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Abstract. The dynamical properties of a quantum system can be profoundly
influenced by its environment. Usually, the environment provokes decoherence
and its action on the system can often be schematized by adding a noise term in
the Hamiltonian. However, other scenarios are possible: we show that by
increasing the strength of the noise, the Hilbert space of the system gradually
splits into invariant subspaces, among which transitions become increasingly
difficult. The phenomenon is equivalent to the formation of the quantum Zeno
subspaces. We explore the possibility that noise can prevent, rather than
provoke decoherence.

1. Introduction
Interactions with the environment provoke decoherence [1] on quantum

systems. The physical mechanisms at the origin of the loss of quantum coherence
are diverse and can be heuristically modelled in many different ways. However,
usually, these mechanisms can be viewed as yielding a ‘disturbance’ or a phase
randomization of some sort. For this reason, it is often allowable to neglect the
detailed features of the environment and schematize its global effect on the system
by means of noise terms in the Hamiltonian of the latter. One often reads that noise
provokes decoherence. There are, however, noteworthy exceptions: a large noise
can help to stabilize a quantum system, suppressing transitions to other states.
This mechanism was understood in the late 1970s [2] and enabled one to explain
the stability of certain chiral molecules. It is therefore worth investigating in which
sense noise can yield superselection rules and whether/when noise can prevent,
rather than provoke decoherence.

Several strategies have been proposed during the last few years in order to
counter decoherence, in particular in the context of quantum computation [3].
Quantum error correcting codes [4], decoherence-free subspaces [5], ‘bang-bang’
pulses and dynamical decoupling [6] are just some examples. Other interesting
proposals make use of the quantum Zeno effect (QZE) [7]) and the recently
introduced quantum Zeno subspaces [8]. Moreover, the possibility of preserving
quantum coherence by means of a stochastic control has been recently advocated
by Mancini et al. [9], who also emphasized the links with the quantum Zeno effect
[10]. The unification of these schemes under the same basic ideas [11] enables one
to look at this problem from a broader perspective.
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In this paper we shall look in detail at the afore-mentioned noise-based strategy
to inhibit transitions (and therefore, perhaps, to control decoherence). We shall
start by looking at a simple example studied by Blanchard et al. [12] and Berry
[13]. We first reinterpret some of their findings in terms of the QZE [14] and then
broaden the applicability of the method to include a wider class of quantum Zeno
phenomena.

2. The model
The model studied by Blanchard et al. [12] describes a two-level system

interacting with an environment according to the Hamiltonian

H ¼ ��1 þ ��ðtÞ�3; ð1Þ

where � and � are real constants and �i (i ¼ 1; 2; 3) are Pauli matrices. The action
of the environment on the system is modelled by the stochastic term ��3, where

h�ðtÞi ¼ 0; h�ðtÞ�ðt0Þi ¼ �ðt� t0Þ; ð2Þ

the brackets denoting the average over all possible realizations of the white noise �.
In terms of the Wiener process

dWðtÞ � Wðtþ dtÞ �WðtÞ ¼

Z tþdt

t

�ðsÞds;

hdWðtÞi ¼ 0; hdWðtÞdWðtÞi ¼ dt;

ð3Þ

the Ito–Schrödinger equation reads ð~ ¼ 1Þ

jd i ¼ �i��1j idt� i��3j i � dW ¼ �i��1 �
1

2
�2

� �
j idt� i��3j idW; ð4Þ

where � denotes the Stratonovich product and j i ¼ ðj þi; j �iÞ
T is a two-

component spinor (we work in the basis of the eigenstates of �3). When � ¼ 0,
the above equation yields coherent (Rabi) oscillations between the two eigenstates
of �3. This Hamiltonian schematizes a two-level system interacting with an
environment, whose action is ‘summarized’ by means of a white noise multiplying
an operator of the system. The model describes a superconducting ring enclosing a
quantized magnetic flux. Coherent tunnelling between the two flux configurations
is possible if the system is very well isolated from its environment (� ¼ 0). In
general, coherence is gradually lost when � 6¼ 0; however, as we shall see, it is of
primary importance to focus on the time scales of the decoherence process.

The polarization (Bloch) vector

xðtÞ ¼ h jrj i; ð5Þ

satisfies the stochastic differential equation

dxðtÞ ¼ AxðtÞdtþ BxðtÞdWðtÞ; ð6Þ

where

A ¼

�2�2 0 0
0 �2�2 �2�
0 2� 0

0
@

1
A; B ¼

0 �2� 0
2� 0 0
0 0 0

0
@

1
A: ð7Þ

The Bloch vector is therefore a stochastic process, whose third component
z ¼ h þj þi � h �j �i yields information on the probability of finding the system
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in one of the eigenstates of �3. The density matrix of a two-level system (like the
one considered above) can always be expressed in terms of the Bloch vector (5),
according to the formula

� ¼
1

2
ð1þ x � rÞ; ð8Þ

where Tr ð�Þ ¼ 1 (normalization) and Tr ð�rÞ ¼ x. Pure states are characterized by
kxk ¼ 1 and it is easy to check that (5) yields

kxðtÞk2 � x2ðtÞ þ y2ðtÞ þ z2ðtÞ ¼ 1; 8t : ð9Þ

the state remains pure for every individual realization of the stochastic process.
If the average (2)–(3) (denoted with a bar throughout) is computed, one gets a
Gorini–Kossakowski–Sudarshan–Lindblad equation [15]

d

dt
� ¼ �i½��1; �� � �

2ð�� �3��3Þ: ð10Þ

By making use of the explicit expression (8) one obtains

d

dt
x ¼ �2�2x;

d

dt
y ¼ �2�z� 2�2y;

d

dt
z ¼ 2�y; ð11Þ

whose solution is

xðtÞ ¼ xð0Þ expð�2�2tÞ;

yðtÞ ¼ expð��2tÞðyð0Þ cos!tþ c1 sin!tÞ;

zðtÞ ¼ expð��2tÞðzð0Þ cos!tþ c2 sin!tÞ;

ð12Þ

where c1 ¼ ð��2yð0Þ � 2�zð0ÞÞ=!, c2 ¼ ð�2zð0Þ þ 2�yð0ÞÞ=! and ! ¼ ð4�2 � �4Þ1=2.
Note that if 4�2 � �4 < 0, ! becomes purely imaginary and the solution is simply
obtained by replacing the trigonometric functions in (12) with the hyperbolic ones:
cos !t ! cosh!t, sin!t ! sinh!t.

3. Large noise versus quantum Zeno effect
Different dynamical regimes can be obtained by varying the coupling � with

the environment: if � is small, the interaction with the environment is weak and the
system undergoes coherent quantum oscillations between its two states. If, on the
other hand, � is large, these oscillations are hindered and the system becomes
‘localized’ in one of its two states [12, 13].

Let us clarify the links between this localization phenomenon and the quantum
Zeno effect [14]. Prepare the system in the initial state xð0Þ ¼ yð0Þ ¼ 0; zð0Þ ¼ 1
(all particles in state j þi). If the coupling with the environment is large �2 � 2�,
the solution is

xðtÞ ¼ expð��2tÞ

0

�ð2�=!Þ sinh!t

cosh!tþ ð�2=!Þ sinh!t

0
B@

1
CA

���!
large �2

0

0

exp½�ð2�2=�2Þt�

0
B@

1
CA���!

�!1

0

0

1

0
B@

1
CA; ð13Þ
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where ‘large �2’ means �2 � 2�; t�1 and we neglected terms Oð�=�2Þ in the third
expression. As one can see, when � is large, the oscillations are hindered and the
system tends to remain in its initial state. Notice also that in the above formulas
one implicitly assumes that t <1. This ‘halting’ of the quantum evolution due
to strong coupling with the environment is familiar in a variety of physical
situations [2].

Let us now take a different approach. Assume that the system is not coupled to
the environment, � ¼ 0, but frequent measurements are performed on the system
in order to ascertain whether it is localized in one of the eigenstates of �3 (j þi or
j �i). This is the usual framework of ‘pulsed’ observation, typical of the quantum
Zeno effect. The solution of the Bloch equation is (no average is actually needed,
but we keep the bar for ease of comparison with the previous case)

xðtÞ ¼
0

� sin 2�t
cos 2�t

0
@

1
A ’

small t
0

�2�t
1� 2�2t2

0
@

1
A; ð14Þ

where ‘small t’ means t � 2� ¼ !�1. It is easy to check [14] that if N
�3-measurements are performed at time intervals �t one obtains

xðtÞ ¼
0
0

1� 2�2ðt=NÞ
2

� �N
0
@

1
A �!

large N
0
0

exp ½�ð2�2�tÞt�

0
@

1
A�!
�t!0

0
0
1

0
@

1
A: ð15Þ

Notice that we are implicitly assuming that t <1. Once again, the oscillations are
hindered.

The two situations analysed in this section, large coupling with the environ-
ment and frequent measurements, yield the same physical effect. The two regimes
can also be quantitatively compared: if

��2 ¼ �t; ð16Þ

(13) and (15) are asymptotically identical. A (�3) white noise of large strength � and
a series of frequent (�3) observations at short time intervals �t slow down (and
eventually halt) the evolution of an eigenstate of �3 (initial condition zð0Þ ¼ 1).

4. The general framework
We can now generalize the results of the previous sections in order to try and

understand the reasons for the occurrence of the ‘localization’ phenomenon in the
initial state (which was also an eigenstate of �3). Since a large noise is physically
equivalent to the quantum Zeno effect and since the latter is physically equivalent
to dynamical decoupling [11] and leads to the formation of the quantum Zeno
subspaces [8], one expects that the ‘localization’ observed in the preceding sections
can be viewed as a dynamical phenomenon, due to the formation of a Zeno
subspace. This expectation is correct and can be put on firm ground.

Let a quantum system be described by the time-dependent Hamiltonian

HK ¼ H0 þ �ðtÞKH1; ð17Þ

where H0 and H1 are Hermitian, time-independent operators. The action of the
environment on the system is schematized by the stochastic term �KH1, where � is
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a white noise and K is the coupling constant. The Hamiltonian (1) is a particular
case of the above.

The evolution is

jd i ¼ �iH0j idt� iKH1j i � dW ¼ �iH0 �
1

2
K2H2

1

� �
j idt� iKH1j idW;

ð18Þ

or alternatively

d

dt
� ¼ �i½H0; �� �

K2

2
fH2

1; �g þK2H1�H1 ¼ ðL0 þK2LÞ�; ð19Þ

where ½�; �� is the commutator, f�; �g is the anticommutator and L0 and L are the free
and dissipative part of the Liouvillian, respectively.

Let us endeavour to understand what happens when K becomes large.
Consider the limiting evolution operator in the interaction picture

UðtÞ ¼ lim
K!1

UI
KðtÞ ¼ lim

K!1
U

y

1ðtÞUKðtÞ; ð20Þ

where

UKðtÞ ¼ expð�iHKtÞ;

U1ðtÞ ¼ exp �iKH1

Z t

0

�ðt0Þdt0
� �

¼ exp �iKH1WðtÞð Þ; ð21Þ

all evolution operators acting à la Ito on the wave function. UI
K satisfies the

Schrödinger equation in the interaction picture

i@tU
I
KðtÞ ¼ HI

0ðtÞU
I
KðtÞ; HI

0ðtÞ ¼ U1ðtÞ
yH0U1ðtÞ ð22Þ

and it is not difficult to show, by adapting the proof of [8], that in the large-K limit
the evolution operator becomes diagonal with respect to H1:

½UðtÞ;Pn� ¼ 0; where H1Pn ¼ �nPn; ð23Þ

Pn being the orthogonal projection onto HPn
, the eigenspace of H1 belonging to the

eigenvalue �n. (Note that in equation (23) the eigenvalues are in general distinct,
�n 6¼ �m for n 6¼ m, and the HPn

s are in general multidimensional.) Moreover, the
limiting evolution operator has the explicit form

UðtÞ ¼ exp ð�iHdiagtÞ; Hdiag ¼
X
n

PnH0Pn � P̂PH0: ð24Þ

In other words, in the K ! 1 limit an effective superselection rule arises and the
total Hilbert space is split into (Zeno) subspaces HPn

that are invariant under the
evolution. The dynamics within each Zeno subspace HPn

is governed by the
diagonal part PnH0Pn of the free Hamiltonian H0. We stress that the super-
selection rules discussed here are a consequence of the Zeno dynamics (strong
coupling) and are equivalent to the celebrated ‘W3’ ones [16].

We also notice that the very same Zeno subspaces could be obtained by looking
for the eigenspace of the dissipative part of the Liouvillian L in (19) corresponding
to the null eigenvalue:

LP̂P ¼ 0; ð25Þ
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where P̂P is defined in (24). Since a vanishing eigenvalue implies in this case no
dissipation, the corresponding Zeno subspaces can be viewed as decoherence-free.

5. Comments
We have analysed a method to inhibit quantum transitions that makes use of a

large noise. The method has been well known for a long time [2, 12, 13], but the
interpretation in terms of the quantum Zeno subspaces [8] is novel. A complete
theory, valid for general Gorini–Kossakowski–Sudarshan–Lindblad equations [15]
will be presented elsewhere, as it is far from being trivial. Such a complete theory
would be required, in particular, in order to fully understand some recent proposals
[9, 10] that focus on the preservation of quantum coherence by stochastic control.
The real problem, when one endeavours to control decoherence [17] is the
occurrence of the inverse Zeno effect [18] and the key role played by the form
factors of the interaction. In order to take the consequences of the inverse Zeno
effect into account it is important to accurately model the interaction between the
quantum system and its environment. It is well known that there is no general recipe
in order to obtain ‘noise’ terms from the total Hamiltonian (describing the
environment + the system) in a rigorous way. As a matter of fact, this programme
can be carried out only in some particular cases [19], which have played a
fundamental role in clarifying the features of quantum dissipative phenomena
[20]. However, strong coupling regimes should be handled separately and the
validity of the interaction Hamiltonian in (17), when one endeavours to model the
physical system of interest, must be carefully pondered over. Other issues that are
certainly worth exploring, in this context, are the links with the so-called continuous
measurements [21] and the mechanisms yielding stochastic resonance [22].
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