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Abstract
We study a lattice gauge theory in Wilson’s Hamiltonian formalism. In view
of the realization of a quantum simulator for QED in one dimension, we
introduce an Abelian model with a discrete gauge symmetry n! , approx-
imating the U(1) theory for large n. We analyze the role of the finiteness of the
gauge fields and the properties of physical states, that satisfy a generalized
Gauss’s law. We finally discuss a possible implementation strategy, that
involves an effective dynamics in physical space.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Recent developments in low-temperature physics and atomic control techniques are providing
the basic tools for setting up quantum simulators [1–4]. The experimental feasibility of a
quantum simulator will open the way to a more comprehensive understanding of complex
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systems and fundamental physics. An appealing application is the simulation of lattice gauge
theories [5–10]. The discretization of high-energy physics theories on lattices was initially
motivated by the possibility of simulating them by classical computation. However, the
complex nature of gauge theories represents a severe obstruction that can be overcome
through a quantum simulation. Atoms on a lattice [11–21] provide a natural toolbox with
which to perform this task.

In this article we construct a lattice model which simulates an Abelian gauge theory. The
model will be characterized by the interaction between an Abelian gauge (electromagnetic)
field and a fermionic matter field, as in quantum electrodynamics (QED). We shall restrict our
analysis to the one-dimensional case. As in the consolidated quantum link model (QLM) [22–
25], our system will be an approximation to QED in which the electric field can take a finite
number of values. We will eventually discuss the possibility of implementing the model on a
cold atomic simulator. This task involves first the identification of the degrees of freedom of
the simulator with those of the model, and then the correct implementation of the dynamics.

2. Lattice QED

The dynamics of the continuum-space QED in 1 1+ dimensions (Schwinger model) has its
lattice counterpart in the Hamiltonian [6, 25, 26]
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with x labelling the sites of a one-dimensional lattice. Fermionic matter is represented by the
one-component spinor field operators xψ , defined on each site, which obey the canonical
anticommutation relations { , }x x x x

†
,ψ ψ δ=′ ′, { , } 0x xψ ψ =′ . The parameter m is the fermion

mass, while the staggered fermions with parity factor ( 1)x− are introduced in order to avoid
the fermion-doubling problem in the discretization of the theory [5, 6, 8, 9]: the positive and
negative-energy components of the Dirac spinor are encoded respectively in the even and odd
lattice sites. In a simplified model, spinless particles are considered, with the spinor xψ
reducing to a single-component field. The gauge fields are instead defined on the links
x x( , 1)+ of the lattice. In the canonical gauge, which is the most convenient choice to
develop a lattice gauge theory, the electric field E and the vector potential A are conjugated
variables with canonical commutation relations (CR) E A[ , ] ix x x x x x, 1 , 1 ,δ=+ ′ ′+ ′ [27]. Since the
unitary operators U (comparators [28]) in the hopping terms of equation (1) are locally related
to the vector potential by exponentiation, U ex x

A
, 1

i x x, 1=+ − + , they satisfy

E U U, . (2)x x x x x x x x, 1 , 1 , , 1⎡⎣ ⎤⎦ δ=+ ′ ′+ ′ +

The presence of the free electric field energy, with coupling constant g2, thus yields a
nontrivial dynamics for the comparators. Notice the absence of magnetic contributions to the
Hamiltonian, a consequence of the one-dimensional nature of the system.

The terms Ux x x x
†

, 1 1ψ ψ+ + in equation (1) describe site hopping of fermions, related to a
shift in the electric field. These contributions come from the discretization and integration on
the lattice cells of the minimal-coupling terms x D xi ( ) ( )j

j
† 0ψ γ γ ψ− , with γ μ the Dirac

matrices, and D A xi ( )j j j= ∂ + the covariant derivatives [8, 28]. The minimal coupling
ensures the symmetry of the Hamiltonian under local U(1) transformations. Given a real
function on the lattice, xα , local phase transformations ex x

i xψ ψ→ α and Ux x, 1→+
Ue ex x

i
, 1

ix x 1α α+ − + of the field operators leave the Hamiltonian (1) invariant. Due to the (anti)
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commutation properties of the fields, the phase transformation on any operator F can be
implemented through the application of

( )[ ]
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The gauge transformation acts trivially on the local-U(1) invariant Hamiltonian (1). For a
generic operator F, the invariance property is equivalent to the CR F G[ , ] 0x = for all sites.
The choice of the canonical gauge has the disadvantage that Gauss’s law cannot be
implemented at the operator level [25, 27]. Thus, not all the states in the total Hilbert space 
of the system are physically acceptable. The invariance condition of a state ϕ∣ 〉 under any
gauge transformation e

x
Gi x x∏ ϕ ϕ∣ 〉 = ∣ 〉α− selects the Hilbert subspace

{ }G x, 0 for all sites , (4)G x ϕ ϕ= ∈ =
where, as can be deduced from equation (3), the charge x x

†ψ ψ and the divergence of the
electric field E Ex x x x, 1 1,−+ − are correctly related. The term multiple of the identity appearing
in Gx ensures that the vacuum state with vanishing electric field and all the negative-mass
sites occupied (the Dirac sea) is in the gauge-invariant subspace G .

3. Finite link spaces: a Zn model.

In Wilson’s original formulation of lattice gauge theories [7], the gauge operators on links act
on infinite-dimensional Hilbert spaces, and both the electric field and the vector potential have
continuous and unbounded spectra. A problem arises in quantum simulators, when one has to
match the (infinite dimensional) link with an experimentally feasible and controllable system,
with a finite number of levels. Two approaches are possible. The first one preserves for all
dimensions the structure of the Hamiltonian (1), including the coupling of the matter fields
with a unitary gauge operator. The second approach, which has been followed in the for-
mulation of the QLM [22], consists of preserving the CR between field operators, equation (2)
in particular. Since in quantum mechanics one is used to thinking in terms of commutators,
the latter approach has so far appeared more natural. Unfortunately, this procedure focuses on
the invariance with respect to the U(1) group of local transformations, at the expenses of the
structure of the hopping term, which no longer involves a unitary comparator (minimal
coupling prescription). We shall rather insist on the unitarity of the comparator thereby
obtaining a bona fide lattice gauge theory for any dimension of the link Hilbert space. Let us
first observe that a gauge transformation (equation (3)) acts on the comparator
U ex x

A
, 1

i x x, 1=+ − + as

( ) ( ) ( )U U Ue e e . (5)x x
E

x x
E

x x, 1
i

, 1
i i

, 1x x x x x x x x x x1 , 1 1 , 1 1→ =α α α α α α+ − + − − − ++ + + + +

This result is indeed a special case of a general property of operators in the Weyl group
generated by the conjugated operators A and E on a link (indices will be omitted for clarity)
[29, 30]. Indeed, the electric field and the vector potential are the generators of the two-
parameter projective unitary (Weyl) group { }e E Ai( )

, "

ξ η
ξ η

−
∈

. Using the canonical CR

E A[ , ] i= for the generators, the following relation holds for any ξ and η

e e e e e , (6)E A E Ai i i i i=ξ η ξ ηξ η− − −

which particularizes to equation (5) for 1η = and x x 1ξ α α= − + .
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In a finite-dimensional Hilbert space, the role of generators loses its meaning. None-
theless, we can define a set of unitary operators, the (discrete) Schwinger–Weyl group, that
satisfy relation (6). Notice that this entails a change of paradigm. We are abandoning an
approach in terms of the algebra of generators in favor of an alternative approach in terms of
its group, enabling us to explore the global features of the topology. This concept is elabo-
rated in the appendix. Observe that the operator e Aiη− acts as a translation of the electric field,
since E Ee eA Ai i η= +η η− . A similar role is played by the elements of the Weyl group with

0ξ = with respect to A.
Let us now consider an n-dimensional Hilbert space and choose an orthonormal basis

v{ }k k n1∣ 〉 ⩽ ⩽ , which will be called the electric field basis, and define a unitary operator U that
performs a cyclic permutation of the basis states:

U v v k n U v vfor , . (7)k k n1 1= < =+

We will call the orthonormal eigenbasis of U the vector potential basis. The operator V
conjugated to U is diagonal in the electric field basis, with V v vek

k n
k

i2∣ 〉 = ∣ 〉π− , and it
cyclically permutes the elements of the vector potential basis. Since U Vn n #= = , the sets
U{ }k k n1⩽ ⩽ and V{ }k k n1⩽ ⩽ are unitary representations of the group n! of integers modulo n. The
set of all the products between U and V and their integer power constitutes the Schwinger–Weyl
group [29–31]. The CR between the elements of this group yield the relation

V U V U k ℓe with , . (8)k ℓ k kℓ ℓi n2 != ∈− π

The multiplication law (equation (8)) satisfied by the n! operators is the discrete form of
(equation (6)), valid for U(1) operators.

Once the correspondencesU ex x
A

, 1
i x x, 1↔+ − + and V ex x

E
, 1

i x x, 1↔+ − + has been set up for all
links, we can construct an Abelian theory which represents an approximation to the lattice
QED Hamiltonian equation (1) with a local n! invariance [32, 33]. One of the earliest
examples of a pure gauge model with a n! invariance, used to approximate a U(1) theory in
the n → ∞ limit, was given in [34]. The dynamics of the new model is determined by the
following variant of the Hamiltonian (1)

( ) ( )H t U m
g

f VH. c. ( 1)
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, (9)n
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x x x x
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x
x x
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x x

†
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†
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, 1∑ ∑ ∑ψ ψ ψ ψ= − + + − ++ + +

where f (V) is a suitable Hermitian operator, diagonal in the electric field basis, which
represents the discretized free-field electromagnetic Hamiltonian. Unlike in the QLM, the
ladder operators U permute the electric field basis states on a circle, and transitions between
neighboring states all occur with the same amplitude. These features are a consequence of the
request that the minimal-coupling structure in equation (1) is preserved in its finite-
dimensional link counterpart. The function f (V) is so far arbitrary. We shall introduce a
function f (V) that, like E2 in equation (1), has a single minimum. A simple choice is

( )( ) ( )f V V V
1
4

. (10)x x x x x x, 1 , 1 , 1
†# #= − −+ + +

Since the eigenvalues of V are v ek
k ni2= π− , the operator (10) has eigenvalues

S k( ) (sin )x x
k

n, 1
2x x, 1= π

+
+ . For the low-energy states around the minimum at k = 0, the

spectrum of f (V) is quadratic like the energy E2 associated to the electric field in the original
model. See figure 1. We remark that the choice of a function for the electric field energy does
not affect the discretization of the gauge theory, as long as it is characterized by a single
minimum. The energy term (equation (10)) is characterized by a nondegenerate ground state.
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Another interesting possibility is obtained by the replacement V Ve ni→ π− , yielding two
degenerate minima at k 1= − and k = 0, which could be of interest for studying the effects of
terms that break the chiral symmetry of the gauge field [12, 35, 36]. As expected, in the link
discretization process the U(1) gauge symmetry of the original theory becomes a n! symmetry.
Indeed, due to condition (8), the Hamiltonian Hn is invariant under the transformation

( ) ( )H T H T , (11)n
x

x n
y

y
† x y∏ ∏→ ν ν

where xν is an arbitrary integer-valued function on the lattice, and

( )T V Ve , (12)x x x x x, 1 1,
†n x x

x2 i † ( 1) 1
2= ψ ψ +

+ −
π − −

with T( )x n #= , represents the discretized analogue in the Schwinger–Weyl theory of e Gi x (see
equation (3)), obtained by the correspondence Ve Ei →− . Due to the arbitrariness of xν , the
gauge-invariance condition is equivalent to

[ ]H T x, 0, . (13)n x = ∀
In the n! theory, the Hilbert subspace of physical states is determined by a generalized
Gauss’s law:

{ }T x, for all sites . (14)T x ϕ ϕ ϕ= ∈ =
In the reference basis { }n v,x x x, 1∣ 〉+ , determined by the eigenvalues of Vx x, 1+ and of x x

†ψ ψ ,
namely the occupation numbers n {0, 1}x ∈ , the gauge invariance request translates into a
condition on the eigenvalues. Since each Tx acts nontrivially on site x and the adjacent links,
the physical subspace (equation (14)) is spanned by the reference basis states satisfying

( )v v xe 1, . (15)n
x x x x, 1 1,

*n x
x2 i ( 1) 1
2 = ∀+

+ −
π − −

If an even site with ( 1) 1x− = is empty, the eigenvalues of V in neighboring links must be
equal, while if it is occupied, they will be related by v vex x

n
x x, 1

2 i
1,= π+ − − . On the other hand,

in odd sites with ( 1) 1x− = − , the eigenvalues of V are equal if the site is occupied, while they
are related by v vex x

n
x x, 1

2 i
1,= π+ − otherwise. This is in agreement with Dirac’s picture in

which the absence of a particle in a negative-energy site is equivalent to the presence of an
antiparticle. We can represent these situations by visualizing the eigenstates of each V as n

Figure 1. Spectrum S k( )x x, 1+ of the operator f V( )x x, 1+ defined in equation (10). The
dashed (red) line represents the quadratic approximation of the spectrum close to its
minimum at k = 0.
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points placed at an angular distance of n2π on a circle. Figure 2 displays the state of an
occupied even site. The action of the operator Ux x, 1+ (U )x x, 1

†
+ induces a counterclockwise

(clockwise) jump of the eigenstate of V to a neighboring state on the circle. The correlation
between the jump in the link eigenstate and the charge displacement in the terms
Ux x x x

†
, 1 1ψ ψ+ + (and conjugates) keeps the system in the physical subspace T .
Although the approximation of Wilson’s model with a n! lattice gauge theory improves

with increasing n, interesting phenomenology emerges also at small link dimension: the 3!
theory is already a good test bed for the analysis of electric flux string breaking [12, 37].
Moreover, n! theories are relevant per se, being related to the problem of confinement in
QCD [33].

Let us finally remark that an extension to higher dimensional lattices would involve a
plaquette term in the Hamiltonian with a product of four U matrices [25]. The n! theory can
be generalized by a proper modification of Gauss’s law, which takes into account all the terms
in the divergence of the electric field.

4. Implementation strategy

The implementation of the Hamiltonian (9) is a difficult task due to the presence of the
correlated hopping terms Ux x x x

†
, 1 1ψ ψ+ + , describing elementary processes in which the hop-

ping x x 1→ + of a fermion to a nearest-neighboring site is always associated with an
electric-field change on the link x x( , 1)+ between the two sites. Recent results indicate that
it is possible to engineer a simpler Hamiltonian, and then obtain the gauge theory by imposing
the gauge-invariance constraint(s) by assigning an energy penalty to the non-gauge-invariant
subspace [12, 38] or by implementing Zeno constraints [21, 39–42]. We shall follow the first
path, and induce the correlated hopping in equation (9) through a second-order effective
gauge-invariant Hamiltonian.

In view of implementing a Hermitian term in the Hamiltonian, it is more convenient to
express the local gauge-invariance condition Tx ϕ ϕ∣ 〉 = ∣ 〉 as

Figure 2. The state of two links (large circles) neighboring an even site (central full dot,
p ( 1) 1x= − = ). In this example, the site is occupied. A full dot on the circle represents
the occupied eigenstate of V, while the empty dots are the other eigenstates. Observe
that unitarity entails probability conservation: the full dot never leaves the circle under
equation (7).
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( )( )T T0, 1 1 , (16)x x x x
†Γ ϕ Γ= = − −

so that the physical space is the kernel of the positive operator

. (17)
x

x∑Γ Γ=

The dynamical conservation of the gauge condition for all sites can be enforced by adding a
large term proportional to Γ to the Hamiltonian. Notice that the constraint is diagonal in the
reference basis { }n v,x x x, 1∣ 〉+ .

Let us consider a Hamiltonian that involves uncorrelated hopping of fermions between
nearest-neighbor sites and transitions, with equal amplitudes, between neighbor link states on
a circle:

( ) ( )H t w U U H˜ ˜ . (18)
x

x x x x
x

x x x x d(0)
†

1 1
†

, 1 , 1
†∑ ∑ψ ψ ψ ψ= − + − + ++ + + +

The part Hd includes all the terms that are diagonal in the reference basis, such as the fermion
mass term m ( 1)

x
x

x x
†∑ ψ ψ− , the gauge field energy g f V( /2) ( )n x x x

2
, 1∑ + , and possibly proper

counterterms.
The fermion hopping terms in equation (18) emerge naturally in condensed matter

physics when a tight-binding approximation is assumed, in which only the lowest band of the
lattice is energetically accessible. The matter field can be represented by a fermionic atomic
species: the operator x

†ψ creates an atom in the fundamental Wannier function centered on the
lattice site x [43]. Tunneling between neighboring sites provides the mechanism for the
hopping processes x x

†
1ψ ψ + . The staggered structure is obtained by modulating the depth of the

lattice wells [12]. A physical implementation of the action of the operators U on links is less
obvious, since it is first of all necessary to identify a proper system in which transitions
between adjacent levels on a circle occur with the same amplitude (see figure 2). A possible
implementation tool is represented by a longitudinal array of transverse ring-shaped lattices
[44], with their axes aligned with x, each one representing a link and confining a single boson

Figure 3. Scheme of the physical implementation of the model. The fermions are
confined in longitudinal lattice sites (light (red) spots), while the links are represented
by ring-shaped transverse lattices, each one hosting one boson or fermion. The link
particle is tightly confined in the longitudinal direction, while it can hop between
nearest-neighbor sites (dark (blue) spots) on each ring lattice.
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or fermion (the statistics being immaterial, since each ring contains one particle). The system
is represented in figure 3. In the tight-binding regime, the fundamental Wannier states,
centered on ring lattice sites, can be identified with the link reference basis states vx x, 1∣ 〉+ .
Link particles are associated with the field operator c i x x( ) , 1+ , with i n1 ,...,= the site index.
Hopping between neighboring sites on the link yields the processes

U c c U c c, , (19)x x
i

n

i x x i x x x x
i

n

i x x i x x, 1
1

( 1) , 1
†

( ) , 1 , 1
†

1
( ) , 1
†

( 1) , 1∑ ∑≔ ≔+
=

+ + + +
=

+ + +

with c cn( 1) (1)≡+ . Transition between different rings are instead forbidden by a large energy
barrier. Thus, the system and the hopping mechanism provide both the circular structure and
the equality of transition amplitudes. Other possible implementations could involve a
coupling between the internal levels of an atom confined on the link. However, in this case the
unitary properties of transitions do not emerge by symmetry, and would require a fine tuning
of the transition amplitudes [45].

While the term Hd does not couple orthogonal eigenspaces of xΓ , each nondiagonal term
in equation (18) maps a state ϕ∣ 〉 of the physical space kerT Γ= into another eigenstate ϕ∣ ′〉
of each xΓ such that

2 , (20)nΓ ϕ γ ϕ′ = ′

where n2(1 cos(2 ))nγ π= − is the first excited eigenvalue of xΓ , and the factor 2 is related to
the fact that each fermion hopping or Rabi transition on a link affects the eigenvalue of xΓ in
two neighboring sites. The implementation strategy consists in adding to H(0) a term which
induces a large energy cost for going out of the physical space, thus obtaining

H H u . (21)n(1) (0)
1γ Γ= + −

If u is much larger than the parameters appearing in H(0), the evolution of an initial state in the
physical subspace T is approximately given by the effective Hamiltonian

( )H PH P PH Q u QH P, (22)neff (0) (0)
1 1

(0)γ Γ= − − −

with P the projection operator on T and Q P#= − . Using the fact that PH P PH Pd(0) = ,
and observing that H(0) couples T only with the eigenspace of Γ belonging to 2 nγ ,
equation (22) simplifies to

H PH P u PH QH P(2 ) . (23)deff
1

(0) (0)= − −

A straightforward computation of the second term yields, up to immaterial constants, the final
result

( ) ( )H P H
tw
u

U
t
u

n n P
˜ ˜

H. c.
˜

1 , (24)d
x

x x x x
x

x xeff
†

, 1 1

2

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∑ ∑ψ ψ= − + + −+ + +

in which the correlated hopping terms in equation (9) appear. The counterterms in Hd can be
tuned to cancel the undesired (though gauge-invariant) contribution in equation (24). Despite
the necessity to couple each site with the neighboring links through xΓ , this strategy can be
more convenient than a direct implementation of equation (9), since the couplings between
sites and links are all diagonal in the reference basis. It should be also noted that the operator
Γ can be replaced by any positive operator whose kernel is T .
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5. Conclusions and outlook

We have discussed a lattice gauge model with a discrete n! Abelian symmetry. The model
represents an approximation to Wilson’s lattice QED, that improves as the dimension n of the
link Hilbert space increases. The obstacles to an experimental implementation of the model
can be overcome through the use of effective dynamics. Further research will be devoted to
two main avenues. The first one is the identification of an atomic or condensed-matter system
which is suitable for an experimental implementation. The second is the application of the
techniques developed in this letter to non-Abelian gauge theories. Moreover, we shall scru-
tinize the convergence of the n! models towards U(1), also in comparison with the QLM, and
analyze in detail the phenomenology of the model, including chiral symmetry breaking and
confinement.
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Appendix A. Weyl group representation in infinite dimensions

Consider two Hermitian operators A and E with eigenvalue equations

E A, , (A.1)ϵ ϵ ϵ α α α= =
and satisfying the canonical commutation relations

E A[ , ] i . (A.2)#=
Observe that the above commutation relations make sense in an infinite-dimensional space.
Two operators satisfying Heisenberg’s commutation relations generate a representation of the
Weyl group. We are primarily interested in the unitary operators

( )( ) e , e , (A.3)A Ei i η ξ≔ ≔η ξ− −

with , "ξ η ∈ , which act on the eigenstates (A.1) as spectral translations (in opposite
directions):

( ) , ( ) . (A.4) η ϵ ϵ η ξ α α ξ= + = −
Using the exponential form of the unitary operators (A.3), the commutation relations
equation (A.1) and the Baker–Campbell–Haussdorf formula in the form e e e e eR S S R R S[ , ]= ,
valid if R S[ , ] is a multiple of the identity, one obtains the property

( ) ( ) e ( ) ( ). (A.5)i   η ξ ξ η= ηξ

The above result expresses the noncommutativity of E and A at the level of the Weyl group.
The derivative of equation (A.5) with respect to ξ at ( , ) (0, 1)ξ η = yields

E U U[ , ] , (A.6)=
with U (1)≔ , which is equation (2) of the letter. Notice that by taking the derivative of
equation (A.5) with respect to η and ξ at the origin one also reobtains equation (A.2).

In the infinite-dimensional case equation (A.5) implies equation (A.6). However, only
equation (A.5) can be realized in the finite-dimensional case (for discrete values of η and ξ) by
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preserving the unitarity of all the operators involved. By contrast, equation (A.6) does not
admit a finite-dimensional representation that preserves the properties of both E and U.
Indeed, given two operators, U unitary and E Hermitian, on a finite-dimensional space, the
commutation relations (A.6) cannot be satisfied, since they yield UEU E† #= − , which
contrasts with UEU† being isospectral to E with a bounded spectrum.

In the quantum link model of QED, which is based on the identification of the gauge
degrees of freedom with spin variables E Sz→ ,U S S Six y→ = ++ , the unitary operator U is
replaced with a non-unitary one in order to mantain the commutation relations E U U[ , ] =
valid. We will instead choose to maintain the unitary structure of the gauge comparator U in
the finite-dimensional case. To accomplish this task, we shall abandon the Heisenberg’s
algebra relations between the operators A and E, which cannot be realized in finite dimen-
sions. We will focus instead on the group relations between their complex exponentials (A.5),
which admit a natural extension to finite-dimensional spaces through the representation of the
Schwinger–Weyl group.

Appendix B. The discrete Schwinger–Weyl group

Let us consider an n-dimensional Hilbert space n and choose an orthonormal basis
{ }vℓ ℓ n1

∣ 〉 ⩽ ⩽ . It is then possible to define a unitary operator U which rotates the basis states as
[30]

U v v ℓ n U v vfor , . (B.1)ℓ ℓ n1 1= < =+

SinceUn #= , the integer powers of U constitute a representation of the group n! of integers
modulo n. Note that the transition between the last and the first state of the basis (last line of
equation (B.1)) is necessary to ensure the unitarity of U. The eigenvalue equation

U u ue , (B.2)k
k

kn
2 i= − π

with k n{0, 1 ,..., }∈ , is satisfied for

u
n

v
1

e . (B.3)k
ℓ

n
kℓ

ℓ
1

n
2 i∑=

=

π

It is now possible to define an operator V which rotates the eigenbasis of U as

V u u k V u ufor 1, . (B.4)k k n1 1= > =−

The operator V is also unitary, with V n #= . From the definition (B.4) and the form (B.3) of
the eigenstates of U, one can easily demonstrate that { }vℓ ℓ n1

∣ 〉 ⩽ ⩽ is in fact the eigenbasis of V,
with

V v ve . (B.5)ℓ
ℓ

ℓn
2 i= − π

The two operators V and U are thus called conjugated, since each one rotates the other one’s
eigenbasis. It is also relevant to observe that the action of U and V on each other’s eigenbasis
in equations (B.1)–(B.4) is the finite-dimensional counterpart of the spectral translations
equation (A.4). (Notice the opposite signs.) The actions of U and V on a state do not
commute. Indeed, comparing

VU u V u ue e (B.6)k
k

k
k

k 1n n
2 i 2 i= =− − −

π π
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with

UV u U u ue , (B.7)k k
k

k1 ( 1) 1n
2 i= =− − − −

π

one obtains the relation

UV VUe , (B.8)n
2 i= π

which can be immediately generalized to all the integer powers of the operators into [30]

U V V Ue , (B.9)ℓ k kℓ k ℓn
2 i= π

coinciding with equation (8) of the letter. This result represents the finite-dimensional
generalization of equation (A.5). The most striking difference is that the relation (B.9) is valid
only for the discrete set of integers, which implies that the differentiation which leads from
equations (A.5) to (A.6), is in this case meaningless. However, the procedure leading to
equation (B.9) is successful in preserving the unitarity of the operators involved. Thus,
equation (B.9) is a valid starting point for a gauge theory in which the local fields act on
finite-dimensional Hilbert spaces. The continuum limit is recovered by introducing the
Hermitian operators An and En, such that

U Ve , e (B.10)ℓ A k Ei iℓ n k n= =η ξ− −

with ℓ n2ℓη π≔ and k n2kξ π≔ . The Hermitian operators satisfy equation (A.2) by
taking the limit n → ∞, with ℓη η→ and kξ ξ→ [30].
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