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Reflection and transmission in a neutron-spin test of the quantum Zeno effect
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The dynamics of a quantum system undergoing frequent ‘‘measurements,’’ leading to the so-called quantum
Zeno effect, is examined on the basis of a neutron-spin experiment recently proposed for its demonstration.
Unlike in all previous studies, the spatial degrees of freedom of the neutron are duly taken into account. Their
inclusion in the analysis is important for two reasons: first, neutron-reflection effects are shown to be very
important; second, the evolution may turn out to be totally different from the ideal case. Our results can be
interpreted in terms of a rigorous theorem due to Misra and Sudarshan: indeed we clarify that, in contrast with
a widespread belief, a quantum Zeno effect does not halt the evolution of a quantum system; it rather modifies
it, by forcing the system to remain in a certain subspace, defined by the very measurement performed.
@S1050-2947~99!00811-2#

PACS number~s!: 03.65.Bz, 03.65.Nk, 03.75.Be
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I. INTRODUCTION

A quantum system, prepared in a state that does not
long to an eigenvalue of the total Hamiltonian, starts
evolve quadratically in time@1,2#. This characteristic behav
ior leads to the so-called quantum Zeno phenomen
namely the possibility of slowing down the temporal evo
tion ~eventually hindering transitions to states different fro
the initial one! @3#.

The original proposals that aimed at verifying this effe
involved unstable systems and were not amenable to ex
mental testing@4#. However, the remarkable idea@5# to use a
two-level system motivated an interesting experimental
@6#, revitalizing a debate on the physical meaning of t
phenomenon@7,8#. There seem to be a certain consens
nowadays, that the quantum Zeno effect~QZE! can be given
a dynamical explanation, involving only an explicit Ham
tonian dynamics.

It is worth emphasizing that the discussion of the past f
years mostly stemmed from experimental considerations
lated to thepractical possibility of performing experimenta
tests. Some examples are the interesting issue
‘‘interaction-free’’ measurements@9# and the neutron-spin
tests of the QZE@8,10#. In practical cases, one cannot negle
the presence of losses and imperfections, which obviou
conspire against an almost-ideal experimental realizat
more so when the total number of ‘‘measurements’’
creases above certain theoretical limits.

The aim of the present paper is to investigate an inter
ing ~and often overlooked! feature of what we might call the
quantum Zeno dynamics. We shall see that a series of ‘‘m
surements’’~von Neumann’s projections@11#! does not nec-
PRA 601050-2947/99/60~5!/3448~13!/$15.00
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essarily hinder the evolution of the quantum system. On
contrary, the system can evolve away from its initial sta
provided it remains in the subspace defined by the ‘‘m
surement’’ itself. This interesting feature is readily unde
standable in terms of rigorous theorems@2#, but it seems to
us that it is worth clarifying it by analyzing interesting phys
cal examples. We shall therefore focus our attention on
experiment involving neutron spin@8# and shall see that in
fact this enables us to accomplish two goals: not only w
the state of the neutron undergoing QZEchange, but it will
do so in a way that clarifies why reflection effects may pl
a substantial role in the experiment analyzed.

In the neutron-spin example to be considered, the evo
tion of the spin state is hindered when a series of spec
decompositions~in Wigner’s sense@12#! is performed on the
spin state. No ‘‘observation’’ of the spin states, and theref
no projection in the manner of von Neumann, is required,
far as the different branch waves of the wave function can
interfere after the spectral decomposition. Needless to
the analysis that follows could be performed in terms o
Hamiltonian dynamics, without making use of projection o
erators. However, we shall use in this paper the von N
mann technique, which will be found convenient becaus
sheds light on some remarkable aspects of the Zeno phen
enon and helps to pin down the physical implications
some mathematical hypotheses with relatively fewer effo

The paper is organized as follows. We briefly review,
the next section, the seminal theorem for the short-time
namics of quantum systems, proved by Misra and Sudars
@2#. Its application to the neutron-spin case is discussed
Sec. III. In Secs. IV and V, unlike in previous papers@8,10#,
we shall incorporate the spatial~one-dimensional, for sim-
3448 ©1999 The American Physical Society
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plicity! degrees of freedom of the neutron and represent th
by an additional quantum number that labels, roughly spe
ing, the direction of motion of the wave packet. A mo
realistic analysis is presented in Sec. VI. Finally, Sec. VII
devoted to a discussion. Some additional aspects of
analysis are clarified in the Appendix.

II. MISRA AND SUDARSHAN’S THEOREM

Consider a quantum systemQ, whose states belong to th
Hilbert spaceH and whose evolution is described by th
unitary operatorU(t)5exp(2iHt), where H is a semi-
bounded Hamiltonian. LetE be a projection operator an
EHE5HE the subspace spanned by its eigenstates. The
tial density matrixr0 of systemQ is taken to belong toHE .
If Q is let to follow its ‘‘undisturbed’’ evolution, under the
action of the HamiltonianH ~i.e., no measurements are pe
formed in order to get informations about its quantum sta!,
the final state at timeT reads

r~T!5U~T!r0U†~T! ~1!

and the probability that the system is still inHE at timeT is

P~T!5Tr@U~T!r0U†~T!E#. ~2!

We call this a ‘‘survival probability’’: it is in general smalle
than 1, since the HamiltonianH induces transitions out o
HE . We shall say that the quantum system has ‘‘survive
if it is found to be inHE by means of a suitable measureme
process@13#.

Assume that we perform a measurement at timet, in order
to check whetherQ has survived. Such a measurement
formally represented by the projection operatorE. By defi-
nition,

r05Er0E, Tr@r0E#51. ~3!

After the measurement, the state ofQ changes into

r0→r~ t !5EU~ t !r0U†~ t !E, ~4!

with

P~ t !5Tr@U~ t !r0U†~ t !E#. ~5!

This is the probability that the system has survived.@There
is, of course, a probability 12P that the system has no
survived ~i.e., it has made a transition outsideHE) and its
state has changed intor8(t)5(12E)U(t)r0U†(t)(12E).
Henceforth we concentrate our attention on the measurem
outcome~4! and~5!.# The above is the standard Copenhag
interpretation: The measurement is considered to be ins
taneous. The ‘‘quantum Zeno paradox’’@2# is the following.
We prepareQ in the initial stater0 at time 0 and perform a
series ofE observations at timestk5kT/N(k51, . . . ,N).
The state ofQ after the above-mentionedN measurements
reads

r (N)~T!5VN~T!r0VN
† ~T!, VN~T![@EU~T/N!E#N,

~6!

and the probability to find the system inHE ~‘‘survival prob-
ability’’ ! is given by
m
k-

ur

i-
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t
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P(N)~T!5Tr@VN~T!r0VN
† ~T!#. ~7!

Equations~6! and ~7! display the ‘‘quantum Zeno effect’’:
repeated observations in succession modify the dynamic
the quantum system; under general conditions, ifN is suffi-
ciently large, all transitions outsideHE are inhibited.

In order to consider theN→` limit ~‘‘continuous obser-
vation’’!, one needs some mathematical requirements: de

V~T![ lim
N→`

VN~T!, ~8!

provided the above limit exists in the strong sense. The fi
state ofQ is then

r̃~T!5V~T!r0V †~T! ~9!

and the probability to find the system inHE is

P~T![ lim
N→`

P(N)~T!5Tr@V~T!r0V †~T!#. ~10!

One should carefully notice that nothing is said about
final stater̃(T), which depends on the characteristics of t
model investigated and on thevery measurement performe
~i.e., on the projection operatorE, which enters in the defi-
nition of VN). Misra and Sudarshan assumed, on phys
grounds, the strong continuity ofV(t),

lim
t→01

V~ t !5E, ~11!

and proved that under general conditions the operatorsV(T)
exist for all realT and form a semigroup labeled by the tim
parameter T. Moreover, V †(T)5V(2T), so that
V †(T)V(T)5E. This implies, by Eq.~3!, that

P~T!5Tr@r0V †~T!V~T!#5Tr@r0E#51. ~12!

If the particle is ‘‘continuously’’ observed, in order to chec
whether it has survived insideHE , it will never make a
transition toH2HE . This is the ‘‘quantum Zeno paradox.’

An important remark is now in order: the theorem ju
summarizeddoes notstate that the systemremains in its
initial state after the series of very frequent measureme
Rather, the system is left in the subspaceHE , instead of
evolving ‘‘naturally’’ in the total Hilbert spaceH. This
subtle point, implied by Eqs.~9!–~12!, is often not duly
stressed in the literature.

Notice also the conceptual gap between Eqs.~7! and~10!:
To perform an experiment withN finite is only a practical
problem, from the physical point of view. On the other han
theN→` case is physically unattainable, and is rather to
regarded as a mathematical limit~although a very interesting
one!. In this paper, we shall not be concerned with this pro
lem ~thoroughly investigated in@10#! and shall consider the
N→` limit for simplicity. This will make the analysis more
transparent.

III. QUANTUM ZENO EFFECT WITH NEUTRON SPIN

The example we consider is a neutron spin in a magn
field @8#. ~A photon analog was first outlined by Peres@14#.!
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We shall consider two different experiments: Refer to Fi
1~a! and 1~b!. In the case schematized in Fig. 1~a!, the neu-
tron interacts with several identical regions in which there
a static magnetic fieldB, oriented along thex direction. We
neglect here any losses and assume that the interactio
given by the Hamiltonian

H5mBs1 , ~13!

m being the~modulus of the! neutron magnetic moment, an
s i ( i 51,2,3) the Pauli matrices. We denote the spin state
the neutron along thez axis by u↑& and u↓&.

Let the initial neutron state ber05r↑↑[u↑&^↑u. The in-
teraction with the magnetic field provokes a rotation of t
spin around thex direction. After crossing the whole setu
the final density matrix reads

r~T![e2 iHTr0eiHT5cos2
vT

2
r↑↑1sin2

vT

2
r↓↓

2
i

2
sinvT~r↑↓2r↓↑!, ~14!

wherev52mB andT is the total time spent in theB field.
Notice that the free evolution is neglected~and so are reflec
tion effects, wave-packet spreading, etc.!. If T is chosen so as
to satisfy the ‘‘matching’’ condition cosvT/250, we obtain

r~T!5r↓↓ S T5~2m11!
p

v
, mPND , ~15!

so that the probability that the neutron spin is down at timT
is

P↓~T!51 S T5~2m11!
p

v
, mPND . ~16!

The above two equations correspond to Eqs.~1! and ~2!. In
our example,H is such that if the system is initially prepare
in the up state, it will evolve to the down state after timeT.
Notice that, within our approximations, the experimen

FIG. 1. ~a! Evolution of the neutron spin under the action of
magnetic field. An emitter sends a spin-up neutron through sev
regions where a magnetic fieldB is present. The detectorD0 detects
a spin-down neutron: No Zeno effect occurs.~b! Quantum Zeno
effect: the neutron spin is ‘‘monitored’’ at every step, by selecti
and detecting the spin-down component.D0 detects a spin-up neu
tron.
.
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is
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setup described in Fig. 1~a! is equivalent to the situation
where a magnetic fieldB is contained in a single region o
space.

Let us now modify the experiment just described by
serting at every step a device able to select and detect
component@say the down (↓) one# of the neutron spin. This
can be accomplished by a magnetic mirrorM and a detector
D. The former acts as a ‘‘decomposer,’’ by splitting a ne
tron wave with indefinite spin~a superposed state of up an
down spins! into two branch waves each of which is in
definite spin state~up or down! along thez axis. The down
state is then forwarded to a detector, as shown in Fig. 1~b!.
The magnetic mirror yields a spectral decomposition@12#
with respect to the spin states, and can be compared to
inhomogeneous magnetic field in a typical Stern-Gerlach
periment.

We choose the same initial state forQ as in the previous
experiment@Fig. 1~a!#. The action ofM1D is represented
by the operatorE[r↑↑ @remember that we follow the evo
lution along the horizontal direction, i.e., the direction t
spin-up neutron travels, in Fig. 1~b!#, so that if the process is
repeatedN times, as in Fig. 1~b!, we obtain

r (N)~T!5VN~T!r0VN
† ~T!5S cos2

vt

2 D N

r↑↑

5S cos2
p

2ND N

r↑↑ , ~17!

where the ‘‘matching’’ condition forT5Nt @see Eq.~15!#
has been required again. The probability that the neut
spin is up at timeT, if N observations have been made
time intervalst (Nt5T), is

P↑
(N)~T!5S cos2

p

2ND N

. ~18!

This discloses the occurrence of a QZE: Indeed,P↑
(N)(T)

.P↑
(N21)(T) for N>2, so that the evolution is ‘‘slowed

down’’ as N increases. Moreover, in the limit of infinitely
many observations,

r (N)~T! →
N→`

r̃~T!5r↑↑ ~19!

and

P↑~T![ lim
N→`

P↑
(N)~T!51. ~20!

Frequent observations ‘‘freeze’’ the neutron spin in its init
state, by inhibiting (N>2) and eventually hindering (N
→`) transitions to other states. Notice the difference fro
Eqs.~15! and ~16!: The situation is completely reversed.

IV. SPATIAL DEGREES OF FREEDOM

In the analysis of the preceding section only the spin
grees of freedom were taken into account. No losses w
considered, even though their importance was already m
tioned in @8,10#. In spite of such a simplification, the mode
yields physical insight into the Zeno phenomenon, and
the nice advantage of being solvable.

al
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We shall now consider a more detailed description. T
practical realizability of this experiment has already be
discussed, with particular attention to theN→` limit and
various possible losses@10#. One source of losses is the o
currence of reflections at the boundaries of the interac
region and/or at the spectral decomposition step. A car
estimate of such effects would require a dynamical anal
of the motion of the neutron wave packet as it crosses
whole interaction region~magnetic-field regions followed by
field-free regions containing each a magnetic mirrorM that
performs the ‘‘measurement’’!. However, it is not an easy
task to include the spatial degrees of freedom of the neu
in the analysis; instead, we shall adopt a simplified desc
tion of the system, which preserves most of the essen
features and for which an explicit solution can still be o
tained. It turns out that the inclusion of the spatial degree
freedom in the evolution of the spin state can result in co
pletely different situations from the ideal case, which in tu
clarifies the importance of losses in actual experiments a
at the same time, sheds new light on the Zeno phenome
itself.

Let us now try to incorporate the other degrees of freed
of the neutron state in our description. Let our state spac
the four-dimensional Hilbert spaceHp^ Hs , where Hp
5$uR&,uL&% andHs5$u↑&,u↓&% are two-dimensional Hilber
spaces, withR (L) representing a particle traveling toward
the right~left! direction along they axis, and↑(↓) represent-
ing spin up ~down! along thez axis. We shall set, in the
respective Hilbert spaces,

uR&5S 1

0D , uL&5S 0

1D ; u↑&5S 1

0D , u↓&5S 0

1D ,

~21!

so that, for example, the stateuR↓& represents a spin-dow
particle traveling towards the right direction (1y). Also, for
the sake of simplicity, we shall work with vectors, rath
than density matrices~the extension is straightforward!.

In this extended Hilbert space, the first Pauli matrixs1
acts only onHs as a spin flipper,s1u↑&5u↓& and s1u↓&
5u↑&, while another first Pauli matrixt1 acts only onHp as
a direction-reversal operator,t1uR&5uL& andt1uL&5uR&. To
investigate the effects of reflection, we assume that the in
action is described by the Hamiltonian

H5g~11at1!~11bs1!, ~22!

whereg, a, andb are real constants. By varying these p
rameters and the total interaction timeT, the above Hamil-
tonian can describe various situations in which a neutr
impinging on a B field applied alongx axis, undergoes
transmission/reflection and/or spin-flip effects.

It is worth pointing out that the above Hamiltonian inco
porates the spatial degrees of freedom in an abstract w
Only the one-dimensional motion of the neutron, represen
by L andR, has been taken into account and all other effe
~such as, for instance, the spread of the wave packet! are
neglected. This amounts to considering a trivial free Ham
tonian, which can be dropped out from the outset. This m
seem too drastic an approximation; however, it is not
rough as one may imagine. Let us consider, for exampl
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realization of the quantum Zeno effect experiment descri
in the preceding section, at present in progress at the pu
ISIS neutron spallation source. Neutrons are trapped betw
perfect crystal blades and pass on each of their 2000 tra
tories through a flipper device, which cause an adjusta
spin rotation. Flipped neutrons immediately leave the stor
system where they can be easily detected~see, e.g.,@15#!. In
such a case, the neutron burst injected into the 1-m-l
perfect crystal storage system has a momentum resolu
@16#

dk

k0
.1025. ~23!

The burst spreads according to the classical law

~Dt !25~Dtp!21S dl

l
t0D 2

, ~24!

whereDtp.140 mm is a typical value for the neutron burs
~or alternatively can be theoretically considered as the op
ing time of a chopper!, l52p/k, andt0 is the time of flight
in the crystal storage system. For one traverse between
crystal platest0.1 ms, while for 2000 traversest0.2 s, so
that Eq.~24! yields Dt.170 ms. We clearly see that, unde
these conditions, the additional spread of the burst over
total distance traveled in the storage crystal is negligible
this case, the Hamiltonian~22! describes the relevant physic
with good approximation.

Since the spin flippers1 and the direction-reversal opera
tor t1 commute with each other and with the Hamiltonia
~22!, the energy levels of the system governed by this Ham
tonian are obviouslyEts[g(11ta)(11sb) with t,s5
6. Moreover, the evolution of the system has the followi
factorized structure:

e2 iHT5e2 igTe2 iagTt1e2 ibgTs1e2 iabgTt1s1. ~25!

If a neutron is initially prepared in stateuR↑&, the evolution
operator is explicitly expressed as

e2 iHT5t↑1r ↑t11t↓s11r ↓t1s1 , ~26!

wheret↑ , t↓ , r ↑ , andr ↓ are the transmission/reflection co
efficients of a neutron, whose spin is flipped/not flipped af
interacting with a constant magnetic fieldB, applied along
the x direction in a finite region of space~square potential,
stationary state problem!. See Fig. 2. These coefficients a
connected with the energy levels by the following relation

S t↑ t↓
r ↑ r ↓

D 5
1

4 S 1 1

1 21D S e2 iE11T e2 iE12T

e2 iE21T e2 iE22TD S 1 1

1 21D .

~27!

By specifying the values of the parametersg,a,b and the
total interaction timeT, one univocally determinest↑ , t↓ ,
r ↑ , andr ↓ . Direct physical meaning can therefore be attr
uted to the constantsg, a, andb in Eq. ~22! by comparison
with the transmission/reflection coefficients. For example
order to mimic a realistic experimental setup with given v
ues oft↑↓ , r ↑↓ , it is enough to obtain the values ofg, a,
and b from Eq. ~27! and insert them into the Hamiltonia
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~22!. The model could in principle be further improved b
making the constantg energy-dependent. We will consider
more realistic Hamiltonian in Sec. VI.

V. IDEAL CASE OF COMPLETE TRANSMISSION

In the following discussions we always assume that
initial state isuR↑&, i.e., a right-going spin-up neutron, an
consider, for definiteness, the case of total transmission
spin flipped, i.e.,ut↓u251, when no measurements are pe
formed. Of course, this has to be considered as an ideal
situation, since a spin rotation can only take place when th
is an interaction potential~proportional to the intensity of the
magnetic field! which necessarily produces reflection effec
~with the only exception of plane waves!. Stated differently,
when the spatial degrees of freedom are taken into accou
the scattering problem off a spin-flipping potential, comple
transmission is impossible to achieve: There are always
flected waves. Our model Hamiltonian~22! must therefore
be regarded as a simple caricature of the physical system
are analyzing. Wave-packet effects will be discussed in S
VI.

To obtain a total transmission with spin flipped, the ev
lution operator should have the forme2 iHT}s1, which is
equivalent to either

e2 iagTt1}t1 , e2 ibgTs1}1, e2 iabgTt1s1}t1s1 ,
~28!

or

e2 iagTt1}1, e2 ibgTs1}s1 , e2 iabgTt1s1}1. ~29!

That is,

case~ i!: cosagT5sinbgT5cosabgT50, ~30!

or

case~ ii !: sinagT5cosbgT5sinabgT50. ~31!

FIG. 2. Transmission and reflection coefficients for a neut
initially prepared in theuR↑& state.
r

th

d
re

in
e
e-

we
c.

-

~All other cases, such as total reflection with/without sp
flip can be analyzed in a similar way.! In both cases, the
evolution is readily computed:

e2 iHTuR↑&5~phase factor!3uR↓&. ~32!

The boundary conditions are such that the neutron is tra
mitted and its spin flipped with unit probability. For the e
perimental realization, see@17#. This is the situation outlined
in Fig. 1~a!.

We shall now focus on some interesting cases, which
lustrate some definite aspects of the QZE. Let us see
particular, how the evolution of the quantum state of t
neutron is modified by choosing different projectors~corre-
sponding to different ‘‘measurements’’!.

A. Direction-insensitive spin measurement

We perform now a series of measurements, in order
check whether the neutron spin is up. Let us call this type
measurement a ‘‘direction-insensitive spin measuremen
for reasons that will become clear later. Refer to Fig. 3~a!.
The projection operator corresponding to this measurem
is

E1512uR↓&^R↓u2uL↓&^L↓u5
1

2
~11s3!, ~33!

that is, the spin-down components are projected out reg
less of the direction of propagation of the neutron. In th
case, after frequent measurementsE1 performed at time in-
tervalsT/N, the evolution operator in Eq.~6! reads

VN~T!5~E1e2 iHT/NE1!N5E1~ t↑1r ↑t1!N, ~34!

where t↑;12 igT/N and r ↑;2 iagT/N for large N @see
Eq. ~26!#. Taking the limit, one obtains the following expre
sion for the QZE evolution operator defined in Eq.~8!:

n

FIG. 3. ~a! Direction-insensitive spin measurement.~b!
Direction-sensitive spin measurement.
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V~T!5 lim
N→`

VN~T!5e2 igTE1e2 iagTt1. ~35!

Interesting physical situations can now be investigat
Choose, for instance,gT5p, a521/2, b521, which be-
longs to case~i! in Eq. ~30! @so that, without measurement
the neutron is totally transmitted with its spin flipped,
shown in Eq.~32!#. When the direction-insensitive measur
ments are continuously performed, the QZE evolution
V(T)52 iE1t1 and the final state is

V~T!uR↑&52 i uL↑&, ~36!

i.e., the neutron spin is not flipped, but the neutron itself
totally reflected. This clearly shows that reflection ‘‘losses
can be very important; as a matter of fact, reflection effe
dominate, in this example. Notice that this is always an e
ample of QZE: The projection operatorE1 in Eq. ~33! pre-
ventsthe spin from flipping. The point here is, however, th
E1 is not ‘‘tailored’’ so as to prevent the wave function fro
being reflected.

B. Another particular case: Seminal model

Let us now focus on a model corresponding to case~ii ! in
Eq. ~31!. The choice of parameters, e.g.,gT5p/2, a52n,
b521, obviously fulfills these conditions for arbitrary inte
ger n. Total transmission with spin flipped occurs aga
when no measurement is performed.

When direction-insensitive spin measurements, descr
by projectionsE1, are performed at time intervalsT/N, the
QZE evolution operator in Eq.~35! becomes, in theN→`
limit, simply V1(T)52 i (21)nE1 and the final state is

V1~T!uR↑&52 i ~21!nuR↑&, ~37!

so that the ‘‘usual’’ QZE is obtained. Whenn50 this is our
seminal model@8#, reviewed in Sec. III. Obviously, the cas
n50 is not rich enough to yield information about reflectio
effects. In the following subsection the case of nonzeron
will be discussed.

C. Direction-sensitive spin measurements

We now consider a different type of spin measureme
Let the measurement be characterized by the following p
jection operator:

E2512uR↓&^R↓u, ~38!

which projects out those neutrons that are transmitted w
their spin flipped. Notice that spin-down neutrons that
reflected back are not projected out byE2: for this reason we
call this a ‘‘direction-sensitive’’ spin measurement. Refer
Fig. 3~b!. Even though the action of this projection is n
easy to implement experimentally, this example will clea
illustrate some interesting issues related to the Mis
Sudarshan theorem. Incidentally, we would like to point o
that although the projection operator~38! looks rather artifi-
cial, its experimental realization is not impossible, at leas
principle. Consider again the ISIS experiment@15,16#,
shortly mentioned after Eq.~22!: In such a case, since th
position of the neutron burst in the storage crystal is kno
.
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n

with excellent approximation at any given time, one simp
has to ‘‘switch on’’ the polarizer when the neutron bur
impinges from the left, and to ‘‘switch it off’’ when the burs
comes from right. It goes without saying that the model
consistent~and our discussion meaningful! because the free
Hamiltonian does not play any role in our description a
can be dropped from the outset.

We shall see that the action of the projectorE2 will yield
a very interesting result. For largeN, the evolution is given
by

V2,N~T!5~E2e2 iHT/NE2!N5e2 igTS 12 i
gT

N
ZD N

E2

1O~1/N!, ~39!

whereZ[E2(H/g21)E2.
The QZE evolution is given by the limit

V2~T!5 lim
N→`

V2,N~T!5e2 igTe2 igTZE2 . ~40!

To compute its effect on the initial stateuR↑&, we note that,
when acting on statesuR↑&, uL↑&, anduL↓&, which span the
‘‘survival’’ subspace, theZ operator behaves as

ZS uR↑&

uL↑&

uL↓&
D 5S 0 a ab

a 0 b

ab b 0
D S uR↑&

uL↑&

uL↓&
D . ~41!

Let us choose for definitenessb521, so that

~Z21/2!2uR↑&5u2uR↑&, ~42!

with u5A8a211/2. Thus the final state can be readily o
tained,

V2~T!uR↑&5e23igT/2F S cos~gTu!1
i

2u
sin~gTu! D uR↑&

1
ia

u
sin~gTu!~ uL↓&2uL↑&)G . ~43!

Therefore, for a continuous direction-sensitive~namely,E2)
measurement, the probability of finding the initial stateuR↑&
is not unity. Part of the wave function will be reflected, a
though the neutron would have been totally transmitted w
out measurement@see Eq.~32!# or with an ‘‘E1 measure-
ment’’ @see Eq.~37!#.

Clearly, the action of the projectorE2 yields a completely
different result from that ofE1 in Eq. ~37!. This is obvious
and easy to understand: the state~43! belongs to the sub-
space of the ‘‘survived’’ states,according to the projection
E2. Notice also that the probability loss due to the measu
ments is zero, in the limit, because the QZE evolution~40! is
unitary within the subspace of the ‘‘survived’’ states.

VI. A MORE REALISTIC MODEL

Let us now introduce a more realistic~albeit static! model.
Such a model can be shown to be derivable from a Ham



on

y

s
tron
ss
y

,

ll

3454 PRA 60MACHIDA, NAKAZATO, PASCAZIO, RAUCH, AND YU
tonian very similar to the one studied in the previous secti
by a suitable identification of parameters~see the Appendix!.
The effect of reflections in the QZE will now be tackled b

FIG. 4. Spin-up neutron moving along the1y direction with
energyE. The magnetic field points to the1x direction and is zero
in the region betweenyn8 andyn , in which the measurements wi
be made. In these field-free regions the wave functions areucn8&
before measurement anducn& after the measurement.
-

t
r
r

in
n

s

s

directly solving a stationary Schro¨dinger equation, which
will be set up as follows.

Let a neutron with energyE5k2/2m and spin up (1z
direction!, moving along the1y direction, impinge onN
regions of constant magnetic field pointing to thex direction,
among which there areN21 field-free regions. The thick-
ness of a single piece of magnetic field isa and the field-free
region has sizeb. The configuration is shown in Fig. 4. Thu
we have the one-dimensional scattering problem of a neu
off a piecewise constant magnetic field with total thickne
D5Na. The stationary Schro¨dinger equation is described b
the Hamiltonian

HZ5
py

2

2m
1mBs1V~y!, ~44!

wherem is the modulus of the neutron magnetic momentB
the strength of the magnetic field, and
V~y!5H 0 for y,0, yn8,y,yn , yN8 ,y ~n51,2, . . . ,N!,

1 for yn21,y,yn8 ~n51,2, . . . ,N!,
~45!
,

nc-
e
di-
with yn5n(a1b) and yn85yn211a, characterizes the con
figuration of the magnetic fieldB applied along thex axis.
Refer to Fig. 4. The incident state of the neutron is taken
be uc in&5eikyu↑&. Let r ↑(↓) be the reflection amplitude fo
the spin-up~spin-down! component. The wave function fo
y,0 is written as

uc0&5eikyu↑&1e2 iky@r ↑u↑&1r ↓u↓&]. ~46!

Denoting the transmission amplitudes for spin-up and sp
down ast↑ andt↓ , the outgoing wave function in the regio
y.yN8 reads

ucN&5eiky@ t↑u↑&1t↓u↓&]. ~47!

Since @s1 ,HZ#50, it is convenient to work with the basi
u6&5(u↑&6u↓&)/A2, i.e., the eigenstates ofs1 belonging to
eigenvalues61. For later use we denoter 65r ↑6r ↓ and
t65t↑6t↓ .

In the field-free region, before the pointy5mn where the
nth measurement is assumed to take place,yn8,y,mn , the
wave function is
o

-

ucn8&5 (
s56

~Rn,s8 eik(y2yn8)1Ln,s8 e2 ik(y2yn8)!us&

~n51,2, . . . ,N!. ~48!

On the other hand, in the region after thenth measurement
mn,y,yn , the wave function is

ucn&5 (
s56

~Rn,seik(y2yn)1Ln,se2 ik(y2yn)!us&

~n50,1, . . . ,N!. ~49!

The relation between the amplitudes of the wave fu
tions ucn118 & anducn& at the right- and left-hand sides of th
nth potential region is determined by the boundary con
tions at pointsyn andyn8 . In fact, we have

S Rn11,68

Ln11,68
D 5M 6S Rn,6

Ln,6
D , ~50!

where the transfer matrix is given by
M 65S cosk6a1 i coshh6sink6a 2 i sinhh6sink6a

i sinhh6sink6a cosk6a2 i coshh6sink6aD ~51!
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with k65Ak272mmB andk/k65eh6. This can also be ex
pressed in a concise way in terms of the Pauli matrices in
two-dimensional space,t1 , t2, andt3, as

M 65eh6(11t1)/2eik6at3e2h6(11t1)/2. ~52!

We clearly see that the above formula contains all the bou
ary information at pointsyn andyn8 : The first and last factors
are the kicks exerted at the boundaries of a single piec
constant magnetic field, while the central one represen
free evolution with relative energyE7mB.

In what follows, we shall incorporate the measurem
processes performed at pointsmn as some kind of boundar
conditions, connecting the primed and unprimed wave fu
tions in the field-free region.

A. Evolution without any spin measurements

We first consider the case where there is no measurem
at all. This enables us to set up the notation and rede
some known results~which will be useful for future compari-
son!. In this case the primed and unprimed wave functio
must be equalucn8&5ucn& in the field-free region. By virtue
of Eq. ~50! we obtain

S Rn11,6

Ln11,6
D 5eikbt3M 6S Rn,6

Ln,6
D . ~53!

Notice the boundary conditionsR0,651/A2 andLN,650 to-
gether with the definitions of transmission amplitudeRN,6

5eikyNt6 /A2 and reflection amplitudeL0,65r 6 /A2. After
applying the above equationN times, we obtain the follow-
ing relation:

eikyNS t6

0 D 5~@N#6eikbt3M 62@N21#6!S 1

r 6
D , ~54!

where @N#65(q6
N 2q6

2N)/(q62q6
21), with q6 ,q6

21 being
the two eigenvalues of the transfer matrixeikbt3M 6 , which
are determined by

q61q6
21

2
5coskb cosk6a2coshh6sinkb sink6a.

~55!

When there is only a single piece of magnetic field w
lengtha, i.e., N51, the transmission amplitude of a neutro
in the spin stateu6& is

ta65
e2 ika

cosk6a2 i coshh6sink6a
, ~56!

as is well known. From Eq.~54!, for an arbitraryN.1, the
transmission amplitude of the same neutron passing thro
a magnetic field with a latticelike structure as depicted
Fig. 4 can be written as

t65
e2 ikyNta6

e2 iky1@N#62@N21#6ta6

. ~57!

For a neutron in its spin-up stateu↑&, the transmission am
plitude with spin unflipped is thent↑5(t11t2)/2 and that
is

d-

of
a

t

-

nt
e

s

gh

with spin flipped ist↓5(t12t2)/2. As a result, for a spin-up
neutron to go through a constant potential of widthyN5D
5Na without reflection and with spin flipped, i.e.,ut↓u51,
one should requirek6D5n6p or

E5
p2~n1

2 1n2
2 !

4mD2
, mB5

p2~n1
2 2n2

2 !

4mD2
, ~58!

with n6 two arbitrary integers, their differencen12n2 be-
ing an odd number. In this case of complete transmiss
ut↓u51, the energyE must be larger than the potentialmB.
The rest of the analysis above, however, is valid also w
the energy is less than the potential.

Now we consider the case whereN tends to infinity and
the magnetic field possesses a periodic lattice structure.
relation ~53! still holds and in order to preserve the trans
tional symmetry along they axis @that is, to keep the Hamil-
tonian invariant under a translation of (a1b) along they
axis#, one should haveuq6u51 owing to the Bloch theorem
Equivalently, the trace of the transfer matrixeikbt3M 6 as
given in Eq.~55! should not be greater than 1. This dete
mines the energy band of the system: those energies
make the absolute value of this trace greater than 1 will
forbidden, because for these energiesuq6u or uq6u21 be-
comes larger than 1 and@N#6 tends exponentially to infinity
whenN approaches infinity. For largeN, even if there is no
periodical structure, there is always somek that makes this
trace greater than 1~e.g., kb1k6a5 lp). Therefore, the
transmission probability will tend to zero exponentially wh
N becomes large, even though the energy may be very la
relative to the potential. This shows that reflection effects
the presence of a lattice structure are very important; as
shall see, this feature is preserved even when projection
erators are interspersed in the lattice.

B. Direction-insensitive projections

We consider now the second situation, when directio
insensitive measurements are performed at pointsmn’s. By
this kind of measurement, the spin-down components
projected out and the spin-up components evolve freely
gardless whether the neutron is traveling right or left.

The boundary conditions imposed by this kind of me
surement at pointmn for the wave functionucn& anducn8& in
the field-free region are expressed as

Rn,↓5Ln,↓8 50, S Rn,↑8

Ln,↑8
D 5e2 ikbt3S Rn,↑

Ln,↑
D , ~59!

whereRn,↑5(Rn,11Rn,2)/A2 andRn,↓5(Rn,12Rn,2)/A2
for right-going components and similar expressions for
left-going and primed components. Therefore, application
Eq. ~50! N times yields

S RN,↑
LN,↑

D 5~eikbt3M1!NS R0,↑
L0,↑

D , ~60!

where the 232 transfer matrixM1 has the following matrix
elements:

~M1! i j 5M̄ i j 2DMi2DM2 j /M̄22 ~61!
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with M̄5(M 11M 2)/2 andDM5(M 12M 2)/2.
Now we take the limit as required by a ‘‘continuous

measurement, i.e.,N→`, a→0 keepingNa5D finite and
Nb→0. By the definition~51! of the transfer matrix, we
have the small-a expansions

M̄511 ikat31O~a2!, DM5zka~t22 i t3!1O~a2!
~62!

with z[mB/2E, obtaining

lim
N→`

~eikbt3M1!N5eikDt3. ~63!

Recall that t↑5e2 ikDRN,↑ is the transmission amplitude
L0,↓5r ↓ the reflection amplitude, andLN,↑50 andR0,↑51
because of the boundary conditions. After taking the lim
N→` in Eq. ~60!, we see that the transmission~survival!
probability becomes 1, i.e.,ut↑u251, for any input energy
and magnetic field. This reveals another aspect of neu
QZE: When the energy of the neutron is smaller than
potential, the transmission probability decays exponenti
when the length increases and no measurement is perfor
by contrast, when continuous direction-insensitive meas
ments are made, one can obtain a total transmission.

If we choose the energy of the neutron and the poten
as in Eq.~58!, without measurements the neutron will b
totally transmitted with its spin flipped. On the other hand
the spin-up state is measured continuously, the neutron
be totally transmitted with its spin unflipped. This is exac
the QZE in the usual sense. Our analysis enables us to
that two kinds of QZEs are taking place: One is the QZE
the right-going neutron, by which we obtain a total transm
sion of the right-going input state, and another one is for
left-going neutron, which preserves the zero amplitude of
left-going input state. This case corresponds to projectorE1
in our simplified model in Sec. V B.

C. Direction-sensitive projections

The third case we consider is the direction-sensitive m
surement. By this kind of measurement the left-going co
ponents~or the reflection parts! evolve freely, no matter
whether spin is up or down, and the right-going compone
are projected to the spin-up state. The corresponding bo
ary conditions are

Rn,↓50, Ln,65e2 ikbLn,68 . ~64!

If we apply Eq. ~50! N times, supplemented with thes
boundary conditions, the following relations among t
transmission and reflection amplitudes are obtained:

eikDS t↑
0

0
D 5~eikbS3M2!NS 1

r ↑
r ↓
D , ~65!

whereS3 is a diagonal matrixS35diag$1,21,21% and the
333 transfer matrixM2 is given by
t
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M25S M̄11 M̄12 DM12

M̄21 M̄22 DM22

DM21 DM22 M̄22

D . ~66!

In the limit of continuous measurements (N→`, a→0,
while keepingD5Na constant, andNb→0), the transfer
matrix is expanded as

M2512 ika/31 ikaZ21O~a2!, ~67!

for small a, with (z5mB/2E)

Z2[S 4/3 0 2z

0 22/3 z

z z 22/3
D , ~68!

and we have

lim
N→`

~eikbS3M2!N5e2 ikD/3eikDZ2. ~69!

Notice that the matrixZ2 satisfiesS3Z2S35Z2
† , from which

we obtain, in the above limit, the conservation of probabil

ut↑u21ur ↑u21ur ↓u251. ~70!

This shows that there are no losses caused by the contin
direction-sensitive measurements. On the other hand,
transmission amplitude with spin unflipped is explicit
given by

t↑5
e2 i4kD/3

~e2 ikDZ2!11

, ~71!

which implies that the transmission probabilityut↑u2 is in
generalnot equal to 1. To have a general impression of
behavior, we plotT↑5ut↑u2 as a function ofkD andz in Fig.
5.

Some comments are in order. There are two critical val
for z, namely 0 andzc54A3/9'0.77. When 0<z,zc , the
matrix Z2 has three real eigenvalues and the transmiss
probability will oscillate depending onkD. Whenz5zc the
transmission probability will decay according to (kD)22. In
fact, if one definesG5Z222/3, it is easy to show tha
e2 ikDG512 ikDG1(e2ikD2122ikD)G2/4, because G
satisfiesG2(G12)50. Then one can explicitly confirm tha
the element (e2 ikDG)11 includes a linearkD term, which
gives the (kD)22 behavior to the transmission probability
Finally, whenz.zc the matrixZ2 has two imaginary eigen
values and therefore the transmission probability decays
ponentially withkD. This can be seen clearly in Fig. 5~a!.
An interesting case arises when we consider 1/2,z,zc or
E,mB,8A3E/9'1.5E. Without measurements, the tran
mission probability decays exponentially when the length
the magnetic field is increased, because the input energ
smaller than the potential. When continuous measurem
are performed, however, the transmission probability will o
cillate as the length of the magnetic field increases.

As we can see in Fig. 6, although the conditions~58! for
total transmission in the absence of measurements have
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imposed, the transmission probabilityT↑ is not 1, as it would
be for the ‘‘ordinary’’ QZE. Reflections are unavoidabl
This case corresponds to the projectorE2 considered in the
simplified model.

As we have seen, there are peculiar reflection effect
the presence of projections, whenD ~total length! is varied.
This is clearly an interference effect, which can lead to
hancement of reflection ‘‘losses,’’ if the ‘‘projection’’ doe
not suppress the left component of the wave~this is what
happens forE2). This proves that reflection effects can b
come very important in experimental tests of the QZE w
neutron spin, if, roughly speaking, the total length of t
interaction region ‘‘resonates’’ with the neutron waveleng
It is interesting that such a resonance effect takes place
though the dynamical properties of the system are p
foundly modified by the projection operators, in the limit
‘‘continuous’’ measurements, leading to the QZE.

Finally, we would like to stress again that we are perfor

FIG. 5. Transmission probability with spin unflippedTup

5ut↑u2 is plotted as a function ofkD and z5z in ~a! and as a
function of B15AmmBD andkD in ~b!.
in

-

.
en
-

-

ing an analysis in terms of stationary states~i.e.,
transmission/reflection coefficients for plane waves!, while at
the same time we are analyzing a quantum Zeno phen
enon, which is essentially a time-dependent effect. This
meaningful within our approximations, where the wav
packet spread is neglected and the measurements are
formed with very high frequency. A more sophisticated a
gument in support of this view is given in the Appendix.
the present context, wave-packet effects, if taken into
count, would result in a sort of average of the effects sho
in Figs. 5 and 6~which refer to the monochromatic case!;
however, our general conclusions would be unaltered. I
worth stressing that, in neutron optics, effects due to a h
sensitivity to fluctuation phenomena~such as fluctuations o
the intensity of the magnetic field! become important at high
wave number and constitute an experimental challenge@18#.

VII. SUMMARY

We have analyzed some peculiar features of a quan
Zeno-type dynamics by discussing the noteworthy exam
of a neutron spin evolving under the action of a magne
filed in the presence of different types of measureme
~‘‘projections’’!.

The ‘‘survival probability’’ depends on our definition o
‘‘surviving,’’ i.e., on the choice of the projection operatorE.
Different E’s will yield different final states, and Misra an
Sudarshan’s theorem@2# simply makes sure that the surviva
probability is unity: the final state belongs to the subspace
the survived products.

In the physical case considered~neutron spin!, our ex-
amples clarify that the practical details of the experimen
procedure by which the neutron spin is ‘‘measured’’ are ve
important. For example, in order to avoid constructive int
ference effects, leading to~unwanted! enhancement of the
reflected neutron wave, it is important to devise the exp
mental setup in such a way that reflection effects are s
pressed.
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APPENDIX

In this appendix, we shall endeavor to establish a conn
tion between the models analyzed in Secs. IV and VI.
other words, we will examine whether the parametrization
the Hamiltonian of the form~22! is compatible with the more
realistic one considered in Eq.~44! and in such a case find
which values are to be assigned to the parametersa, b, and
g. To this end, it is enough to consider the scattering~i.e., the
transmission and reflection! process of a neutron off a singl
constant magnetic fieldB of width a. We compare the scat
tering amplitudes calculated on the basis of the simple
stract Hamiltonian~22! and of the more realistic one~44!.
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Notice that the process is treated as a dynamical one in
former case (T is regarded, roughly speaking, as the tim
necessary for the neutron to go through the potential!, while
in the latter case we treat it as a stationary problem.

Observe first that the tranfer matrixM 6 in Eq. ~51!, de-
rived for the stationary scattering process, yields the follo
ing transmission/reflection amplitudes:

R1,↑8 5
1

2 S 1

~M 1!22
1

1

~M 2!22
D ,

R1,↓8 5
1

2 S 1

~M 1!22
2

1

~M 2!22
D ,

~A1!

L0,↑52
1

2 S ~M 1!21

~M 1!22
1

~M 2!21

~M 2!22
D ,

L0,↓52
1

2 S ~M 1!21

~M 1!22
2

~M 2!21

~M 2!22
D .

It is easy to show that the relations~A1! are equivalent to

S 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

D S R1,↑8

R1,↓8

L0,↑
L0,↓

D 5S M2,1

M2,2

M1,1

M1,2

D , ~A2!

where we have introduced

M1,65
11~M 6!21

~M 6!22
, M2,65

12~M 6!21

~M 6!22
. ~A3!

It is important to realize that these quantities are just ph
factors. In fact, since

~M 6!215 i sinhh6sink6a

and

~M 6!225cosk6a2 i coshh6sink6a ~A4!

and

u16~M 6!21u25u~M 6!22u2511sinh2h6sin2 k6a,
~A5!

their absolute values are unity. Thus we can rewrite them
the form

M1,65ei (j61f6), M2,65ei (2j61f6), ~A6!

where

j65tan21~sinhh6sink6a!

and

f65tan21~coshh6tank6a!. ~A7!

Observe now that Eq.~27!, dynamically derived from the
abstract Hamiltonian~22!, is equivalent to
he

-

e

in

S t↑
t↓
r ↑
r ↓

D 5
1

4 S 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

D S e2 iE11T

e2 iE12T

e2 iE21T

e2 iE22T

D . ~A8!

The apparent similarity between the above relation and
~A2!, valid in the stationary scattering setup, induces us
look for a more definite connection between the two cas

If we slightly generalize the abstract Hamiltonian~22!,

Hdyn5g@11at11bs11gt1s1#, ~A9!

by introducing the additional parameterg, we easily find the
correspondence existing between the parameters invol
The incident wave numberk of the neutron and the configu
ration of the static potential~strengthB and widtha) deter-
mine the scattering data, which are reproducible by an
propriate choice of parametersa, b, g, and gT in the
dynamical process governed by the Hamiltonian~A9!.

For definiteness, consider the case of narrow poten
that is, a→0 or ka!1. Incidentally, notice that this is the
case of interest for the analysis of the QZE. The abovej6

andf6 are then approximated as

j6;6zka, f6;~17z!ka, ~A10!

where we setz5mB/2E5mmB/k2, as in Sec. VI. In the
limit a→0, the evolution timeT is also considered to be o
the same order ofa and the transmission and reflection c
efficients are expressed, in terms of the parametersa, b, g,
andgT, as

S t↑
t↓
r ↑
r ↓

D ;S 1

2 ibgT

2 iagT

2 iggT

D . ~A11!

In the stationary scattering problem, the same quantities
calculated to be

FIG. 6. The transmission probablity with spin unflippedT↑
5ut↑u2 as a function ofn, when the conditions~58! for total trans-
mission are satisfied withn25n andn15n19.
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S t↑
t↓
r ↑
r ↓

D 5S e2 ikaR1,↑8

e2 ikaR1,↓8

L0,↑
L0,↓

D ;S 12 ika1 i ~f11f2!/2

i ~f12f2!/2

2 i ~j11j2!/2

2 i ~j12j2!/2

D
;S 1

2 i zka

0

2 i zka

D . ~A12!

Therefore, the abstract Hamiltonian

Hdyn5mB~11t1!s1 ~A13!

can reproduce the desired scattering data when the sy
evolves under this Hamiltonian for timeT5a/v5ma/k.

It is also interesting to see how such a dynamical Ham
tonian Hdyn may reproduce the transfer matrixM 6 ~51!,
which further confirms the equivalence between the two f
malisms, stationary and dynamical, governed by the Ham
toniansHZ and Hdyn, respectively. For this purpose, con
sider first a neutron, initially prepared in stateuR6&, subject
to the dynamical evolution engendered byHdyn for time T
5ma/k. By definition, the transfer matrix connects the sc
tering products in the following way:

S R1,68

0
D 5M 6S 1

L0,6
D . ~A14!

These scattering amplitudes are given by the correspon
matrix elements of the evolution operatore2 iHT,

e2 ikaR1,68 5^R6ue2 iHTuR6&, L0,65^L6ue2 iHTuR6&,
~A15!
.
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which reduces, for smallT, to

R1,68 ;11 ika7 imBT, L0,6;7 imBT. ~A16!

On the other hand, if a neutron is prepared inuL6&, we have
the relation

S R1,68

e2 ikaD 5M 6S 0

L0,6
D , ~A17!

where

R1,68 5eika^R6ue2 iHTuL6&;7 imBT,

L0,65^L6ue2 iHTuL6&;17 imBT.
~A18!

It is now an easy task to determine the matrix elements
M 6 from the above relations~A14!–~A18!. We obtain

M 6;S 11 ika7 imBT 7 imBT

6 imBT 12 ika6 imBTD
512 i @6mB~ i t21t3!22Et3#T. ~A19!

By defining a ‘‘generator’’Gd ,

Gd5mB~ i t21t3!s122Et3 , ~A20!

the transfer matrixM 6 for finite a ~or T) can be rewritten as

M 65^6ue2 iGdTu6&, ~A21!

which is nothing but the transfer matrix~51!, obtained for the
stationary-state problem from the HamiltonianHZ .
d,

J.
,

s.
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