited to the first six
Fock states).

Figure 6 presents F as a function of 8 from 0.05 to 1 (0 is
obviously excluded) and of ¢ from 0 to 2. Not surprisingly,
F is close to one for small 8 and large ¢. It is nearly zero when
¢ approaches zero or  one. The contours correspond to 95%
and 98% fidelities, respectively. As shown in Sec. VI, large
¢ values can be easily implemented in a short time interval.
For a 27 interrogation pulse, we can achieve an excellent
confinement fidelity (98%) with a translation per step as large
as B = 0.4. The QZD is thus a quite robust mechanism. This
is promising for practical applications.

b it
1] 17
L7

Fidelity

FIG. 6. (Color online) Fidelity of confinement for s = 6 versus
the translation per step 8 and the interrogation pulse Rabi angle ¢ in
radians. The contour lines mark the 95% and 98% levels.
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FIG. 7. (Color online) Generation of a MFSS by a semitrans-
parent EC (8 = 0.345 and ¢ = 3.03). (a) Three snapshots of the
field Wigner function W (&). The corresponding number of steps are
indicated above the frames. (b) Final Wigner function after 14 steps.
The negative parts are conspicuous.

When F is close to 50%, an interesting situation arises. We
observe numerically that, when the collision of the moving
coherent state with the EC occurs (after a number of steps
around N/2), part of the Wigner function is transmitted
through the barrier. Another part undergoes the phase reflection
mechanism and is rejected to the other side of the EC. In the
following steps, these two components evolve separately in
the subspaces H_¢ and H.¢. The outer one moves further
along the positive real axis, and the inner one returns close
to the origin. Finally we are left with two nearly coherent
components centered at the origin and at an amplitude 2+/6.

The final trace over the atomic state does not erase the
coherence between these two components, showing that the
atom is not strongly entangled with the field even though the |s)
Fock state has been transiently populated in the process. We are
thus left with a quite mesoscopic field state superposition. The
evolution of the Wigner function corresponding to 8 = 0.345
and ¢ = 3.03 is presented on Fig. 7(a). The coherence between
the two components in the final MFSS is manifest with the
presence of the characteristic interference fringes [Fig. 7(b)],
even though the contrast of these fringes is not maximal.

We have systematically studied the generation of such
MEFSS by an imperfect QZD. For each value of B and ¢,
we compare the final cavity state to a superposition of two
coherent states:

IMFSS) = w_g|a_,) + w- e o), (55)

with real amplitudes o.; and «.; for the confined and
transmitted parts, respectively (o, being close to zero and
o~ close to 2\/6). These amplitudes, the two real mixture
coefficients w_; and w-, and the relative quantum phase 6
are fitted to optimize the fidelity of this reference state with
respect to the final state in the cavity. We find that the relative
phase 6 is always very close to . For the conditions of Fig. 7,
the fidelity is 75%. It is limited in particular by a residual
spurious entanglement between the atom and the field.
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FIG. 8. (Color online) Transmission of the EC as a function of the
QZD parameters. The solid green line follows the 50% transmission
level. The conditions used for Fig. 7 are marked by the white dot.

We define the EC “transparency” 7 as
T =, /(w?, + ). (56)

weight of the transmitted component in the final MFSS.
Figure 8 presents 7 versus the QZD parameters 8 and ¢.
The 50% level is indicated by the green line and the conditions
of Fig. 7 by the white dot (transmission 44%). We observe
that MFSS can be generated in a large range of operating
parameters. Note that, for very large B values, the state
transmitted through the barrier can be notably distorted. The
fidelity with respect to an ideal MFSS is then rather low.

This MFSS generation method can be straightforwardly
generalized to superpositions of more than two coherent
components by repeated collisions of the trapped component
on a partially transparent EC. The relative weights of these
components can be adjusted by fine-tuning, during each
collision, the incremental step B and the interrogation pulse
angle ¢. By changing the phase of 8 from one collision to the
next, a wide variety of multicomponents superpositions can be
produced.

E. QZD in a translated EC

The QZD proceeds in an EC centered at the origin of
phase space. It can be straightforwardly generalized to an
EC centered at an arbitrary point in phase space. Before the
interrogation pulse, we perform with the help of the source S a
displacement of the field by a (possibly large) amplitude —y .
After the interrogation pulse, we translate back the whole phase
space by the amplitude y . Qualitatively, we block the evolution
in an EC centered at the origin for a field state globally
translated by the amplitude —y. This is clearly equivalent
to blocking the evolution in an EC centered at the point y in
phase space.

In more precise terms, the kick operator Uk is changed by
the two translations from Uy into

Us(y) = D(y)Us D(=). (57)
After p steps, the global evolution operator is
Uz(s.y.p) = [Us(y)D(B)I”, (58)

which can be expressed, using displacement operator commu-
tation relations, as

Uz(s,y,p) = D(y)Uz(s,0, p) D(—y) exp[2ip Im(By™)].
(59)
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Up to a topological phase, the state after p steps is equivalently
obtained by first displacing the field by —y, then performing
p QZD steps in an EC centered at origin and finally displacing
back the field by y.

The s = 1 case is particularly interesting in this context.
The QZD blocks the unique coherent state |y) at a fixed point
in phase space, while all other parts of the phase space can be
moved by the action of displacement operators. This ability to
operate separately on different regions of the phase space will
be instrumental in the next section.

IV. PHASE SPACE TWEEZERS

We proposed in Ref. [29] to use an s = 1 EC as phase
space tweezers. Let us assume that the initial state of the
cavity field is made up of a superposition of nonoverlapping
coherent components, prepared for instance by using in a first
stage of the experiment a semitransparent EC. We can use
an s = 1 exclusion circle to block one of these components,
with an initial amplitude yy. We assume here that, besides the
displacements used to generate the off-center EC, there is no
other source of evolution of the field. Now, we change at each
step of this new QZD dynamics the center of the exclusion
circle, from y to 4, ..., to Yn.

Provided the difference between two successive positions
of the EC, |yi+1 — 4|, is always much smaller than one,
the coherent component trapped in the EC will adiabatically
follow the motion of its center. The coherent state amplitude
will thus be changed from y; to yx, while all other components
of the initial state remain unchanged.

The movable EC operates in phase space as the optical
tweezers which are now routinely used to move microscopic
objects. In analogy, we coined the term “phase space tweezers”
for this operation [29].

Obviously, ideal operation of the phase space tweezers
requires an infinitely small increment of the EC position at
each step, hardly compatible with a practical implementation.
We have thus studied the quality of the tweezers operation
with respect to the interrogation pulse characteristics and to
the “velocity” of the EC motion.

We compute the final field state for a tweezers action, taking
initially the vacuum state and pulling it away. As in Sec. III D,
all sources of experimental imperfections are neglected in
this calculation. The exclusion circle center moves in N steps
from zero to a real amplitude 2./6 (i.e., 24 photon field, this
amplitude being chosen rather arbitrarily to coincide with the
total field displacement used in Sec. III D). We compute the
final state fidelity with respect to a coherent state with an
optimized amplitude. We observe in fact that, for small N
values, i.e., large EC displacements per step, the state wiggles
slightly inside the EC during translation. The final amplitude
might thus not be exactly equal to 2+/6. The effect is quite
small, the maximum amplitude difference being less that 0.5
for all data presented here

Figure 9 presents the calculated final fidelity as a function of
the number of steps N (from 10 to 31) and of the interrogation
pulse Rabi angle ¢ (from zero to 2;r). The 95% and 98% levels
are indicated by the blue and red contour lines. For the 27
interrogation pulse, the fidelity is extremely large, more than
99% for N = 10, i.e., a motion of nearly 0.5 per step. Once
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FIG. 9. (Color online) Tweezers operation fidelity as a function
of N and ¢. The fidelity is computed with respect to an optimized
coherent state. The two solid lines follow the 95% and 98% levels.

again, the QZD operation is very robust and tweezers can be
used to move quite rapidly a coherent component through the
phase plane.

Obviously the fidelity decreases quite rapidly with the
interrogation angle ¢. For ¢ = m, N = 60 steps are required
to achieve a 99% fidelity. When the EC step is too large, or
the interrogation angle to low, the EC is slightly transparent at
each step and leaks a little bit of the trapped state. The final
state is stretched along the path of the EC, with no remarkable
features.

Phase space tweezers can be used to increase at will the
distance between two components of an MFSS as illustrated
in Fig. 10. The initial cavity state is |o) 4+ |—«) witha = 2. It
is turned in 100 steps (50 for the motion of each component)
into |&') 4+ | —a') with o’ = 5i. The final fidelity is 98.8% with
respect to the expected MFSS. A wide variety of operations
on nonclassical fields can be envisioned with this concept.

The tweezers operation allows us to tailor at will a
preexisting superposition of coherent states. It can be slightly
modified to allow for the generation of this superposition from
the vacuum, as shown in the next section.

V. STATE SYNTHESIS

We present in this section a QZD-based method for the
generation of a nearly arbitrary superposition of coherent
components, starting from the vacuum state. We proceed with
an EC motion driving the vacuum to the first required coherent
component. However, we perform a quantum superposition of

@ 7 6

0.4
) < 02
g0 (V=) Z0 ) o
= = 4-0.2

-0.4
7 7 0.6

0 0
Re(©) Re(¢)

FIG. 10. (Color online) (a)—(b) Initial and final Wigner functions
W (&) for a phase space tweezers operation. The first steps ECs are
depicted as solid lines in (a) and dotted lines in (b), the final ECs
as solid lines in (b). The arrows in (b) indicate the two EC centers’
trajectories. From Ref. [29].
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the tweezers operation and no operation at all by casting the
interrogation atom in a superposition of 4 with an inactive
state i (for instance, the circular state with principal quantum
number 52, lying above e), which does not take part in the
QZD process. The atom gets in the process entangled with a
field involving a superposition of the vacuum with a moving
coherent component. This process is then repeated for all the
coherent components in the final state.

Let us write the target state |\¥;) as

W) =" cly), (60)
j=1

superposition of m coherent states. We assume that all the y;
with j # m have a negligible mutual overlap as well as with
the vacuum state. Up to an irrelevant global phase, we can also
assume ¢, real.

We first create the component |y;) out of the initial cavity
vacuum state |0). The atom, initially in 4, is at rest at cavity
center. We send on the atom, with the help of a microwave
source S, a narrow-band (soft) microwave pulse resonant
with the |4,0) — |g,0) transition, tuned to produce the state
superposition a;|g,0) + b;|h,0) (the a; and b; coefficients will
be determined later).

A tweezers operation performed with the atom initially
in g leads to a partially transparent EC (the state |g,1)
has a component on |—,1), which is not addressed by the
interrogation pulses) and to a spreading in phase space. We
must avoid this effect. Before performing the tweezers action,
we thus shelve level g in the fourth level i. We use for this
purpose a millimeter-wave source S3 tuned to resonance with
the two-photon transition between g and i at 2 x 49.6 GHz.
The strong coupling of Rydberg atoms to millimeter-wave
sources makes it possible to achieve a 7t pulse on this transition
in a short time interval. Such a short (hard) pulse does not
resolve the dressed level structures and performs the transition
whatever the photon number in the cavity. Finally, we reach
the quantum state superposition a;|i,0) + by|h,0).

We then perform the tweezers action itself, using the
interrogation source S’ tuned for s = 1 and the translation
source S. The tweezers is active only if the atom is initially in
state h. The EC center evolving from O to y,, we are finally
left with the entangled atom-cavity state a;|i,0) + bi|h,y1).
We do not take into account here any topological phase that
could affect the |/, ;) part of the state if the trajectory through
phase space was not a straight line. This phase could easily be
taken into account with minor modifications of the algebraic
expressions. A final hard —m pulse on the i — g transition
driven by S3 leads us to a;|g,0) + b |h,y1).

Since y; is notably different from zero, a soft pulse on
the |h,0) — |g,0) transition driven by S, addresses only the
part of the atom-cavity state involving the vacuum. We tune
this pulse to produce the state superposition a;(az|g,0) +
by|h,0)) + by|h,y1). We then shelve g in i with a hard pulse
driven by S3 and perform a tweezers operation leading from
the vacuum to the amplitude y». We should take care that
the EC never comes close to the y; component, which should
be left unchanged. There is, of course, ample space in the phase
plane to plan a convenient trajectory. Finally, we unshelve
level i, leading to the state aja»|g,0) + aib2|h,y»2) + bi|h,y1),
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FIG. 11. (Color online) Final state Wigner function W (§) after the
synthesis of a complex state superposition. See text for the conditions.

involving a superposition of three coherent components, two
of them (y; and y») being disentangled from the atomic state.

Since again y, is notably different from zero, we can
selectively address with S, the g part of the state to split it
in a coherent superposition. Iterating the process m times, we
prepare finally the state

a1az - - ay—118,0) + a1axa3 - - - ap_2bym_1 11, Ym-1)
+ -+ aiby|h,y2) + bilh,yr). (61)

A final m pulse produced by S, on |g,0) — |h,0) casts the
atom in & with certainty and a final tweezers operation from 0
to y,, leaves the atom in |/) and the cavity in the state

a1as - At |Ym) + a10203 - - - Q2D 1| Ym-1) - - -
+aiaxbslys) + aibalys) + bilyr). (62)

We must now determine the intermediate coefficients a;
and b; so that the final state is |¥,;) [Eq. (60)]. The simplest
choice is obtained by setting by = ¢; and a; = /1 — |by|2.
This determines the value of b, and hence (within an irrelevant
phase that we take to be zero), that of a,. We then get b3 and
a; and stepwise all the required coefficients.

We have numerically simulated the procedure for the
creation of a four-component MFSS:

1(14) + 14i) + 13”™/*) + |0)). (63)

All tweezers actions are performed with a 0.1 amplitude
increment and a ¢ = 27 interrogation pulse. The Wigner
function of the resulting state is plotted in Fig. 11. The fidelity
with respect to the target state is 99%.

This method opens many perspectives for the generation
of complex MFSS. The only restriction is that the final
components should not overlap with each other and with the
vacuum (if this is not the case, it is not possible to manipulate
one independently of the others with the tweezers). There is
nevertheless a wide range of state superpositions that can be
directly reached with this method.

VI. SIMULATIONS OF A REALISTIC EXPERIMENT

We have up to now discussed the QZD in an ideal setting,
assuming no atomic motion, no cavity relaxation, and, more
importantly, a perfect selectivity of the interrogation pulse.
We now proceed to include a realistic description of these
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imperfections and to assess the quality of the QZD in this
context.

First, atomic motion through the mode, at a low velocity,
is not a real problem. Provided the initial position of the atom
(determined by the excitation lasers) and the atomic velocity
are well known, the position of the atom is precisely known at
any time during the sequence. The slow variation of the atom-
cavity coupling can then be taken into account. We can for
instance tune the interrogation pulse source to remain resonant
on the selected dressed atom transition.

We thus address in more details the two other issues. The
main one is the interrogation pulse selectivity, discussed in
the next subsection. The final subsection is devoted to realistic
simulations of a few key QZD experiments including cavity
relaxation.

A. Interrogation pulse optimization

The interrogation pulse should address selectively the
|h,s) — |+, s) transition. For a motion inside the EC, or
for a tweezers operation, this pulse should not affect any
transition corresponding to a photon number n < s, and more
particularly the transition between |h,s — 1) and |+, s — 1),
which is closest to resonance with the interrogation pulse. The
frequency difference between the addressed and the spurious
transitions is only 8, = (2/2)|/s — +/n|. In particular, §;_;
decreases with increasing s.

For the sake of definiteness, we shall consider only two
practical cases in the following: that of a tweezers operation
(s = 1) and that of a motion inside the EC with s = 6. In the
latter case, the interrogation pulse should resolve a frequency
splitting 65/2m = 5.3 kHz only. Relying on a very long pulse
duration to achieve this resolution leads to unrealistically long
experimental sequences in view of the finite cavity lifetime. A
careful tailoring of the interrogation pulse is the only realistic
solution.

1. Square pulses

The simplest procedure is to set S’ to produce a square pulse
with a duration ), resonant with the addressed transition and
performing a Rabi rotation by an angle n,7. In most cases,
n, is set to two, but smaller values can be used (n, =1 is
appropriate to implement a semitransparent EC; note that n,,
need not be an integer). To minimize unwanted transitions, we
can chose the pulse duration so that the same pulse produces
a ppm Rabi pulse on the nonresonant nearby transition (n =
s — 1), where p,, is an even integer (obviously larger thann ).
This condition sets a zero in the spectrum of the pulse at the
precise frequency of the spurious transition.

A simple algebra on Rabi rotations leads to a pulse duration
tp = (/8 1)Vp, —n,. Fors =1andn, =2, we get 1, =
69 us for p, =4 and t, = 113 pus for p, = 6. In the more
demanding s = 6 case, the pulse durations with the same set-
tings are 324 and 530 us, respectively. All these durations are
still much shorter than the atom-cavity interaction time scale.

Numerical estimations of the influence of this square pulse
on the complete dressed states structure confirm that the
transfer rates on the non-resonant transitions are small, in
the percent range at most for the shortest pulses. However,
we observe that the relatively strong pulse produces an
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appreciable phase shift of the states |4,n) withn < s, due to the
accumulated light shift effect. This is not a too severe problem
for the tweezers operation, since this amounts finally to a
global, predictable, phase shift on the displaced component.
This phase shift could in principle be compensated for or taken
into account in the state synthesis method.

The influence of these light shifts is, however, much more
obnoxious for the QZD in an EC. Setting s = 6 and p, =4,
we get a —0.86 rad shift for |A,5), —0.47 rad for |h,4). This
phase shift is inversely proportional to §,. It is not a linear
function of n and cannot be absorbed, as an index of refraction
effect, in a mere redefinition of the cavity frequency. We have
checked by numerical simulations that this phase shift destroys
most of the QZD features. The EC remains an impenetrable
barrier, but the state inside it is completely distorted, even far
before it reaches the EC for the first time.

Note that pulse shape optimization can reduce the spurious
transfer rates but does not solve the light shifts problems. A
more sophisticated pulse sequence is mandatory.

2. Optimized composite pulses

We propose thus to use a composite pulse sequence that
leads to a nearly perfect cancellation of the light shifts. We
discuss it in the important case of a 27 interrogation pulse.
The sequence is made up of three pulses:

(1) A m square pulse on |h,s) — |+, s), carefully opti-
mized as in the previous subsection (n, =1, p, = 2 or 4).

(2) A fast phase shift of the atomic levels alone, changing
|g) into —|g) and amounting to exchanging the |+, n) and
| —, n) dressed states for all photon numbers.

(3) Anoptimized 7 pulseon |—, s) — |h,s), similar to the
first one within an adjustable phase ¢.

In principle, the first pulse transfers all the population
from |h,s) to |+,s). The central phase shift transforms
|+, s) into |—,s). The final pulse transfers back the state
into |h,s), with a phase shift that can be adjusted by tuning
the phase ¢. For all other levels (n # s), there is almost
no transfer out of |h,n) by the initial and final optimized
pulses, and the central operation has thus no effect. In this
composite sequence, the two microwave pulses applied on the
atom-cavity system have opposite detunings with respect to
the spurious |k,n) — |+, n) and |—, n) — |h,n) transitions
(n < s). One can thus expect that the phase shifts due to
the second pulse exactly compensate those produced by the
first.

The central phase shift operation could be performed by
a hard nonresonant pulse coupling g to another level (i for
instance). The accumulated light shift can be tuned for an
exact 7 phase shift of g, independent upon the photon number
in the cavity. Levels & and e, farther away from resonance
with this dressing pulse, are not affected. A simpler solution
is to use the differential Stark shift on the three levels e,
g, and h as in Ref. [45]. A short pulse of electric field
applied across the cavity mirrors produces three different
photon-number-independent phase shifts, ¢,, ¢,, and ¢, on
these levels. Setting ¢, — ¢, = 7, we are left within a global
phase with the transformations |e) — |e), |g) — —|g), and
|h) — e'®|h). For most QZD operations, the phase ® acting
on A is an irrelevant global phase factor. For the state synthesis,
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it is a well-known quantity that can be taken into account in
the state preparation sequence.

We have evaluated numerically the effect of this composite
pulse. For s =1, n, =1, p, =4, the total duration of the
sequence is 155 us. With ¢ = 2.75 rad, we perform the
selective transformation |k,1) — —|h,1). The residual phase
shift on |,0) is only —3.107> rad. In the more demanding
s =6 case, we use n, =1, p, =2 for a total duration of
325 ws. The residual transfer rates for n < s are below 1.5%
and the residual phase shifts lower than 10~* rad. For the few
tens of pulses in a typical QZD sequence, these imperfections
have a negligible influence.

The principle of this composite pulse can be extended to
other ¢ values and, in particular, to ¢ = 7, useful for the
realization of semitransparent ECs. This pulse is made up of
ann, = 1/2 pulse on |A,s) — |+, 5), followed by the atomic

phase inversionand an, = 1/2 pulse on |—, s) — |h,s) with
a phase ¢. In the ideal case, this pulse combination results
in the transformations |k,s) — |—, s), |—, s) — |+, s), and

|4+, s) — |h,s) (three applications of the transformation are
necessary to return to |k,s)). Since the level |k,s) is nearly
never populated in a successful QZD, this composite pulse is
basically equivalent to a standard 7 pulse.

The composite pulse architecture achieves the required
selectivity in a relatively short interrogation time. We use now
these optimized pulses for the simulation of a few key QZD
experiments.

B. Simulation of key experiments

The simulations include a realistic description of the
composite interrogation pulse and of cavity relaxation. We use
the best available cavity damping time 7, = 130 ms [40]. We
should, of course, check that the total duration of the sequence
remains in the ms time range, much shorter than the atomic
free fall through the cavity mode.

The periodic motion of a coherent component inside the EC
is barely affected by cavity relaxation. Setting s = 6, using a
composite 27 interrogation pulse with a translation per step
B = 0.4, we get a fidelity after 12 steps (corresponding to the
return near the vacuum state) of 90% instead of 92% in the
ideal case treated in Sec. III. The total sequence duration is
3.9 ms. In fact, the field propagates most of the time inside the
EC as a coherent state, nearly impervious to relaxation. It is
only during the phase inversion, for a few steps, that a MFSS
prone to decoherence is generated.

We have also examined the creation of a MFSS by
transmission trough a semitransparent EC. With a composite
interrogation pulse, s = 6 and 8 = 0.33, we obtainin 5.4 ms a
fidelity with respect to an ideal state of 79%. This is promising
to study the decoherence of this large MFSS (the square of the
distance in phase space between the two components, setting
the decoherence time scale [30], is 24 photons).

As a more striking example, we have simulated the
generation of a three-component MFSS by two collisions with
a semitransparent EC. We set s = 3 and use a composite
pulse. In order to get a superposition with three equal weights,
we select an EC transparency of 1/3 for the first collision
(B =0.34) and 1/2 for the second, setting 8 = 0.45 after
the first phase inversion. The sequence duration is 4.4 ms.
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FIG. 12. (Color online) Final state Wigner function W (§) for the
generation of a three-component MFSS. See text for the conditions.

The Wigner function of the final state is plotted in Fig. 12.
The fidelity with respect to an equal weight superposition of
coherent components centered at —0.3, 3.2, and 6.7 is 69%.

Finally, we have simulated the state synthesis presented in
Sec. V, leading to a MFSS of four coherent components. The
pulses addressing the |2,0) — |g,0) transition can spuriously
affect the |h,n) levels with n > 1. The frequency separation
between the addressed and spurious transitions is quite large
in this case (£2/2 for n = 1). We use thus simply an optimized
square pulse, performing the required level mixing on the
addressed transition and a 4w pulse on the closest spurious
transition. The maximum pulse duration involved in the
sequence is 80 us. For the interrogation of the dressed
states, we use the optimized composite pulses. The tweezers
operations are performed with a 8 = 0.6 translation per step.
The total duration of the full synthesis sequence is thus 2.9 ms.

Figure 13 presents the Wigner function of the generated
MESS. It is visually very similar to the ideal MFSS Wigner
function presented in Fig. 11 (note the different color scales).
The fidelity with respect to the target state is 59%. In fact,
due to the fast twezers operations, the final amplitudes of
the coherent components differ by up to 0.5 from the target
ones. By optimizing these amplitudes in the reference state,
we get a more faithful fidelity of 71.5%. This value shows
that a complex state synthesis operation is within reach of the
planned experimental setup.

VII. CONCLUSION AND PERSPECTIVES

We have analyzed the quantum Zeno dynamics taking
place when the photon field in a high-finesse cavity undergoes
frequent interactions with atoms, that probe its state, yielding
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FIG. 13. (Color online) Final state Wigner function W (§) for the
realistic state synthesis. See text for the conditions.
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photon-number selective measurements or unitary kicks. A
coherent classical source induces an evolution of the field,
which remains confined in a multidimensional eigenspace
of the measurement or kick. The quantum coherence of
the evolution under the action of the source is preserved,
the generator of the dynamics being the Zeno Hamiltonian,
projection of the complete source-induced Hamiltonian onto
the eigenspaces of the measurement or kick operators.

The QZD evolution can be highly nontrivial. We have
discussed in particular the generation of interesting nonclas-
sical states, including MFSS. We have also analyzed state
manipulation techniques by means of phase space tweezers,
as well as promising perspectives towards quantum state
synthesis. These ideas pave the way towards more general
phase space tailoring and “molding” of quantum states, which
will be of a great interest for the exploration of the quantum-to-
classical transition and for the study of nontrivial decoherence
mechanisms.

PHYSICAL REVIEW A 86, 032120 (2012)

We have focused in this paper on the QZD induced by a
classical resonant source acting on the cavity. Other evolution
Hamiltonians could be envisioned, such as a micromaser
evolution [46] produced by fast resonant atoms crossing the
cavity between the interrogation pulses performed on the atom
at rest in the mode. The principle of the method could also be
translated in the language of any spin and spring system. In
particular, QZD could be implemented using this method in
ion traps [47] or in circuit QED [31] with superconducting
artificial atoms.

In conclusion, a state-of-the-art experiment appears to be
feasible in microwave cavity QED. It would be the first
experimental demonstration of the quantum Zeno dynamics.
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