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Testing of quantum phase in matter-wave optics
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Various phase concepts may be treated as special cases of the maximum likelihood estimation. For example,
the discrete Fourier estimation that actually coincides with the operational phase of Noh, Fouge`res, and Mandel
is obtained for continuous Gaussian signals with phase modulated mean. Since signals in quantum theory are
discrete, a prediction different from that given by the Gaussian hypothesis should be obtained as the best fit
assuming a discrete Poissonian statistics of the signal. Although the Gaussian estimation gives a satisfactory
approximation for fitting the phase distribution of almost any state, the optimal phase estimation offers in
certain cases a measurably better performance. This has been demonstrated in a neutron-optical experiment.
@S1050-2947~99!02307-0#

PACS number~s!: 03.75.Be, 03.65.Bz, 42.50.Dv, 42.87.Bg
ri
ob
ti
d
rt
.

m
th
r

y
h
a
e

al
ow
a

e
s
he
at

Th
s

lt
en
rfe
a

n
e

op
i

it
ls
ite

en-
pti-
the
in-

ible

tum
n-
l
-
ed
ve

hod
ticu-
al
This
tion
on

to
ble

pa-
es,
as
x-

ro-

ion,
ti-
the
ase
ec-
er-

tu-
tion
I. INTRODUCTION

Physics enables us to comprehend Nature by conside
intimate relations between various effects. Any physical
servation can always be compared and analyzed in rela
with a particular internal model, providing us with some a
ditional insight into the laws of Nature. However, this effo
need not and usually does not tend to a unique solution
may happen that there are several plausible models and
given observation is not able to discriminate among the
On the other hand, it may also happen that some of
assumptions about the system need not be apparent. Ce
statements therefore pretend to be more general than the
in reality. This interplay between physics and philosop
may be demonstrated on the long standing problem of qu
tum theory—on the problem of quantum phase. Phase m
surements belong to standard detection techniques reve
the wave property of the signal. The quantum phase, h
ever, encountered theoretical difficulties when an adequ
quantum theory was constructed@1#.

There are several concepts for the description of phas
quantum theory at present. For an up to date overview
@2,3#. Some of them emphasize the theoretical aspects, ot
the experimental ones. The operational approach formul
by Noh, Fouge`res, and Mandel~NFM! @4,5# is motivated by
the correspondence principle in classical wave theory.
interference pattern is adopted for the scheme where the
and cos function of the phase shift are measured simu
neously in the eight-port homodyne detection. An equival
measurement may be realized on the Mach-Zehnder inte
ometer, provided that the measurement of an unknown ph
shift is done with and without an additionalp/2 phase
shifter. The NFM scheme is plausible whenever the sig
behaves like a classical wave since besides the principl
correspondence, no other assumption has been used.

As a particular result, the NFM scheme provides the
timum result, provided that the statistics of the signals
represented by Gaussian statistics with a phase sens
mean and a phase insensitive noise. Since realistic signa
the quantum world do not meet these rather restrictive cr
PRA 601050-2947/99/60~1!/473~7!/$15.00
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ria, phase prediction based on them is not optimum in g
eral. The difference between Gaussian estimation and o
mum treatments is caused by the statistical nature of
phenomena. This can be experimentally registered in an
terferometer with discrete Poissonian signal. Several poss
interpretations of this comparison are noteworthy.~i! This
may be considered as a testing of the operational quan
phase prediction. It quantifies how well the NFM phase co
cept fits reality.~ii ! It may be interpreted as a nontrivia
statistically motivated ‘‘quantum calibration’’ of an interfer
ometer. The visibility of interference fringes is usually us
for this purpose. However, this criterion focuses on the wa
property of the detected signal only. The proposed met
involves and evaluates the whole detection process, par
larly the ability to control phase shift in the experiment
arrangement and the statistics of the detected signal.
seems to be in accordance with the pragmatic interpreta
of quantum theory, where the results depend irreducibly
both state preparation and measurement.~iii ! In the frame-
work of wave-particle duality, the proposed treatment tries
answer the question: ‘‘Does the interfering signal resem
more discrete particles or classical continuous waves?’’~iv!
It provides an example of indirect observation of several
rameters. Particularly, by detecting the interference fring
the phase shift as well as the visibility may be determined
fluctuating variables. It provides one of the simplest e
amples of the so-called ‘‘quantum state reconstruction’’ p
cedure.

This paper is organized as follows. In the second sect
the main idea of comparing the NFM scheme with an op
mum phase prediction is developed. In the third section,
idea is generalized in order to apply the scheme for ph
measurement in matter-wave interferometry. The fourth s
tion provides the experimental realization in neutron interf
ometry of the results obtained.

II. STATISTICAL FORMULATION OF OPERATIONAL
PHASE CONCEPTS

In this section the operational phase concept will be na
rally embedded in the general scheme of quantum estima
473 ©1999 The American Physical Society
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474 PRA 60JAROSLAV ŘEHÁČEK et al.
theory @6,7#. A similar approach has already been used
@8,9#. However, since the purpose of the detection schem
to predict the phase shift after each run, the point estima
of phase corresponding to the maximum-likelihood~ML ! es-
timation will be used here@10,11#. Assume an ideal device
with four output channels enumerated by indices 3,4,5
where the actual values of intensities are registered in e
run. The values fluctuate in accordance with the statistic
continuous Gaussian signals. The mean intensities are m
lated by a phase parameteru as

Ī 3,45
I

2
~16V cosu!,

Ī 5,65
I

2
~16V sinu!, ~1!

where I and V are total input intensity and visibility of the
interference fringes, respectively. The energy is split sy
metrically between all the output ports. This device rep
sents nothing else than a classical wave picture of the o
nal eight-port homodyne detection scheme. Equivalently
also corresponds to a Mach-Zehnder interferometer, w
the measurement is done for an unknown phase shift toge
with a zero and ap/2 auxiliary phase shifter. In this case, th
data are not obtained simultaneously, but should be colle
during repeated experiments. Provided that a particular c
bination of outputsI 3 ,I 4 ,I 5 ,I 6 has been registered, the pha
shift should be inferred. In accordance with the ML approa
@12#, the sought-after phase shift is given by the value t
maximizes the likelihood function. The likelihood functio
corresponding to the detection of given data reads

L~u!5
1

s44p2
expH 1

2s2
~2@ I 32 Ī 3#22@ I 42 Ī 4#2

2@ I 52 Ī 5#22@ I 62 Ī 6#2!J . ~2!

Here the variations represents the phase insensitive noise
each channel. The sampling of intensities may serve fo
estimation of phase shift, the average number of partic
and the visibility simultaneously. A notation analogous to t
definition of phase by Noh, Fouge`res, and Mandel@5# can be
introduced as

eiuNFM5
I 32I 41 i ~ I 52I 6!

A~ I 32I 4!21~ I 52I 6!2
, ~3!

R5A~ I 32I 4!21~ I 52I 6!2. ~4!

The likelihood function may be rewritten to the form
n
is
rs

,
ch
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u-

-
-
i-
it
n
er

ed
-

h
t

f
n
s,
e

L~u,V,I !}expH 2
1

2s2 F I 2
1

2 (
i 53

6

I i G2J
3expH 2

1

4s2
@VI2R cos~u2uNFM!#2J

3expH 1

4s2
R2cos2~u2uNFM!J ~5!

and is maximized by the choice of parameters

u5uNFM , ~6!

V5minS 2R

(
i 53

6

I i

,1D , ~7!

I 5
1

2 (
i 53

6

I i . ~8!

Hence the operational phase concept of Noh, Fouge`res, and
Mandel is nothing but the ML estimation for waves repr
sented by continuous Gaussian signal with pha
independent and symmetrical noises. These rather stron
sumptions are associated with the behavior of waves
classical field theory.

Since realistic signals are discrete they meet neithe
these criteria and therefore, deviations in the optimum ph
prediction should be expected. Assume the Poissonian st
tics of an ideal laser. Together with the phase, all the par
eters which are not controlled in the experiment will be o
timally predicted as well. Denote for concreteness
detected discrete values as numbersn3 ,n4 ,n5 ,n6 . The like-
lihood function corresponding to this particular detection
a function of the parametersu,V, andN reads

L~u,V,N!}S N

2 D n31n41n51n6

e22N~12V cosu!n3

3~11V cosu!n4~12V sinu!n5~11V sinu!n6.

~9!

The ML estimation for parameters gives the optimum valu
for the phase shift, the visibility, and the mean particle nu
ber as

eiu5
1

V Fn42n3

n41n3
1 i

n62n5

n61n5
G , ~10!

V5AS n42n3

n41n3
D 2

1S n62n5

n61n5
D 2

, ~11!

N5
n31n41n51n6

2
. ~12!

These relations provide a correction of the Gaussian w
theory with respect to the discrete signals. Besides the ph
shift, the visibility of the interference fringes and the tot
energy input can be evaluated simultaneously.
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PRA 60 475TESTING OF QUANTUM PHASE IN MATTER-WAVE OPTICS
An apparent difference between relations~6!–~8! and
~10!–~12! represents the theoretical background of the p
sented treatment. Adopting the interpretation of Ref.@5#, in
both these approaches the unnormalized cos and sin f
tions of the phase shift are detected. However, the norm
izations differ in both approaches. In the former Gauss
case, the normalization is performed only once, wherea
the latter Poissonian case it is done in two steps. The cos
sin functions of phase are normalized separately with res
to the total number of particles on both the output ports a
then again among themselves. Obviously, both predicti
will coincide provided that there is almost no informatio
available in the low field limitI ,N→0. Similarly in the
strong field limit I ,N→`, where any statistics approach
the Gaussian one, the differences must disappear. Pos
deviations may appear in the intermediate regime, charac
ized approximately by conditionsI ,N'O(1). Thetest of the
difference between Eqs.~6! and (10) is proposed as con
trolled phase measurement. The phase difference may b
justed to a certain value and estimated independently u
both the methods~6! and ~10! in repeated experiments. Th
efficiency of both methods is then compared by evaluation
confidence intervals. Since any imperfections of the de
tion scheme will smoothen the differences, it is questiona
whether both schemes can be experimentally distinguis
This idea will be pursued in the following sections.

Before doing this, the statistical analysis may clarify so
subtle points of the NFM treatment, particularly then t
nature of discarded data. Obviously the data yielding
ambiguous phaseeiuNFM50/0 in Eq.~6! would provide zero
visibility for both Eqs. ~7! and ~11!. For a more detailed
analysis, the Bayes theorem may be applied as well. In
case the likelihood functions quantify the phase informat
involved in the detected data as posterior phase distribut
Gaussian statistics provides homogeneous posterior p
distribution, whereas Poissonian statistics yields the fo
peak posterior distribution of the phase shift resembling
fectively the homogeneous one. This statistical analysis s
ports the conclusion of Refs.@13–15# that the detected dat
cannot be discarded. Provided that some data are disca
the average number of particles, i.e., the average energy
responding to the phase detection, changes. Particularly,
vided that the experiment has been doneM times and a total
numberMi of particles has been detected in each run,
average number of particles is simply( i ,allMi /M . Provided
that some data appearingMd times are discarded and no
included in the evaluation the corresponding phase esti
tion is done with an average intensity loss (( i ,allMi
2( i ,discMi)/(M2Md). Obviously, the measurement wit
and without discarding is done with a different energy inp
and this difference may be substantial. For example,
explains the ambiguity of the interpretation in Ref.@16#.
When the phase of a quantum field is measured again
classical field, no data are discarded since the field is str
The relative phase of two quantum fields may then be ev
ated separately against a strong field and a difference of
such phase values provides the relative phase. However
cannot be directly compared with direct measurements
two ~weak! quantum fields against themselves, when so
data are canceled. Although both measurements have
done with the same quantum states, the average energi
-
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the corresponding phase detection may differ significantly
is not surprising that the measurement with higher aver
energy gives better~sharper! results as observed in Ref.@16#.

The analysis given here will be adopted to the case
neutron interferometry, when the number of particles can
detected and discriminated with high efficiency@17#. Highly
efficient neutron detectors then provide almost perfect n
tron number measurements. However, the interference
tern exhibits lower visibility and the splitting process is f
away from the symmetrical case. This will be taken in
account when adopting the scheme to the case of neu
interferometry.

Analogous analysis for detection of light needs oth
modification. Since the efficiency of photodetection is le
than unity, number of particles cannot be detected in suc
straightforward way. Instead, the absence or presence o
weak signal on the detector can be used for phase estima
However, we plan to deal with this separately in the futu

III. PHASE ESTIMATION IN NEUTRON
INTERFEROMETRY

Assume the following modification of the scheme dev
oped above. The output ports of an interferometer are c
sidered to be nonsymmetrical. The measurement is done
many auxiliary phase shifters. Neutron beams inside the
fect crystal neutron interferometer will be described at fi
as a classical wave. The signalsI j

o , I j
h detected at the two

output portso,h ~Fig. 1! are regarded as stochastic Gauss
intensities with phase sensitive means

Ī j
o5I o1I Vcos~u1D j !, ~13!

Ī j
h5I h2I Vcos~u1D j !,

whereu is the true phase shift between the two branches
the interferometer,I o and I h are the mean intensities of th
two interference fringes,I V stands for the modulation ampli
tude of the interference fringes~unnormalized visibility!, and
D j are the values of the auxiliary shifts

FIG. 1. Outline of the experimental setup.
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D j5
2p j

N
, j 50, . . . ,N21, NPN. ~14!

The Gaussian statistics of the detected signal yields its l
lihood function in the form

L~u!}expH 2
1

2s2 (
j 50

N21

@~ I j
o2 Ī j

o!21~ I j
h2 Ī j

h!2#J .

~15!

Introducing the complex parameterR as

R5(
j

~ I j
o2I j

h!exp~2 iD j !, ~16!

the parameters maximizing the likelihood function read

eiu5
R

uRu
, ~17!

I o5
1

N (
j

I j
o , I h5

1

N (
j

I j
h , ~18!

I V5minH uRu
N

,I o,I hJ . ~19!

The relation~19! follows from the condition of semidefinite
ness of the amplitudeI V<min$I o,I h%. Expression~17! rep-
resents a generalization of the NFM formula~6!, which may
be recovered provided that the measurement is done a
two positionsD050, D15p/2 only. Sometimes it happen
that R50 for recorded data. In this case the data are ph
insensitive, yieldingI V50, and the posterior phase distrib
tion is homogeneous.

Notice that this approach is well known in optics as pha
estimator of discrete Fourier transformation~DFT! @18#. De-
fine for a discrete signalF j its DFT as

X~m!5
1

N (
j 50

N21

F jexp~2 i2p jm/N!. ~20!

As follows from the comparison of relations~20!, ~17!, and
~19!, the visibility and phase of the generalized NFM tre
ment correspond to the modulus and argument of the c
plex coefficientX(1)[R,

u5arg$X~1!%, I V5uX~1!u. ~21!

The discrete signal corresponds to the difference of re
tered discrete scans of interference fringes created by ch
ing the auxiliary shift,

F j5I j
o2I j

h . ~22!

The frequencym of the interference fringe in Eq.~21! is one
since the fringe has been scanned only once, Eq.~14!.

The generalization NFM scheme given by phase esti
tion ~17! is not optimal provided that the detected signal
Poissonian. In this case the likelihood function reads
e-

the

se

e

-
-

s-
g-

a-

L~u!} )
j 50

N21

)
a5o,h

~ Ī j
a!nj

a
e2 Ī j

a
, ~23!

where the mean output intensitiesĪ j
a are given by Eq.~13!

andnj
a represent the number of detected neutrons. Unfo

nately, the explicit relations analogous to Eqs.~10!–~12!
cannot be found analytically. The analysis must therefore
carried out numerically. However, various limiting an
asymptotic cases can be discussed analytically as show
@18#. DFT estimation is the best estimation available p
vided a large number of particles is detected. No differen
between Gaussian and Poissonian cases can therefore b
pected in the regime of high intensitiesI o ,I h@1. In the op-
posite case of low output intensitiesI o ,I h!1, the most fre-
quent samples are ‘‘no detection at all’’ and ‘‘one neutr
detected’’ in some beam at some value of the auxiliary sh
Direct substitution of these samples in both the Poisson
and the Gaussian likelihood functions tends to the predic
with undefined phase withI V50. Similarly to the previous
case of strong field, where both methods are equally good
the low field limit both methods are equally bad. Similarly
the limit of low visibility I V!min$I o ,I h%, the results ob-
tained with the use of the true Poissonian statistics are vi
ally identical to those yielded by the DFT@18#. No difference
between the wave and quantum approach can be obse
here. The difference between the predictions for the quan
and wave phase estimation in a realistic experiment sho
become significant for visibility close to unity and avera
number of detected particle of order one.

IV. EXPERIMENT

Our experiments were performed at the neutron inter
ometry setup at the 250 kW TRIGA reactor in Vienna. The
mal neutrons which are emitted from the moderator of
reactor behave like statistically independent particles. The
fore the correct description of the counting statistics of
input beam and both output beams is a Poissonian distr
tion @17#. Figure 1 shows the experimental arrangement. T
input beam is split by the perfect crystal interferometer in
two partially coherent beams. One of the beams pass
phase plate~gray shaded region! which introduces an un-
known phase shift which has to be estimated from the
perimental data. Then both beams are passing an auxi
phase shifter which modulates the output intensities at
detectorso andh. At the two output ports BF3 gas detecto
enable single neutron counting with nearly 100% efficien
The very low intensities at the outgoing beams~1 neutron
per second! allow a comfortable electronic separation of th
detector pulses. The mean number of collected neutrons
linear function of the counting time which enables an adju
ment of the desired intensities by proper selection of
counting time. In neutron interferometry an auxiliary pha
shifter can be rotated in several discrete positions denote
indicesj in the intensity equation. Unique phase estimation
achieved even when other parameters of the setup~e.g., the
mean intensities, the visibility, and the frequency of the
cillation pattern! are unknown. In our experiment eight equ
distant positions of the phase shifter were used for genera
of the intensity modulation.
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FIG. 2. ~a! Detected interference fringeĪ j
o as the mean of 690 single measurements (s) and 68.3% error bars for numerical value

I o52.21 neutrons,I h56.33 neutrons,I V51.03 neutrons, andu54.83 rad. A typical single detectionI j
o denoted by symbols~j! is shown

as an example.~b! Experimentally obtainedDE(Du) denoted by symbols~j! are compared with theoretical prediction denoted by cor
sponding mean values (s) and error bars for 690 samples.
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To compare the efficiency of the NFM phase predictio
with the optimum Poissonian ML estimation the followin
procedure has been chosen. Each sample of data cons
of the number of neutrons counted in beamso,h in eight
positionsD0 , . . . ,D7, Eq. ~14!, was processed using NFM
formula~17! resulting in phase predictionuNFM . The relative
frequency f g(Du) characterizes how many times the es
mated phaseuNFM falls into the chosen phase windowDu
~confidence interval! around the true phase shift. The sam
procedure was repeated for phase prediction based on
merical maximization of the Poissonian likelihood functio
~23! @9,8# yielding the relative frequency of ‘‘hits’’f p(Du).
The quantity

DE~Du!5 f p~Du!2 f g~Du! ~24!

represents the difference in efficiency of the quantum
wave phase estimations for the given phase windowDu. If
this quantity is found to be positive, it means that the M
estimation is better than its Gaussian counterpart~simply be-
cause more estimates of the phase shift fall into the cho
angular window if the former procedure is followed!. If, on
the other hand, this quantity is not different from zero~in a
statistically significant way! the two data evaluation proce
dures are statistically equivalent and no discrimination
possible.

The result of the data analysis is shown in Figs. 2–4. E
figure consists of two different parts. The left panels sh
the detected~or simulated! data. The right panels then pro
vide the interpretation of the corresponding data. Analysis
the experimental data is summarized in Fig. 2. In addition
experiment, two Monte Carlo simulations have been p
formed simulating experimental conditions under which
difference between Poissonian and Gaussian prediction
negligible. The result of the simulations is shown in Fig.
Finally, the possibility to estimate several parameters sim
taneously is illustrated in Fig. 4. The differenceDE was
calculated using 690 experimental samples measured in
periment with average beam intensitiesI o52.2 neutrons,I h

56.3 neutrons, and visibility normalized with respect to t
o beam being about 47%. As already explained in Sec
s

ting

u-

d

en

s

h

f
o
r-
e
is

.
l-

x-

I,

this represents a critical situation, because even though t
are fewer than 10 counts in each experimental run, on
nonetheless trying to get an estimation of the value of
phase shift. The experimental values ofDE are depicted in
Fig. 2~b! by full squares. For comparison, a theoretical p
diction corresponding to the same values of parameters a
the real experiment were simulated in the Monte Carlo
periment using 40 000 samples. Open circles in Fig. 2~b!
show the corresponding mean values of the difference. H
ever, since the experimental data are limited due to the
perimental conditions and available time to the relative
small number of 690 samples, the real data are fluctua
around the mean values. Statistical significance of the exp
mental results is demonstrated again using Monte C
simulations. Another 20 simulations have been done, eac
them with 690 samples. The variance of the ensemble$DEj%
is shown in Fig. 2~b! as ‘‘error bars’’ for each phase window

A significant difference between the effectiveness of cl
sical and optimum treatments is apparent in Fig. 2. The
timum estimation provides an improvement in fitting of th
phase shift and the difference is beyond the estimation er
approximately 2.5 standard deviations in the optimum ca
Obviously, no better performance of the ML method can
expected for large values of the phase windowDu ~any sen-
sible statistical method would yield rather reasonable
sults!. Likewise, no real improvement over the Gaussian
timate can be expected whenDu is close to zero, because to
few data would then be accepted. The existence of a ‘‘b
choice’’ for the phase window is therefore in itself an inte
esting feature of the method we propose. However, no
that the generalized NFM scheme~or equivalently DFT
phase estimator! fits the phase shift quite well. The mos
pronounced difference is about 6% in the window of wid
about 1.256 rad. For example, it means that the Gaus
fitting procedure hits this window 442 times, whereas t
Poissonian one hits it 484 times from a total number of 6
events. The experimental difference in the score is there
42, i.e., 6% in favor of the latter method. This difference
a random number and theory predicts its value as 41612.
The observed difference is therefore not large, yet stat
cally significant.
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FIG. 3. ~a! Interference fringeĪ j
o (s) and error bars corresponding to computer simulation of the experiment with numerical v

I o52.21 neutrons,I h56.33 neutrons,I V50.258 neutrons, andu54.83 rad. A typical sample denoted by symbols~j! is shown as an
example.~b! DE(Du) corresponding to the same computer simulation is evaluated. Mean values (s) and error bars corresponding to 69
samples are given. The interference pattern can be recognized but the Gaussian and Poissonian statistics cannot be distinguish
phase observation. The interpretation of panels~c! and ~d! is the same as for~a! and ~b!, respectively. Numerical values areI o50.551
neutrons,I h51.582 neutrons,I V50.258 neutrons, andu54.83 rad.

FIG. 4. ~a! Interference fringeĪ j
o (s) and error bars corresponding to a computer simulation of the experiment with numerical v

I o522.1 neutrons,I h563.3 neutrons,I V510.3 neutrons, andu54.83 rad. A typical sample is denoted by symbols~j! as an example.~b!
Histogram of estimated visibilities normalized with respect to theo beam obtained in the same simulation. The true normalized visibilit
46.7%.
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In most cases, however, the difference between the
crete and continuous nature of the signal is subtle enoug
be hidden in various imperfections of the experimental se
For illustration, a computer simulation of two experimen
setups has been performed similarly to the above-mentio
case. A data analysis of the Monte Carlo experiment w
visibility as small as 1/4 of the visibility in Fig. 2 is shown i
Fig. 3~b!. No statistically significant discrimination betwee
the Gaussian and Poissonian methods is possible in this
The result of a simulation of an experiment with four-tim
less energy of interfering beams is shown in Fig. 3~d!. Also
in this case, no discrimination is possible. In spite of t
apparent interference patterns the classical description
phase can be fully justified both in the cases of low visibil
and low intensity. Particularly the latter case may appea
counterintuitive, since measurement with a small numbe
particles is traditionally considered as a domain of quant
physics.

Unlike the case of phase, the ML estimation of the v
ibility is strongly biased in the case of small intensitie
There is a simple explanation for this behavior. In the lo
intensity regime the character of individual detected samp
is determined rather by fluctuations than by actual para
eters of the experimental setup, as seen in Fig. 3~c!, for ex-
ample. The ML estimation of the visibility fits these fluctu
tions and, as a consequence, the estimation is biased. T
particularly obvious in the caseI V50, when interference
pattern disappears, but ML fitting yields a visibility of abo
40% due to fluctuations. Nevertheless, except for the cas
very low intensities, the estimated visibility is meaningful,
demonstrated in Fig. 4, where a histogram of the estima
ry
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visibilities normalized with respect to theo beam is shown as
result of a simulation with ten times stronger output bea
compared to the output beams used in the experiment.
apparent that the estimated visibilities are distributed w
Gaussian-like shape around the value of the true visibilit

V. CONCLUSION

A statistically motivated analysis of neutron interferom
etry provides a correction to the previously introduced o
erational quantum phase concept. Since the standard
proach has been universally derived, without considering
statistics of the interfering fields, it cannot be optimal. Th
additional knowledge may be used for improved predictio
and testing. This scheme therefore provides a statistic
motivated evaluation of the whole interferometric syste
Instead of the question of the wave theory: ‘‘How precise
can the interference fringes be distinguished?’’ a more
phisticated question is here formulated as ‘‘What statisti
properties can be recognized from an interference patter
In particular, the experiment performed with neutrons de
onstrated a measurable improvement of phase fitting for
crete Poissonian signals.

ACKNOWLEDGMENTS

We acknowledge support by the TMR Network ERB FM
RXCT 96-0057 ‘‘Perfect Crystal Neutron Optics’’ of the Eu
ropean Union, by Grant No. VS96028 of the Czech Minis
of Education, and by the East-West program of the Austr
Academy of Science.
. A

s

ys.
@1# A. Royer, Phys. Rev. A53, 70 ~1996!.
@2# D. T. Pegg and S. M. Barnett, J. Mod. Opt.44, 225 ~1997!.
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