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2INFN, Sezione di Bari, I-70126 Bari, Italy

3MECENAS, Università Federico II di Napoli, Via Mezzocannone 8, I-80134 Napoli, Italy
4Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy
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We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in
a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a
partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We
investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled
states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body
wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity)
and study the finite size corrections to the saddle point solution.
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I. INTRODUCTION

Entanglement is an important resource in quantum infor-
mation processing and quantum enabled technologies [1,2].
Besides its important applications in relatively simple systems,
that can be described in terms of a few effective quantum
variables, it is also widely investigated in many-body systems
[3,4], where the bipartite entanglement can be given a
satisfactory quantitative definition in terms of entropy and its
linearized versions, such as purity [5,6]. The characterization
of the global features of entanglement is more involved,
unveiling in general different features of the many-body wave
function [7,8], and it is becoming clear that the multipartite
entanglement of a large system cannot be fully characterized
in terms of a single (or a few) measure(s).

Entanglement measures the nonclassical correlations be-
tween the different components of a quantum system and
unearths different characteristics of its many-body wave func-
tion. When the quantum system is large, it becomes therefore
interesting to scrutinize the features of the distribution of some
bipartite entanglement measure, such as the purity or the Von
Neumann entropy. Besides being of interest for applications,
this is an interesting problem in statistical mechanics. In [9]
we tackled this problem by studying a random matrix model
that describes the statistical properties of the eigenvalues of
the reduced density matrix of a subsystem A of dimension N

(the complementary subsystem B having the same dimension
as A). In the limit of large system dimension N , we introduced
a partition function for the canonical ensemble as a function of
a fictitious temperature. The role of energy is played by purity:
different temperatures correspond to different entanglement.
The most important result of our analysis was the proof that the
different regions of entanglement, corresponding to different
ranges of the fictitious temperature, are separated by phase
transitions.

One puzzle was left open in that paper: in the region of
negative temperatures our solution suddenly ceased to exist
at a critical βg where the average purity of subsytem A was
πAB = 9/4N [a phenomenon quite common in random matrix
theory, as this critical point corresponds to tesselations of
random surfaces, or two-dimensional (2-D) quantum gravity].
As the partition function exists for all β ∈ R, the region of
factorizable states, where πAB = O(1), was not covered.

We will show in this paper that the solution in [9] becomes
metastable for any β < 0 (in the scaling of [9]) and a new
stable solution appears which interpolates smoothly from
πAB = 2/N to πAB = 1 as β goes from 0 to −∞. Moreover,
we will also study the metastable solution that is born at β = 0
and follow it through the region 0 > β > −∞.

This paper is organized as follows. In Sec. II we introduce
the notation and set the bases of the statistical mechanical
approach to the problem. In Sec. III we study positive
temperatures, where at very low temperatures we find very
entangled states. Negative temperatures are investigated in
Sec. IV, where it is shown that two branches exist, a stable
one associated to a partial factorization of the many-body wave
function, and a metastable one which contains the 2D-quantum
gravity point. The finite size corrections are investigated in
Sec. V. We discuss the implications of our results for quantum
information in Sec. VI and we conclude in Sec. VII by
summarizing our findings and discussing them in terms of
future perspectives.

II. A STATISTICAL APPROACH TO THE STUDY
OF BIPARTITE ENTANGLEMENT

We start off by describing a statistical approach to the study
of bipartite entanglement for large quantum systems. We will
tackle this problem by introducing a partition function [9].
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Consider a bipartite system, composed of two subsystems
A and B. The total system lives in the tensor product Hilbert
space H = HA ⊗ HB , with dimHA = N � dimHB = M .
We assume that the system is in a pure state |ψ〉 ∈ H. The
reduced density matrix of subsystem A reads

ρA = TrB |ψ〉〈ψ |, (1)

and is a Hermitian, positive, unit-trace N × N matrix. A good
measure of the entanglement between the two subsystems is
given by the purity,

πAB = TrAρ2
A = TrBρ2

B =
N∑

j=1

λ2
j ∈ [1/N,1], (2)

whose minimum is attained when all the eigenvalues λj are
equal to 1/N (completely mixed state and maximal entan-
glement between the two bipartitions), while its maximum
(attained when one eigenvalue is 1 and all others are 0) detects
a factorized state (no entanglement).

In order to study the statistics of bipartite entanglement
for pure quantum states, we consider typical vector states |ψ〉
[10,11], sampled according to the unique, unitarily invariant
measure. The significance of this measure can be understood
in the following way: consider a reference state vector |ψ0〉
and a unitary transformation |ψ〉 = U |ψ0〉. In the least set of
assumptions on U , the measure is chosen in a unique way,
being the only left- and right-invariant Haar (probability)
measure of the unitary group U (N2). The final state |ψ〉
will hence be distributed according to the measure mentioned
above (independently of |ψ0〉). Other distributions can also
be considered but they encode additional information on the
system (in this sense, Haar is the most “neutral”). These
alternative distributions could be treated in our approach by
constraining the system by means of Lagrange multipliers
(notice the analogy with the maximum entropy argument in
classical statistical mechanics). For an approximate realization
of this unique measure by means of short quantum circuits see
[12], where it is proved that one can extract Haar-distributed
random states by applying only a polynomial number of
random gates.

By tracing over subsystem B, this measure induces the
following measure over the space of Hermitian, positive
matrices of unit trace [10,11],

dµ(ρA) = DρA(det ρA)M−Nδ(1 − TrρA),

= dNλ
∏
i<j

(λi − λj )2
∏

�

λ
ηN

� δ

(
1 −

∑
k

λk

)
, (3)

where λk are the (positive) eigenvalues of ρA (Schmidt
coefficients), we dropped the volume of the U (N ) group
(which is irrelevant for our purposes) and ηN ≡ M − N is
the difference between the dimensions of the Hilbert spaces
HA and HB . In order to study the statistical behavior of a large
bipartite quantum system we introduce a partition function
from which all the thermodynamic quantities, for example,
the entropy or the free energy, can be computed:

ZAB =
∫

dµ(ρA) exp(−βNαπAB), (4)

where α is a positive integer (either 2 or 3, as we shall see)
and β a fictitious temperature “selecting” different regions of
entanglement. The value of α needs to be chosen in order to
yield the correct thermodynamic limit as

Nα〈πAB〉 = O(N2), (5)

since N2 is the number of degrees of freedom of the matrix
ρA. Around the maximally entangled states (for β > 0 [9])
we have 〈πAB〉 = O(1/N) so α = 3, while around separable
states (for β < 0) we have 〈πAB〉 = O(1) and hence α = 2.
In the following we will assume η = 0, since this does not
change the qualitative picture (the extension to η �= 0 being
straightforward but computationally cumbersome).

Since the purity depends only on the eigenvalues of ρA the
partition function reads

ZAB =
∫

λi�0
dNλ

∏
i<j

(λi − λj )2δ

(
1 −

N∑
i=1

λi

)
e−βNα

∑
i λ2

i ,

(6)

which by introducing a Lagrange multiplier for the delta
function yields

ZAB = N2
∫ ∞

−∞

dξ

2π

∫
λi�0

dNλ

× eiN2ξ (1−∑i λi )−βNα
∑

i λ2
i +2

∑
i<j ln |λi−λj |. (7)

A physical interpretation of the exponent in the integrand
of the partition function can be given as follows [13]: the
eigenvalues of ρA can be interpreted as a gas of interacting
point charges (Coulomb gas) at positions λi’s, on the positive
half-line and with a quadratic potential. The solution of these
integrals is known (as Selberg’s integral) for the case in which
the integration limits are −∞ < λi < +∞ [13].

The constraint of the positivity of the eigenvalues makes the
computation of this integral far more complicated. Although
an exact solution for finite N is unlikely to be found1 (but
see [9,14] for the first few moments), the problem arising
from the constraint on the positivity of the eigenvalues can
be overcome in the large N limit, as we will look for the
stationary point of the exponent with respect to both the λ’s
and ξ . In particular, the contour of integration for ξ lies on the
real axis, but we will soon see that the saddle point for ξ lies
on the imaginary ξ axis. It is then understood that the contour
needs to be deformed to pass by this point parallel to the line
of steepest descent. For the saddle point we need to find the
minimum of the free energy:

βF = βNα
∑

i

λ2
i − 2

∑
i<j

ln |λi−λj | − iN2ξ

(
1 −

∑
i

λi

)
.

(8)

1An exact solution can always be found by means of the orthogonal
polynomials method, but the expressions for ZAB grow enormously
in complexity with increasing N .
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By varying F we find the saddle point equations,

−2βNαλi + 2
∑
j �=i

1

λi − λj

− iN2ξ = 0, (9)

∑
i

λi = 1. (10)

In the following sections we will separately analyze the range
of positive and negative temperatures, and unveil the presence
of two phase transitions for the system, a second-order one at
a positive critical β and a first-order one at a negative
critical β.

A. The global picture

Before proceeding to a formal analysis of the phase
transitions, it is convenient to give a qualitative picture of
the behavior of the Schmidt coefficients as the temperature is
changed. As the inverse temperature is decreased, the density
matrix of subsystem A changes as follows. As β → +∞
all eigenvalues are = 1/N (maximally mixed state). As β

decreases, we encounter two phase transitions: one at a positive
critical value β+ and one at a negative critical value β−, both
critical values being to be determined. For β > β+ all eigen-
values remain O(1/N ), their distribution being characterized,
as we shall see, by the Wigner semicircle law. After the first
phase transition, for β+ > β > β−, the eigenvalues, all always
O(1/N ), follow the Wishart distribution, divergent at the
origin. Finally, after the second phase transition, for β < β−,
one eigenvalue becomes O(1), “evaporating” from the “sea”
of eigenvalues O(1/N ): this is a signature of the emergence of
factorization in the many-body wave function, the eigenvalue
O(1) being associated with a significant separability between
subsystems A and B. For β → −∞ the many-body wave
function is fully factorized. Pictorially, the typical eigenvalues
vector evolves starting from β = +∞ to β = −∞ as(

1

N
,

1

N
, . . . ,

1

N

)
︸ ︷︷ ︸

β→+∞

−→
(
O

(
1

N

)
, . . . ,O

(
1

N

))
︸ ︷︷ ︸

+∞>β>β+

−→
(
O

(
1

N

)
,O

(
1

N

)
, . . . ,0, . . . ,0

)
︸ ︷︷ ︸

β+>β>β−

−→
(
O(1),O

(
1

N

)
, . . . ,0, . . . ,0

)
︸ ︷︷ ︸

β−>β>−∞
−→ (1,0, . . . ,0)︸ ︷︷ ︸

β→−∞
, (11)

where the zeros in the second and third lines mean an
accumulation of points around the origin, and we will find
that [in the scaling of β given by α = 3 in Eq. (5)], β+ = 2
and β− = −2.455/N .

III. POSITIVE TEMPERATURES: TOWARD MAXIMALLY
ENTANGLED STATES

In this section we will consider the range of positive
temperatures: 0 < β < +∞; in particular we will study the

occurrence of a second-order phase transition at β = 2 [9]. We
will use a more general method, that will enable us to find all
solutions and can be easily extended to negative temperatures.

From the expression of the partition function one can easily
infer that when β → +∞ the typical states belonging to this
distribution are maximally entangled states and correspond to
the case λi = 1/N , ∀i ∈ {1, . . . N}. It then follows that for this
range of temperatures the right scaling exponent in (4) and (5)
is α = 3.

In order to estimate the thermodynamic quantities of the
system we solve the saddle point Eqs. (9) and (10) in the
continuous limit, by introducing the natural scaling,

λi = 1

N
λ(ti), 0 < ti = i

N
� 1. (12)

In the limit N → ∞, Eq. (9) becomes

−βλ + P

∫ ∞

0
dλ′ ρ(λ′)

λ − λ′ − i
ξ

2
= 0, (13)

which is a singular Fredholm equation of the first kind, known
as the Tricomi equation [15]. The function

ρ(λ) =
∫ 1

0
dt δ(λ − λ(t)), (14)

is the density of eigenvalues we want to determine. A similar
equation, restricted at β = 0, was studied by Page [11].

According to the Tricomi theorem [11,15], the solution
of the integral Eq. (13) lies in a compact interval [a,b],
(0 � a � b). Let us set

m = a + b

2
, δ = b − a

2
, 0 � δ � m. (15)

We map the interval [a,b] into the interval [−1,1] by
introducing the following change of variables:

λ = m + xδ, φ(x) = ρ(λ)δ. (16)

We get

1

π
P

∫ 1

−1

φ(y)

y − x
dy = g(x), (17)

with

g(x) = − 1

π

(
iξ

δ

2
+ βδm + βδ2x

)
, (18)

whose normalized solution (
∫

φ dx = 1) is

φ(x) = − 1

π
P

∫ 1

−1

√
1 − y2

1 − x2

g(y)

y − x
dy + 1

π
√

1 − x2
. (19)

By using the constraint (10), that is∫ 1

−1
λ φ(x) dx = 1, (20)

we can fix the Lagrange multiplier to obtain

φ(x) = 1

π
√

1 − x2

[
1 + βδ2

2
+ 2(1 − m)

δ
x − βδ2x2

]
.

(21)

The physical solutions must have a density φ(x) that is
nonnegative for all x ∈ (−1,1). Let us look at the points where
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FIG. 1. (Color online) Solution domain for different values of
temperature: for each value of β (indicated) the relative full line
encloses the region of the parameter space such that the eigenvalue
density is positive. The line m = δ corresponds to the positive
eigenvalues condition.

the density vanishes, φ(x) = 0. From (21) one gets

x± = 1

βδ2

(
1 − m

δ
±

√
�

)
, (22)

where

� =
(

1 − m

δ

)2

+ βδ2

(
1 + βδ2

2

)
. (23)

For β � 0 one gets that � � 0 for every m and δ, and φ(x) �
0 for x ∈ [x−,x+]. The level curves x± = ±1 are given by
m = ±

1 (δ,β), where

±
1 (δ,β) = 1 ± δ

2

(
1 − βδ2

2

)
. (24)

They are symmetric with respect to the line m = 1 and intersect
at δ = 0 and at δ = √

2/β. Therefore, the condition (−1,1) ⊂
[x1,x2] implies that the points (δ,m) should be restricted to a
(possibly cut) “eye-shaped” domain given by

max{δ,−
1 (δ,β)} � m � +

1 (δ,β), (25)

[recall the constraint m � δ in (15) that expresses the positivity
of eigenvalues]. The right corner of the eye is at

(δ,m) =
(√

2

β
,1

)
, (26)

and belongs to the boundary as long as β � 2. For β < 2
the eye is cut by the line m = δ; see Fig. 1. Let us remark
that all points inside the region correspond to solutions of
the saddle point equations. In other words we have a two-
parameter continuous family of solutions. We will look at the
eigenvalue density that minimizes the free energy density of
the system. From Eqs. (8) and (10) with α = 3 by applying
the scaling (12) we get

fN = F

N2
= 1

N

∑
i

λ(ti)
2 − 2

N2β

∑
i<j

ln |λ(ti) − λ(tj )|

+ 2

N2β

∑
i<j

ln N

= u − 1

β
s + ln N + O

(
ln N

N

)

= f + ln N + O

(
ln N

N

)
. (27)

Here,

f = lim
N→∞

(
fN − 1

β
ln N

)
(28)

is the free energy density in the thermodynamic limit, which
reads

βf = βu − s, (29)

in terms of the internal energy density u and the entropy
density s,

u =
∫ 1

−1
λ2φ(x)dx,

(30)

s =
∫ 1

−1
dx

∫ 1

−1
dy φ(x)φ(y) ln(δ|x − y|).

In order to compute the entropy density one integrates the
Tricomi Eq. (17) and obtains∫ 1

−1
φ(x)dx

∫ 1

−1
φ(y)dy ln |y − x|

=
∫ 1

−1
dxφ(x) ln(x + 1) − π

∫ 1

−1
dxφ(x)

∫ x

−1
g(y)dy. (31)

We get

u(δ,m,β) = 1 − (1 − m)2 + δ2

2
− βδ4

8
, (32)

s(δ,m,β) = −2(1 − m)2

δ2
− β2δ4

16
+ ln

δ

2
, (33)

and thus

βf (δ,m,β) = β − β(1 − m)2 + 2(1 − m)2

δ2
+ βδ2

2

− β2δ4

16
− ln

δ

2
. (34)

The contour plots of the free energy are shown in Fig. 2.
Note that f , as well as u and s, is symmetric with respect
to the line m = 1. This Z2 symmetry will play a major role
in the following. The only stationary point (a saddle point)
of the free energy density f is at the right corner of the eye
(26); see Figs. 1 and 2. Thus, the absolute minimum is on the
boundary.

For β � β+, where

β+ = 2, (35)

the point (26) is also the absolute minimum, whereas for 0 <

β < β+ the absolute minimum is at the right upper corner of
the allowed region, δ = +

1 (δ,β), namely at

m = δ, with β
δ3

4
+ δ

2
− 1 = 0. (36)

See the dots in Figs. 1 and 2. The behavior of the free energy
at the boundaries of the allowed domain is shown in Fig. 3 for
different temperatures.

We will study the behavior of our system starting from high
values of β, that is, low values of internal energy u (purity).
The analysis of lower values of β, down to β = 0 and even
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m

δ

β = 0

(a)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

m

δ

β = 1 < 2

(b)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

m

δ

β = 3 > 2

(c)

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

FIG. 2. (Color online) Contour plots of the free energy in regions
of the parameter space such that φ(x) � 0, for (a) β = 0, (b) β = 1,
and (c) β = 3. Darker regions have lower free energy. The arrows
point at the minima.

below, will be done in the next section. For β > β+, by setting
from (26) m = 1 and

β = 2

δ2
, (37)

and recalling (21), one gets the semicircle law (see Fig. 4),

φ(x) = 2

π

√
1 − x2, (38)

βf

δ

β = 0

(a)

0 0.5 1 1.5 2

2

4

βf

δ

β = 1

(b)

0 0.4 0.8 1.2

2.5

3

3.5

βf

δ

β = 3

(c)

0 0.2 0.4 0.6 0.8

5

6

7

FIG. 3. (Color online) Free energy on the boundary of the region
of the domain where φ(x) � 0, for different temperatures (indicated).
Dashed line, free energy f on the lower boundary of the eye-shaped
domain; solid line, free energy on the upper boundary. The sought
minima of the free energy can be inferred from the graph and coincide
with the dots in Figs. 1 and 2.

whence, by (16),

ρ(λ) = β

π

√
λ − a

√
b − λ, (39)

where

a = 1 − δ = 1 −
√

β+
β

, b = 1 + δ = 1 +
√

β+
β

. (40)

This distribution is displayed in Fig. 4. Observe that as β

becomes larger the distribution becomes increasingly peaked
around 1. This simply means that all eigenvalues tend to 1/N

in the natural scaling (12): for temperatures T = 1/β close to
zero the quantum state becomes maximally entangled.

By plugging (26) into (32) and (33) we get for β > β+

u = 1 + δ2

4
= 1 + 1

2β
, (41)

s = −1

4
+ ln

δ

2
= −1

4
− 1

2
ln(2β), (42)

and thus

βf = 2

δ2
+ 3

4
− ln

δ

2
= β + 3

4
+ 1

2
ln(2β). (43)
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φ
(x

)

x

β ≥ β+

1 0.5 0 0.5 1

0.1

0.3

0.6

1 2 3 4
0.

0.4

0.8

1.2

λ

ρ
(λ

)

β = 2

β = 10

β = 4

FIG. 4. (Top) Density of the eigenvalues for β � β+ = 2.
(Bottom) Density of the eigenvalues for β = 2,4, and 10. In the
temperature range β ∈ [2,∞] the solution is given by the semicircle
law.

At higher temperatures 0 � β � β+ the solution acquires
a different physiognomy. By plugging (36) into (21),

φ(x) = 2

πδ

√
1 − x

1 + x
[1 + (2 − δ)x], (44)

(see Fig. 5), yielding, by (16),

ρ(λ) = 4

πb2

√
b − λ

λ

(
b − 2 + 2(4 − b)

b
λ

)
, (45)

φ
(x

)

x

β = 1

1 0.5 0 0.5 1

0.1

0.3

0.6

1 2 3 4 5 6
0.

0.2

0.4

0.6

0.8

λ

ρ
(λ

)

β = 0

β = 2/3

βg

FIG. 5. (Top) Density of the eigenvalues for β = 1. (Bottom)
Density of eigenvalues for β = 0, β = 2/3, and β = βg = −2/27
(dashed). In the range of temperatures β ∈ (βg,β+), with β+ = 2, the
solution is given by the Wishart distribution.

β

δ

0
βg

−−

1 2 3

0.5

1

1.5

2

FIG. 6. Plot of Eq. (46) for positive (solid line) and negative
(dashed line) temperatures. The minimum βg = −2/27 is attained
at δ = 3.

with b = 2δ. This is a Wishart distribution (see Fig. 5). The
change from semicircle to Wishart is accompanied by a phase
transition (the first of a series!) as we shall presently see.

The half-width δ = b/2 is related to β by (36)

β = 4

δ3
− 2

δ2
, (46)

which runs monotonically from β = 2 when δ = 1 to β = 0
when δ = 2. Moreover, it reaches a minimum equal to

βg = − 2
27 , (47)

at δ = 3. Therefore, the above solution can be smoothly
extended down to βg , which is slightly negative, but not
below (see Fig. 6). We will study the solution for negative
temperatures in the next section. Note, incidentally, that the
inverse function of (46) can be explicitly written,

δ(β) = 1

β

√
2β

3

(
�̃ − 1

�̃

)
, (48)

with �̃ = (
√−β/βg +√

1 − β/βg)1/3.
For β � β+ the internal energy (average purity) u is

obtained by plugging (46) into (32):

u = 3

2
δ − δ2

4
. (49)

Therefore, at β = 0 (δ = 2) one gets u = 2, at β+ = 2 (δ = 1)
one gets u = 5/4, and at βg = −2/27 (δ = 3) one gets u =
9/4 (see the next section for the significance of these values).
From (46) and (33) one can also compute the entropy and the
free energy for β � β+,

s = −9

4
+ 5

δ
− 3

δ2
+ ln

δ

2
, (50)

βf = 9

δ2
− 9

δ
+ 11

4
− ln

δ

2
, (51)

in terms of the function δ(β) ∈ (1,3] introduced in Eq. (48).
Notice that βf is the generating function for the connected

correlations of πAB . The radius of convergence in the ex-
pansion around β = 0, namely 2/27, defines the behavior of
the late terms in the cumulants series. Another interesting
observation is that the function r(x) = u (β = −x/2) is the
generating function of the number of rooted nonseparable
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planar maps with n edges on the sphere (Sloane’s A000139
also in [18,19]), namely,

r(x) = 2 + x + 2x2 + 6x3 + 22x4 + 91x5 + 408x6

+1938x7 + 9614x8 + 49335x9 + · · · . (52)

The counting of rooted planar maps on higher genus sur-
faces is an unsolved problem in combinatorics and we
conjecture it to be related to 1/N corrections of our
formulas.

We are now ready to unveil the presence of the first critical
point at β+ = 2. Let us consider the density of eigenvalues
(38) and (44) [or their counterpart (39) and (45)]. The phase
transition at β+ is due to the restoration of a Z2 symmetry P

(“parity”) present in Eqs. (32), (33), and (34), namely the
reflection of the distribution ρ(λ) around the center of its
support (m = δ = b/2 for β � β+ and m = 1 for β > β+). For
β � β+ there are two solutions linked by this symmetry, and
we picked the one with the lowest f ; at β+ this two solutions
coincide with the semicircle (39), which is invariant under P

and becomes the valid and stable solution for higher β. In
order to explicitly show the presence of a second-order phase
transition in the system for β = β+ we look at the expression
of the entropy density s = β(u − f ), which counts the number
of states with a given value of the purity. The expression for
β < β+ is given in Eq. (50), while for β � β+ it is given in
Eq. (42).

At β = β+ we get δ = 1 and s = −1/4 − ln 2. On the other
hand the first derivative of s with respect to δ is discontinuous
at δ = 1. However, also β as a function of δ, as given by
(46) and (37), has a discontinuous first derivative at δ = 1. By

recalling that

ds

dβ
= ds

dδ

/
dβ

dδ
,

(53)
d2s

dβ2
= d2s

dδ2

/(
dβ

dδ

)2

− ds

dδ

d2β

dδ2

/(
dβ

dδ

)3

,

one easily obtains that the discontinuities compensate and in
the critical region, β → β+, we have

s ∼ −1

4
− ln 2 − β − β+

4
+ θ (β − β+)

(β − β+)2

16
, (54)

where θ is the step function. The entropy s is continuous at the
phase transition, together with its first derivative, although the
second derivative is discontinuous, as shown in Fig. 7. Notice
that the entropy is unbounded from below when β → +∞.
The interpretation of this result is quite straightforward:
the minimum value of πAB is reached on a submanifold
(isomorphic to SU (N )/ZN [20]) of dimension N2 − 1, as
opposed to the typical vectors which form a manifold of
dimension 2N2 − N − 1 in the Hilbert space H. Since this
manifold has zero volume in the original Hilbert space, the
entropy, being the logarithm of this volume, diverges.

Now we want to express the entropy density s as a function
of the internal energy density u. By inverting (49) and (41) we
get

δ =
{

2
√

u − 1, 1 < u � 5
4 ,

3 − √
9 − 4u, 5

4 < u � 2.
(55)

Finally, by plugging (55) into (50) and (42), we obtain the
entropy of the submanifold of fixed purity, s = (ln V )/N2 as
a function of its internal energy u = NπAB :

s(u) =

⎧⎪⎪⎨
⎪⎪⎩

1
2 ln(u − 1) − 1

4 , 1 � u � 5
4 ,

ln
(

3
2 −

√
9
4 − u

)
− 9

4 + 5

2
(

3
2 −

√
9
4 −u

) − 3

4
(

3
2 −

√
9
4 −u

)2 ,
5
4 � u � 2.

(56)

This function is plotted in Fig. 8.
Let us discuss the significance of these results. The present

section was devoted to the study of positive temperatures T =
1/β > 0. In this range of temperatures, the eigenvalues of
the reduced density matrix of our N2-dimensional system are
always of O(1/N ). As a consequence, the value of energy
(purity) in Eq. (2),

πAB =
N∑

j=1

λ2
j � 1

N

∫
λ2ρ(λ)dλ = O

(
1

N

)
, (57)

is always small: there is therefore a lot of entanglement in
our system. There are, however, important differences as
purity changes (it is important to keep in mind that in the
statistical mechanical approach pursued here, the Lagrange

multiplier β fixes the value of energy and purity). When
1/N < πAB < 5/4N the eigenvalues are distributed according
to the semicircle law (Fig. 4), while for 5/4N < πAB < 2/N

they follow the Wishart distribution (Fig. 5), the two regimes
being separated by a second-order phase transition. The value
πAB = 2/N corresponds to infinite temperatures β = 0 and
therefore to typical vectors in the Hilbert space (according
to the Haar measure). One is therefore tempted to extend
these results to negative temperatures [9] and one can indeed
do so up to πAB = 9/4N , corresponding to the slightly
negative temperature βg = −2/27. However, as we have seen,
a mathematical difficulty emerges, as this value represents the
radius of convergence of an expansion around β = 0 and no
smooth continuation of this solution seems possible beyond
βg . In the next section we will see that two branches exist for
negative β: one containing the phase transition point at β = βg
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FIG. 7. Entropy and its second derivative with respect to β. The
entropy is continuous in β+ while its second derivative presents a
finite discontinuity.

and in which purity is always of O(1/N ) and one in which
purity is of O(1). The latter becomes stable for sufficiently
large −β’s through a first-order phase transition.

Before continuing, we remind that larger values of purity,
toward the regime πAB = O(1) yield separable (factorized)
states. We are therefore going to look at the behavior of
our quantum system toward separability (regime of small
entanglement).

IV. NEGATIVE TEMPERATURES

A. Metastable branch (quantum gravity)

By analytic continuation, the solution at positive β of the
previous subsection can be turned into a solution for negative
β, satisfying the constraints of positivity and normalization.
In this section we will study this analytic continuation and

s

u
1 5

4
1.5 2 9

4

0.5

1

1.5

FIG. 8. (Color online) Entropy density s versus internal energy
density u = N〈πAB〉; see Eq. (56).

u

β
βg

5/4

9/4

2 4
|

FIG. 9. u = N〈πAB〉 as a function of (inverse) temperature.
Notice that u = 2 at β = 0 (typical states). In the β → ∞ limit
we find the minimum u = 1. The critical points described in the text
are at βg = −2/27,u = 9/4 (left point) and β+ = 2,u = 5/4 (right
point). However, this phase is unstable (dashed line) toward another
phase as soon as β < 0 (in this scaling of β).

its phase transitions, but we anticipate that this is metastable
for sufficiently large −β’s (namely for β < −2.455/N) and
that it will play a secondary role in the thermodynamics of
our model. However, our interest in it is spurred by one of its
critical points, at β = −2/27 ≡ βg which corresponds to the
so-called 2-D quantum gravity free energy (see [16]), provided
an appropriate double-scaling limit (jointly β → βg and N →
∞) is performed.

In more details, the eigenvalue density (45) at β = βg =
−2/27, that is, δ = 3 [see between Eqs. (46) and (48) and
Fig. 6] reads

ρ(λ) = 2

27π

√
(6 − λ)3

λ
, (58)

and from (49) u = 9/4 (see Figs. 5 and 9). The derivative at
the right edge of eigenvalue density in Fig. 5 vanishes.

By expanding (46) for δ → 3,

β = − 2
27 + 2

81 (δ − 3)2 − 16
729 (δ − 3)3 + 10

729 (δ − 3)4

− 16
2187 (δ − 3)5 + O((δ − 3)6), (59)

that is, by setting x = √
2(β − βg)/9 → 0,

δ = 3
(
1 + x + 4

3x2 + 35
18x3 + 80

27x4 + 1001
216 x5 + O(x6)

)
,

(60)

and therefore for β → βg ,

βf = 3

4
− log

3

2
+ 9

4
(β − βg) − 81

16
(β − βg)2

− 81
√

2

5
(β − βg)5/2 + O((β − βg)3). (61)

In fact, if one relaxes the unit trace condition, our partition
function Z has been studied in the context of random
matrix theories [17] before. The objects generated in this
way correspond to checkered polygonations of surfaces. Our
calculations show that the constraint Tr ρA = 1 is irrelevant
for the critical exponents in this region.

However, βg is not a real critical point of our Coulomb gas.
As this is an analytic continuation of the solution obtained for
β > 0, we are not assured that this is indeed a stable branch. In
the next section we will show that a first-order phase transition
occurs at a lower value of β, namely at β � −2.455/N
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in this scaling (and therefore the exponent α needs to be
lowered from 3 to 2 for negative β). The new stable phase
will take over for all negative β, where β = −∞ corresponds
to separable states. However, the metastable branch which
emanates from the analytic continuation described here exists
for all negative β and we can study in more detail the behavior
of the eigenvalue density (21) and its free energy (34). The
solution is straightforward but lengthy and is given in the
following. It is of interest in itself because, as we shall see,
it entails a phase transition at β = −2 due to the restoration
of the Z2 symmetry that was broken at the phase transition at
β = 2 described in the previous section.

Recall that the density φ(x) must be nonnegative for all
x ∈ (−1,1). This condition for β < 0 gives x /∈ (x+,x−), with
x± given by (22) and (23). The level curves x± = ±1 are given
by m = ±

1 (δ,β), with ±
1 in (24), while the level curves � = 0

are given by m = ±
2 (δ,β) with

±
2 (δ,β) = 1 ± δ2

√
−β

(
1 + βδ2

2

)
. (62)

They are symmetric with respect to the line m = 1 and intersect
at δ = 0 and at δ = √−2/β. Moreover, they are tangent to ±

1
at the points

(δ,m) =
(√

− 2

3β
, 1 ± 2

3

√
− 2

3β

)
, (63)

as shown in Fig. 10. Therefore, the condition (−1,1) ∩
[x1,x2] = ∅ implies that the points (δ,m) should be restricted
to a (possibly cut) eye-shaped domain given by

max{δ, h−(β,δ)} � m � h+(β,δ), (64)

where

h±(δ,β) =
⎧⎨
⎩

±
1 (δ,β), 0 � δ �

√
− 2

3β
,

±
2 (δ,β), δ >

√
− 2

3β
.

(65)

0 1
0

0.5

1

1.5

m

δ
√√√√√− 2

3β

Γ+
1

Γ−
1

Γ−
2

Γ+
2

m

δ

βg

−1

−3
−5

0 1 2 3
0

1

2

3

FIG. 10. (Color online) Metastable branch. Domain of existence
for the solution (m,δ) for negative temperatures.

m

δ

β = βg

(a)

1 2 3

1

2

3

m

δ

β = −1

(b)

1 2 3

1

2

3

m

δ

β = −5

(c)

1 2 3

1

2

3

FIG. 11. (Color online) Metastable branch. Contour plots of the
free energy in regions of the parameter space such that φ(x) � 0, for
(a) β = βg , (b) β = −1, and (c) β = −5. Darker regions have lower
free energy.

The right corner of the eye is given by

(δ,m) =
(√

− 2

β
,1

)
, (66)

and belongs to the boundary as long as β � −2. For β � −4
the eye is cut by the line m = δ (see Fig. 10). The contour plots
of the free energy (34) are shown in Fig. 11. The free energy
density f has no stationary points for β < 0. The behavior
of the free energy at the boundaries of the allowed domain
is shown in Fig. 12 for different temperatures. For β � −2
the right corner of the eye (66) is the global minimum. This
equation is the analog of Eq. (26) for positive temperatures.
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βf

δ

β = βg

(a)

1 2 3

1

2

3

βf

δ

β = −1

(b)

0 0.4 0.8 1.2

2

0

2

4

βf

δ

β = −5

(c)

0 0.2 0.4 0.6

2

0

2

4

FIG. 12. (Color online) Metastable branch. Free energy on the
boundary of the region of the domain where φ(x) � 0, for different
temperatures (indicated). Dashed line, free energy βf on the lower
boundary of the eye-shaped domain; solid line, free energy on the
upper boundary. The sought minima of the free energy can be inferred
from the graph and coincide with the dots in Figs. 10 and 11.

For −2 < β < 0 the absolute minimum is at the right upper
corner of the allowed region, namely at

m = δ, with δ = h+(β,δ), (67)

that is,

β
δ3

4
+ δ

2
− 1 = 0, for − 2

27
� β � 0, (68)

and

δ − 1 = δ2

√
−β

(
1 + β

δ2

2

)
, for − 2 � β � − 2

27
.

(69)

Note that (68) coincides with (36) and thus is the prolongation
of the curve (46) which runs monotonically from β = 0 when
δ = 2 to its minimum βg = −2/27 at δ = 3.

On the other hand, (69) is given by the curves,

β = − 1

δ2
± 1

δ3

√
−δ2 + 4δ − 2

= − 1

δ2
± 1

δ3

√
(2 +

√
2 − δ)(δ − 2 +

√
2), (70)

which run from β = βg when δ = 3 (with derivative zero) up to
β = −3/2 + √

2 when δ = 2 + √
2 (with derivative −∞) and

then from β = −3/2 + √
2 when δ = 2 + √

2 (with derivative
+∞) up to β = −2 when δ = 1; see Fig. 13.

1 32

1.5

1

0.5

0

β

δ
2 +

√
2

FIG. 13. (Color online) Metastable branch. β versus δ; see
Eq. (70).

Let us look at the eigenvalue density (21). When βg � β �
0 the solution is obtained by plugging (68) into (21)

φ(x) = 2

πδ

√
1 − x

1 + x
[1 + (2 − δ)x], (71)

with 2 � δ � 3, and is Wishart. At βg one gets δ = 3 and

φ(x) = 2

3π

√
(1 − x)3

1 + x
, (72)

whose derivative at the right edge x = 1 vanishes; see also
Eq. (58). On the other hand, when −3/2 + √

2 � β � βg by
(70) one gets

φ(x) = 1

πδ
√

1 − x2

[
1

2
(δ +

√
−δ2 + 4δ − 2) + 2(1 − δ)x

+ (δ −
√

−δ2 + 4δ − 2)x2

]
, (73)

with 3 � δ � 2 + √
2, while for −2 � β � −3/2 + √

2,

φ(x) = 1

πδ
√

1 − x2

[
1

2
(δ −

√
−δ2 + 4δ − 2) + 2(1 − δ)x

+ (δ +
√

−δ2 + 4δ − 2)x2

]
, (74)

with 1 � δ � 2 + √
2. Note that this eigenvalue density

diverges both at the left edge x = −1 and at the right edge
x = +1.

At β = −2 one obtains δ = 1 and

φ(x) = 2x2

π
√

1 − x2
. (75)

This corresponds to a second-order phase transition related
to the Z2 symmetry, that mirrors the phase transition at
β+ = 2. One gets the above density for all β � −2, where
the Z2 symmetry is restored. The interesting behavior of the
eigenvalue density as β is varied is displayed in Fig. 14.

The values of (m,δ) [that define the eigenvalue domain; see
Eq. (15)] and the thermodynamic functions u (internal energy
density) and s (entropy density) are shown in Figs. 15 and 16,
respectively. Their explicit expressions are given for positive
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φ
(x

)

x

β = − 1
27
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0.5

1

φ
(x

)

x

β = βg

1 0.5 0 0.5 1

0.5

1

φ
(x

)

x

β = βg − 0.01

1 0.5 0 0.5 1

0.5

1

φ
(x

)

x

β ≤ −2

1 0.5 0 0.5 1

0.5

1

FIG. 14. Metastable branch. Eigenvalue density for β = −1/27, βg = −2/27, β � βg , and β < β− = −2. From left to right, notice how
the distribution (initially Wishart, whose derivative at the right edge of the domain diverges) gets first a vanishing derivative at the right edge,
then develops a singularity there and eventually restores the Z2 symmetry that was broken at the phase transition at β = 2 described in the
previous section.

temperatures in Sec. III, while for negative temperatures are
given in the following.

In the gravity branch, for βg � β � 0 (2 � δ � 3) we get

m = δ, β = 4

δ3
− 2

δ2
,

u = 3

2
δ − δ2

4
,

(76)
s = −9

4
+ 5

δ
− 3

δ2
+ ln

δ

2
,

βf = 11

4
− 9

δ
+ 9

δ2
− ln

δ

2
.

Beyond a second-order phase transition at the critical tem-
perature βg we get that for −3/2 + √

2 � β � βg (3 � δ �
2 + √

2) both u and s increase together with the eigenvalue
density half-width δ,

m = δ, β = − 1

δ2
+ 1

δ3

√
−δ2 + 4δ − 2,

u = 2δ − 3

8
δ2 − δ

8

√
−δ2 + 4δ − 2,

δ

β
βg

|

4 2 2 4

1

2

3

m

β

βg

|

4 2 2 4

1

2

3

FIG. 15. Average and width of the solution domain m and δ

[Eq. (15)] as a function of β. Solid line, stable branch; dotted line,
metastable branch.

s = −2 + 15

4δ
− 15

8δ2
+ 1

8δ

√
−δ2 + 4δ − 2 + ln

δ

2
,

βf = 5

2
− 25

4δ
+ 17

8δ2
−
(

3

8δ
− 2

δ2

)√
−δ2+4δ−2 − ln

δ

2
,

(77)

and then decrease for −2 � β � −3/2 + √
2 (1 � δ � 2 +√

2),

m = δ, β = − 1

δ2
− 1

δ3

√
−δ2 + 4δ − 2,

u = 2δ − 3

8
δ2 + δ

8

√
−δ2 + 4δ − 2,

s = −2 + 15

4δ
− 15

8δ2
− 1

8δ

√
−δ2 + 4δ − 2 + ln

δ

2
,

βf = 5

2
− 25

4δ
+ 17

8δ2
+
(

3

8δ
− 2

δ2

)√
−δ2+4δ − 2 − ln

δ

2
.

(78)

u

β
βg

|

5/4

7/4

9/49 4

4 2 2 4

3

s

β

| ||

βg4 2 2 4

0.6

0.8

1.2

1

FIG. 16. Internal energy density u and entropy density s versus
β. Solid line, stable branch; dotted line, metastable branch.
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0.1

0.2

0

FIG. 17. Minimum eigenvalue a = m − δ versus β. Solid line,
stable branch; dotted line, metastable branch.

Finally, beyond another second-order phase transition for
β � −2 (0 � δ � 1), when the Z2 symmetry is restored, we
get

m = 1, β = − 2

δ2
,

u = 1 + 3

4
δ2 = 1 − 3

2β
,

(79)
s = ln

δ

2
− 1

4
= −1

2
ln(−2β) − 1

4
,

βf = −5

4
− 2

δ2
− ln

δ

2
= −5

4
+ β + 1

2
ln(−2β).

Finally, we record the interesting behavior of the minimum
eigenvalue a = m − δ; see Fig. 17. For −2 < β < 2, a

coincides with the origin (left border of the solution domain).
This variable can be taken as an order parameter for both the
second-order phase transitions at β = −2 and at β+ = 2. The
Z2 symmetry is broken for −2 < β < 2. Notice, however, that
the gravity critical point at βg = −2/27 remains undetected
by a. For the sake of future convenience let us record that at
βg = −2/27 the internal energy density reads u = 9/4, while
at β = −2, u = 7/4.

Let us briefly comment on the fact that the metastable
branch which emanates from the analytic continuation of the
solution at positive β described in the previous subsection has
not led us toward separable states. The eigenvalues remain of
O(1/N ) (and so does purity) even though the temperature can
be (very) negative (as β crosses 0). In order to find separable
states we will have to look at the stable branch in the following
subsection.

B. Stable branch of separable states

In this section we will search the stable solution of the
system at negative temperatures. As anticipated in Sec. II, from
the definition (4) of the partition function one expects that, for
any N , as β → −∞ the system approaches the region of the
phase space associated with separable states: here the purity
is O(1) and the right scaling in Eqs. (4) and (5) is α = 2. In
other words, by adopting the scaling N2 for the exponent of
the partition function, we will explore the region β = O(1/N)
of the scaling N3 introduced for positive temperatures. Notice
that the critical point βg = −2/27 for the solution at negative

temperatures now reads β = −(2/27)N and escapes to −∞
in the thermodynamic limit.

We will show that the solution (45), according to which
all the eigenvalues are O(1/N ), becomes metastable in the
region of negative temperatures, and the distribution of the
eigenvalues minimizing the free energy is such that one
eigenvalue is O(1): this solution in the limit β → −∞ will
correspond to the case of separable states. By following an
approach similar to that adopted for positive temperatures, we
will first look for the set of eigenvalues {λ1, . . . ,λN } satisfying
the saddle point Eqs. (9) and (10) with α = 2, getting as in
Sec. III a continuous family of solutions. We will select among
them the set maximizing (β < 0) the free energy (8), with
α = 2:

fN =
N∑

i=1

λ2
i − 2

N2β

∑
1�i<j�N

ln |λj − λi |. (80)

As emphasized at the beginning of this section, since we
are approaching the limit β → −∞ the states occupying the
largest volume in phase space are separable; we then define
λN = µ as the maximum eigenvalue and conjecture it to be of
order of unity, whereas the other eigenvalues are O(1/N ):

λN = µ = O(1),
∑

1�i�N−1

λi = 1 − µ. (81)

From this it follows that we need to introduce the natural
scaling only for the first N − 1 eigenvalues in order to solve
the saddle point equations in the continuous limit and then
estimate the thermodynamic quantities:

λi = (1 − µ)
λ(ti)

N − 1
,

(82)
0 < ti = i

N − 1
� 1, ∀i = 1, . . . ,N − 1.

In particular, we will separately solve the saddle point Eqs. (9)
and (10), corresponding to the minimization of the exponent
of the partition function with respect to the first N − 1
eigenvalues and the Lagrange multiplier ξ , given, in the limit
N → ∞, by

P

∫ ∞

0

ρ̄(λ′)dλ′

λ − λ′ − i
ξ

2
(1 − µ) = 0, (83)

with ∫ ∞

0
λρ̄(λ)dλ = 1,

and we will then consider the condition deriving from the
saddle point equation associated with µ,

2µβ + iξ = 0. (84)

The function ρ̄ introduced in (83) is the density of the
eigenvalues associated with λ1, . . . λN−1 in (82) and has the
same form (14) introduced for ρ(λ) in the regime of positive
temperatures. By the same change of variables introduced in
Sec. III, Eqs. (15) and (16), the solution of the integral Eqs. (83)
can be expressed in terms of φ̄(x) = ρ̄(λ)δ:

φ̄(x) = 1

π
√

1 − x2

(
1 − 2x(m − 1)

δ

)
, (85)
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FIG. 18. (Color online) Contour plot of the reduced free energy
βfred(δ,m) of the sea for negative temperatures. The arrow points at
the global minimum.

and the Lagrange multiplier is ξ = −i4(m − 1)/[δ2(1 − µ)].
The region of the parameter space (m,δ) such that the density
of eigenvalues φ̄ is nonnegative reads

max

{
δ, 1 − δ

2

}
� m � 1 + δ

2
, (86)

which is the same expression of the domain found for the
range of positive temperatures (25) when β = 0, namely
±

1 (δ,0) = 1 ± δ/2 (see Fig. 18, which is the analog of Fig. 1).
This is consistent with the change in temperature scaling from
N3 in the case of positive temperatures to N2 in the case
of negative temperatures: we are “zooming” into the region
near β → 0− of the range of temperatures analyzed in [9]
and Sec. III. Summarizing, as could be expected from what
we have shown for positive temperatures, the solution of the
saddle point equations is a two-parameter continuous family of
solutions. We now have to determine the density of eigenvalues
that maximizes the free energy of the system. From Eqs. (81)
and (80) we get

fN = µ2 − 2

N2β

∑
1�i<j�N

ln |λj − λi | + O

(
1

N

)
, (87)

and by applying the scaling (82),

fN = µ2 − 1

β
ln (1 − µ) + fred(δ,m,β)

+ 1

β
ln N + O

(
ln N

N

)

= f + 1

β
ln N + O

(
ln N

N

)
, (88)

where

f = lim
N→∞

(
fN − 1

β
ln N

)
= µ2 − 1

β
ln (1 − µ) + fred,

(89)

β
f r

ed

δ

β < 0
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1
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3

4

FIG. 19. (Color online) Reduced free energy βfred on the
boundary of the triangular domain in Fig. 18 for the case of
negative temperatures. Solid line, upper boundary; dashed line, lower
boundary.

is the free energy density in the thermodynamic limit, and

fred(δ,m,β) = − 1

β

∫ 1

−1
dxφ̄(x)

∫ 1

−1
dyφ̄(y) ln(δ|x − y|)

= 2(m − 1)2

βδ2
− 1

β
ln

(
δ

2

)
(90)

is the reduced free energy density of the sea of eigenvalues.
It is easy to see that βfred(m,δ), has no stationary points,

but only a global minimum βfred = 1/2 at (δ,m) = (2,2) (see
arrow in Fig. 18); this point yields the Wishart distribution
found at β = 0 for the case of positive temperature (see
also [9]):

φ̄(x) = 1

π

√
1 − x

1 + x
, ρ̄(λ) = 1

2π

√
4 − λ

λ
, (91)

where one should remember that now the λ’s are also scaled
by 1 − µ [see Eq. (82)].

We stress that this result is valid for all β < 0. In order to
check this solution one has to compute the free energy on the
boundary of this domain; see Fig. 19 (which is the analog of
Fig. 3). One gets that the free energy density is given by

f (µ,β) = µ2 − 1

β
ln (1 − µ) + 1

2β
. (92)

A new stationary solution, in which the largest isolated
eigenvalue µ becomes O(1), can be found by minimizing the
free energy density and yields

µ(β) = 1

2
+ 1

2

√
1 + 2

β
, (93)

being defined only for β < −2; this expression can also be
obtained directly by the saddle point Eq. (84) corresponding
to the isolated eigenvalue µ. This eigenvalue, O(1), evaporates
from the sea of eigenvalues O(1/N ), as pictorially repre-
sented in Fig. 20. The isolated eigenvalue moves at a speed
−dµ/dβ = 1/(2

√
β4 + 2β3), which diverges at β = −2:

another symptom of criticality. However, this new solution,
when it appears at β = −2, is not the global minimum of βf :
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FIG. 20. Evaporation of the eigenvalue µ = O(1) from the sea of
eigenvalues O(1/N ).

as we shall see it eventually becomes stable at a lower value
of β. We get for β < −2 (i.e., 0 < µ < 1),

u = µ2 = 1

2
+ 1

2β
+ 1

2

√
1 + 2

β
, (94)

s = ln(1 − µ) − 1

2
= ln

(
1

2
− 1

2

√
1 + 2

β

)
− 1

2
, (95)

βf = βu − s = 1 − 2µ

2(1 − µ)
− ln (1 − µ)

= 1 + β

2
+ β

2

√
1 + 2

β
− ln

(
1

2
− 1

2

√
1 + 2

β

)
. (96)

We are now ready to unveil the presence of a first-order
phase transition in the system. In Fig. 21 we plot the free
energy density as a function of µ for different values of β.
For β > −2 there is a global minimum of βf at µ = 0; µ

is still in the sea of the eigenvalues O(1/N ) and the stable
solution is given by the Wishart distribution (71) with the
potentials (76) (remember that, in the zoomed scale considered
here, βg corresponds to the very large inverse temperature
Nβg). At β = −2 there appears a stationary point for the
free energy density corresponding to µ = O(1) [see (93)];
notice, however, that βf at this point remains larger than its
value at the global minimum, until β reaches β−. Finally, for
β < β− the global minimum of βf moves to the right, to
the solution containing µ = O(1). Summarizing, for β > β−
the solution of saddle point equations maximizing the free
energy of the system is such that all eigenvalues are O(1/N ),
at β = −2 there appears a metastable solution for the system

β
f

µ

β = −1
−1.5

−2

β−

−3

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.2

0.0

0.2

0.4

0.6

0.8

FIG. 21. (Color online) Reduced free energy as a function of µ

for different values of β(< 0). Notice the birth of a stationary point
for β = −2 that becomes the global minimum for β � β−.

with one eigenvalue O(1), and for β � β− this becomes the
stable solution, that maximizes the free energy, whereas the
distribution of the eigenvalues found in Sec. III becomes now
metastable. The maximum eigenvalue is then a discontinuous
function of the temperature at β = β− and in the limit
β → −∞, µ approaches 1: the state becomes separable. This
critical temperature β− is the solution of the transcendental
equation f (β−,0) = f (β−,µ−), that is,

µ−
2(1 − µ−)

= − ln(1 − µ−), (97)

which yields

µ− � 0.715 33, β− = − 1

2µ−(1 − µ−)
� −2.455 41.

(98)

Therefore, the branch [(95) and (96)] is stable for β < β−
while it becomes metastable for β− < β < −2. On the other
hand, the solution µ = 0, corresponding to

u = µ2 = 0, (99)

s = β(u − f ) = − 1
2 , (100)

βf = 1
2 , (101)

has a lower free energy for β− < β < 0, and a higher one for
β < β−; see Fig. 22. At β− there is a first-order phase transi-
tion. At this fixed temperature the internal energy of the system
goes from ur = 0 up to ul = µ2

− � 0.511 7, while the entropy
goes from sr = −1/2 down to sl = −1/2 + ln(1 − µ−) �
−1.756 43. One gets �s/�u = β−. Therefore, the entropy
density as a function of the internal energy density reads

s(u) =
{

β−u − 1
2 , 0 < u < µ2

−,

ln(1 − √
u) − 1

2 , µ2
− � u < 1.

(102)

14

2

1.5

1

0.5

β

βf

β−−2

14

0

0.5

1

β

µ

β−−2

µ−

FIG. 22. (Color online) Free energy and maximum eigenvalue at
negative temperatures. The two solutions are exchanged at β− �
2.455 41, where there is a first-order phase transition. Full line,
solution of mimimal free energy; dashed line, solution of higher
free energy.
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It is continuous together with its first derivative at u = µ2
−,

while its second derivative is discontinuous. Notice that
�u = �s/β− is the specific latent heat of the evaporation of
the largest eigenvalue from the sea of the eigenvalues, from
O(1/N ) up to µ−.

A few words of interpretation are necessary. As we have
seen, it is the stable branch of the solution that leads us
to separable states at negative temperatures. The analytic
continuation of the stable solution for positive temperatures
emanates a metastable branch in which all eigenvalues remain
O(1/N ). By contrast, the new stable solution consists in a sea
of N − 1 eigenvalues O(1/N ) plus one isolated eigenvalue
O(1).

Let us discuss this result in terms of purity, like at the end
of Sec. III (we stress again that β is a Lagrange multiplier
that fixes the value of the purity of the reduced density matrix
of our N2-dimensional system). Assume that we pick a given
isopurity manifold in the original Hilbert space, defined by
a given finite value πAB of purity. If we randomly select
a vector belonging to this isopurity manifold, its reduced
density matrix (for the fixed bipartition) will have one finite
eigenvalue µ � √

πAB and many small eigenvalues O(1/N )
[yielding a correction O(1/N ) to purity]. In this sense, the
quantum state is largely separable. The probability of finding in
the aforementioned manifold a vector whose reduced density
matrix has, say, two (or more) finite eigenvalues µ1 and µ2

[such that µ2
1 + µ2

2 � πAB , modulo corrections O(1/N )] is
vanishingly small. By contrast, remember (from the results
of Sec. III) that if the isopurity manifold is characterized
by a very small value O(1/N ) of purity, the eigenvalues of
a randomly chosen vector on the manifold are all O(1/N)
(being distributed according to the semicircle or Wishart,
depending on the precise value of purity, as seen in Sec. III).
This is the significance of the statistical mechanical approach
adopted in this article. We will come back to this point
in Sec. VI.

V. FINITE SIZE SYSTEMS

The results of the previous section refer to N → ∞.
In order to understand how finite-N corrections affect our
conclusions we have numerically minimized the free energy
for various temperatures. The two phases of the system
discussed in the previous section correspond to the two
solutions obtained by minimizing the free energy βfN (80)
on the N -dimensional simplex of the normalized eigenvalues.
Indeed, we have numerically proved that βfN (β) presents
two local minima at negative temperatures: for 0 � β > β

(N)
−

the minimum giving the lower value of βfN (β) corresponds
to the distribution of eigenvalues (45), found in the last
sections; the other minimum is reached when the highest
eigenvalue is O(1). The point β = β

(N)
− is a crossing point

for these two solutions, and for β � β
(N)
− these two solu-

tions are inverted; see Figs. 22 and 21. Summarizing, there
exists a negative temperature at which the system under-
goes a first-order phase transition, from typical to separable
states.

The first thing to notice is that qualitatively the phase
transition remains of first order even for finite N . The second is

11.9353

0.05

0.104

0.16

β
f N

−
ln
N

N = 30

β

13
0

0.53

1

µ

N = 30

β

−2−1�935

FIG. 23. (Color online) Finite N version of Fig. 22. Free energy
and maximum eigenvalue in the saddle point approximation as
function of β at N = 30. The local minimum is in blue; the global
one in red. The two minima swap stability at β = −1.935. Notice
the birth of the new local minimum at β = −1.8 (for N = ∞ this
takes place at β = −2) and the exchange of stability at β = −1.93
(for N = ∞, β = −2.45).

that the finite N corrections are quite relevant for the location of
the phase transition and the value of the maximum eigenvalue
as a function of β. For example, for N = 30, the negative
critical temperature β

(30)
− = −1.935 instead of −2.455. This

is evinced from Fig. 23, which is the finite size version
of Fig. 22. This can be understood, as the corrections to
f (µ) around µ = 0 are quite large. In the limit µ = 1/N

there is a hard wall for the maximum eigenvalue µ, as
the condition

∑
i λi = 1 cannot be satisfied if µ < 1/N . It

is therefore likely that all sorts of large corrections occur
as µ tends to 1/N , probably yielding an effective size to
the corrections which is a lower power of 1/N (or even
possibly 1/ ln N ). The limits µ → 0 and N → ∞ do not
commute.

To further explore this effect we minimized βfN with re-
spect to λ1, . . . ,λN−1, for fixed values of the largest eigenvalue
λN = µ and for different temperatures. The results for N = 30
are shown in Fig. 24. One can see that between β = −1.8 and

0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.0

0.2

0.4

0.6

0.136 0.633
0.054

0.1345 0.53

0.06

0.08

β
f N

−
ln
N

µ

β = −1.5

−1.8

−1.935

−2.3

−2.5

−2.8

β = −1.935

µ

βfN − lnNβfN − lnN

β = −1.8

µ

FIG. 24. (Color online) Finite N version of Fig. 21. βfN − ln N

as a function of the maximum eigenvalue µ, obtained by numerical
minimization over the remaining N − 1 eigenvalues for various β.
Observe the formation of a new minimum and the exchange of
stability, although the critical values of β at which these phenomena
occur differ from the theoretical ones, due to large finite N

corrections. However, it is clear that at small µ, 1/N corrections
tend to increase the value of βfN , making the critical value β− move
toward 0, as observed in the numerics.
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βµ
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1.8
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FIG. 25. Value of β at which the second minimum is born as a
function of N . The solid curve is a best fit returning β (N)

µ = −1.997 −
6.04/N . The asymptotic value should be −2 and is in good agreement
with the constant of the fit.

β = −2.5 there is a competition between two well-defined
local minima, corresponding to the two solutions discussed
above. At β = β

(30)
− = −1.935 their free energies are equal.

For higher β the global minimum corresponds to the solution
(45), whereas on the other side of β

(30)
− the solution with

µ = O(1) minimizes βfN . Similar corrections are observed
for the value of β = β(N)

µ at which the second minimum is
born; see Fig. 25.

We have seen that for β > β− the stable solution has no
detached eigenvalue. By taking into account the scaling β →
β/N we get that the solution is given by the very first part of
the gravity branch (76). In particular, the maximum eigenvalue
is given by b/N = (m + δ)/N = 2δ/N . On the other hand, for
β < β− the maximum eigenvalue is given by (93). Therefore,
we get

µ =
{

1
2 + 1

2

√
1 + 2

β
, β � β−,

2
N

δ(β/N), β− < β < 0,
(103)

with δ(β) given by (46)–(48). The numerical results for N =
40 are compared with the expressions in Eq. (103) in Fig. 26.
The agreement is excellent.

µ

β

N = 40

4 3.5 3 2.5 2 1.5 1 0.5
0

0.5

1

FIG. 26. Maximal eigenvalue in the saddle point approximation
as a function of β. The points are the result of a numerical evaluation
for N = 40, while the full line is the expression in Eq. (103).

The corresponding free energy follows from (96) and (76)
with the appropriate scaling

βf

=
⎧⎨
⎩1 + β

2 + β

2

√
1 + 2

β
− ln

(
1
2 − 1

2

√
1 + 2

β

)
, β � β−,

11
4 − 9

δ(β/N) + 9
δ(β/N)2 − ln δ(β/N)

2 , β− < β < 0.

(104)

Notice that in order to have a finite size scaling of the
critical temperature β

(N)
− one should take into account O(1/N )

corrections to the expression of βf and then evaluate the
intersection between the two branches, but this analysis goes
beyond our scope.

VI. OVERVIEW

Let us summarize the main results obtained in this article
in more intuitive terms, by focusing on those quantities
that are more directly related to physical intuition. In the
statistical mechanical approach adopted in this article, the
temperature plays the usual role of a Lagrange multiplier,
whose only task is to fix the value of energy (purity in our
case). A given value of β determines a set of vectors in the
projective Hilbert space whose reduced density matrices have
a given purity (isopurity manifold of quantum states). The
distribution of the eigenvalues of (the reduced density matrices
associated to) these vectors is that investigated in this article
and yields information on the separability (entanglement) of
these quantum states. The distribution of eigenvalues is the
most probable one [13] (in the same way as the Maxwell
distribution of molecular velocities is the most probable one at
a given temperature). Let us therefore abandon temperature in
the following and fully adopt purity as our physical quantity.

Entropy counts the number of states with a given value
of purity and is in this sense proportional to the logarithm
of the volume in the projective Hilbert space. The explicit
expressions of the entropy density s, which is the logarithm
of the volume of the isopurity manifold, as a function of
the purity πAB of the state vectors in that volume, can be
read directly from Eqs. (56) and (102) by taking into account
the correct scaling, when the system moves across different
regions of the Hilbert space. In order to show this delicate
point we will briefly recall the expression of the partition
function (4). The exponent α in Nα = N2Nα−2, where N2

is the number of degrees of freedom of ρA, depends on the
degree of entanglement of the global system, or equivalently
on the temperature β. In the region of positive temperatures,

s

NπAB

1 5
4

1.5 2 9
4

0.5

1

1.5

s

πAB

µ2
−

|

0 1

1

3

5

FIG. 27. (Color online) Entropy density s versus internal energy
density u. Notice that the unit on the abscissae is 1/N in the left
panel.
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the purity of the system scales as O(1/N ), and then becomes an
intensive quantity if multiplied by Nα−2 = N (i.e., for α = 3).
The internal energy density is then given by u = NπAB . On

the other hand, when we approach the region of separable
states, β → −∞, the purity is O(1), and then α = 2 and thus
u = πAB . Summarizing:

s(πAB) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2 ln(NπAB − 1) − 1

4 , 1
N

< πAB � 5
4N

,

ln
(

3
2 −

√
9
4 − NπAB

)
− 9

4 + 5

2
(

3
2 −

√
9
4 −NπAB

) − 3

4
(

3
2 −

√
9
4 −NπAB

)2 ,
5

4N
< πAB � 2

N
,

β−πAB − 1
2 , 2

N
< πAB � µ2

−,

ln(1 − √
πAB) − 1

2 , µ2
− < πAB < 1,

(105)

with µ2
− � 0.512 and β− � −2.455 given by (97) and

(98). The plot of s versus πAB in the two regions
πAB = O(1/N ) and πAB = O(1) is shown in Fig. 27. By

exponentiating the expression (105) we get the vol-
ume V = exp (N2s) (i.e., the probability) of the isopurity
manifolds

V (πAB) ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e− N2

4 (NπAB − 1)N
2/2, 1

N
< πAB � 5

4N
,(

3
2 −

√
9
4 − NπAB

)N2

exp

[
N2

(
− 9

4 + 5

2
(

3
2 −

√
9
4 −NπAB

) − 3

4
(

3
2 −

√
9
4 −NπAB

)2

)]
, 5

4N
< πAB � 2

N
,

exp
[
N2

(
β−πAB − 1

2

)]
, 2

N
< πAB � µ2

−,

e− N2

2 (1 − √
πAB)N

2
, µ2

− < πAB < 1.

(106)

This is plotted in Fig. 28 for N = 50. The presence of
discontinuities in some derivatives of entropy detects the two
phase transitions. At πAB = 5/4N there is a second-order
phase transition signaled by a discontinuity in the third
derivative. Indeed, in general, if s,u, and T are entropy,
energy, and temperature, respectively, and C = du/dT is the
specific heat, one gets ds/du = β = 1/T and d2s/du2 =
−1/(T 2C) = −(1/T 3)(ds/dT )−1. Discontinuities of the nth
derivative of ds/dT translate therefore in discontinuities of the
(n + 1)-th derivative of ds/du. The first-order phase transition,
which takes place between πAB = 2/N and πAB = µ2

− �
0.512 is signaled by discontinuities in the second derivative of
the entropy at those points. Observe that entropy is unbounded
from below: at both endpoints of the range of purity, πAB =
1/N (maximally entangled states) and πAB = 1 (separable

ln
(V

)
N

2

ln(πAB)

ln( 2
N

)

|

ln( 5
4N

)

|

ln(µ2
−)

|

0

3

2

1

FIG. 28. (Color online) Volume V = exp(N2s) of the isopurity
manifolds versus their purity πAB for N = 50.

states), when the isopurity manifold shrinks to a vanishing
volume in the original Hilbert space, the entropy, being the
logarithm of this volume, diverges, and the number of vector
states goes to zero (compared to the number of typical vector
states); see Fig. 28. The presence of the phase transitions can
be easily read out from the behavior of the distribution of
the Schmidt coefficients (i.e., the eigenvalues of the reduced
density matrix ρA of one subsystem). From Eq. (55) we get
the expression of the minimum eigenvalue λmin = a = m − δ

as a function of πAB ,

λmin =
{

1
N

(1 − 2
√

NπAB − 1), 1
N

< πAB � 5
4N

,

0, 5
4N

< πAB � 1.
(107)

which is shown in Fig. 29. The second-order phase transition
at πAB = 5/4N , associated to a Z2 symmetry breaking, is

1 1.1 1.4
0

0.5

1

NπAB

N
λ

m
in

5/4

FIG. 29. Minimum eigenvalues as a function of πAB . At πAB =
5/4N the gap vanishes.
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FIG. 30. Maximum eigenvalue as a function of πAB .

detected by a vanishing gap. On the other hand, the maximum
eigenvalue λmax coincides with the upper edge of the sea of
eigenvalues b = m + δ, as given by (55), until it evaporates
according to Eq. (94). Thus,

λmax =

⎧⎪⎪⎨
⎪⎪⎩

1
N

(1 + 2
√

NπAB − 1), 1
N

< πAB � 5
4N

,

2
N

(
3 − 2

√
9
4 − NπAB

)
, 5

4N
< πAB � 2

N√
πAB, 2

N
< πAB < 1,

(108)

as shown in Fig. 30. In the different phases the distribution of
the eigenvalues of ρA have very different profiles; see Fig. 31.
While for 1 � πAB � 5

4N
the eigenvalues (all O(1/N )) follow

Wigner’s semicircle law, they become distributed according to
Wishart for larger purities, 5

4N
� πAB � 2

N
, across the second-

order phase transition. This is a first signature of separability:
some eigenvalues vanish and the Schmidt rank decreases. For
even larger values of purity, 2

N
� πAB � 1, across the first-

order phase transition, one eigenvalue evaporates, leaving the
sea of the other eigenvalues O(1/N ) and becoming O(1).
This is the signature of factorization, fully attained when the
eigenvalue becomes 1 at πAB = 1.

We tried to give an overview of the phenomenology of these
phase transitions in Fig. 32, where we also showed the presence

of the metastable branches discussed in Sec. IV. The global
picture is both rich and involved and it would not be surprising
if additional features were unveiled by future investigation.

VII. CONCLUSIONS

We have obtained a complete characterization of the
statistical features of the bipartite entanglement of a large
quantum system in a pure state. The global picture is interesting
as several locally stable solutions exchange stabilities. On the
stable branch (solutions of minimal free energy) there is a
second-order phase transition, associated with a Z2 symmetry
breaking, and related to the vanishing of some Schmidt
coefficients (eigenvalues of the reduced density matrix of
one subsystem), followed by a first-order phase transition,
associated with the evaporation of the largest eigenvalue from
the sea of the others.

In the different phases the distribution of the Schmidt
coefficients have very different profiles. While for large β

(small purity) the eigenvalues [all O(1/N )] follow Wigner’s
semicircle law, they become distributed according to Wishart
for smaller β and larger purity, across the first transition. For
even smaller (and eventually negative) values of β, when
purity becomes finite, across the second phase transition,
one eigenvalue evaporates, leaving the sea of the other
eigenvalues O(1/N ) and becoming O(1). This is the signature
of separability, this eigenvalue being associated with the
emergence of factorization in the wave function (given the
bipartition). This interpretation is suggestive and hints at a
profound modification of the distribution of the eigenvalues
as β, and therefore purity, are changed. Remember that β,
viewed as a Lagrange multiplier in this statistical mechanical
approach, localizes the measure on a set of states with a given
entanglement (isopurity manifolds [20]).

Our characterization of the bipartite entanglement of Haar-
distributed states, where the least set of assumptions is
made on their generation, could be used in an experiment,
mutatis mutandis, as a check of the lack of correlations. If
one observes that the moments of the purity deviate from
the expected values (calculated in this paper), one could
argue for nonrandomness (or additional available information)
of the states. In turn, our fictitious inverse temperature β

acquires physical meaning, in that it measures deviations from
typicality.

It would be of great interest to understand whether the
phase transitions survive even in the multipartite entanglement
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FIG. 32. (Color online) Overview of the “evolution” of the eigenvalue densities as a function of purity (1/N � πAB � 1). The straight
segment represents the stable branch: the distribution starts as a delta function, evolves into a semicircle, undergoes a second-order phase
transition at πAB = 5/4N (Z2 symmetry breaking), becomes Wishart and undergoes a first-order phase transition between 2/N � πAB �
0.5117, during which one eigenvalue evaporates from the sea of the others O(1/N) and becomes O(1). A metastable branch is born at
πAB = 2/N : it starts as Wishart, undergoes a second-order phase transition at πAB = 9/4N (2-D gravity), where a singularity is developed
at its right edge, then its support starts decreasing, undergoes a second-order phase transition at πAB = 7/4N (Z2 symmetry restoration) and
eventually becomes sharply peaked (with two singularities). The diamonds indicate the three second-order phase transitions.

scenario, if one views the distribution of purity (over all
balanced bipartitions) as a characterization of the global
entanglement of the many-body wave function of the quantum
system [8]. This description of multipartite entanglement
displays the symptoms of frustration [21], catapulting the
problem into one of the most fascinating arenas of modern
statistical mechanics [22].

Recently, a paper appeared in which an aspect of this
problem is discussed, although with a different emphasis
[23]. In order to connect our results to those in [23],
notice that the probability distribution of the purity P (u) is

proportional to the volume of the isopurity manifold and,
therefore,

ln P (u) � N2s(u), (109)

where s is the entropy and N〈πAB〉 = u is the internal energy;
see Eq. (106).
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