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2Dipartimento di Fisica, Università di Bari, and Istituto Nazionale di Fisica Nucleare, Sezione di
Bari, I-70126 Bari, Italy

Received 26 March 2003; accepted 27 October 2003
Published online 14 January 2004 in Wiley InterScience (www.interscience.wiley.com).
DOI 10.1002/qua.10870

ABSTRACT: The control of thermal decoherence via dynamical decoupling and via
the quantum Zeno effect (Zeno control) is investigated for a model of trapped ion,
where the dynamics of two low-lying hyperfine states undergoes decoherence due to
the thermal interaction with an excited state. Dynamical decoupling is a procedure that
consists in periodically driving the excited state, while the Zeno control consists in
frequently measuring it. When the control frequency is high enough, decoherence is
shown to be suppressed. Otherwise, both controls may accelerate decoherence. © 2004
Wiley Periodicals, Inc. Int J Quantum Chem 98: 160–172, 2004
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1. Introduction

T he theory of quantum information and com-
putation has provided various promising

ideas, such as substantially faster algorithms than
their classical counterparts and very secure cryp-

tography [1]. Examples are Shor’s factorizing algo-
rithm [2] and Grover’s search algorithm [3], where
several computational states are simultaneously de-
scribed by a single wave function and parallel in-
formation processing is carried out by unitary op-
erations. Moreover, some of the basic steps have
already been experimentally realized: basic opera-
tions for quantum computation were realized with
trapped ions [4, 5] and with the nuclear spins of
organic molecules [6]. Shor’s algorithm for factor-
izing Z � 15 was investigated with the nuclear
spins of organic molecules [7].
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The essential ingredient for the efficiency of
quantum algorithms and cryptography is the prin-
ciple of superposition of states. As pointed out, e.g.,
by Unruh [8], the loss of purity (i.e., decoherence) of
states would deteriorate the performance, particu-
larly in the case of large scale computations or of
long-distance communications. Thus, the informa-
tion carried by a quantum system has to be pro-
tected from decoherence. So far, several schemes
have been proposed, such as the use of quantum
error-correcting codes [9], the use of decoherence-
free subspaces and/or noiseless subsystems [10],
and the quantum dynamical decoupling [11–15].

Quantum dynamical decoupling was proposed
by Viola and Lloyd [11], with the system periodi-
cally driven with period Tc in an appropriate man-
ner so that the target subsystem is decoupled from
the environment. It was shown [11, 12] that com-
plete decoupling is achieved in the Tc 3 0 limit, or
the limit of infinitely fast control. The procedure is
simpler than the other methods because one only
has to drive the system periodically. However, as it
is not possible to achieve the Tc 3 0 limit, its
performance for nonvanishing Tc should be inves-
tigated. Such studies were carried out for a two-
level system in an environment via a system–
energy-preserving interaction [11] and for a har-
monic oscillator coupled with an environment [14].
In the present study, we provide one more exam-
ple, namely a model of a trapped ion used in [4].
This model explicitly involves a unitary operation
for the quantum-state manipulation, which was not
included in the previous models.

The key ingredient of dynamical decoupling is
the continuous disturbance of the system, which
suppresses the system–environment interaction. As
already pointed out by Viola and Lloyd [11], the
situation is similar to the so-called quantum Zeno
effect, where frequent measurements of a system
suppress quantum transitions [16–18] (for recent
reviews, see [19]). This phenomenon is more gen-
eral than originally thought: a nontrivial time evo-
lution may occur in the case of frequent measure-
ments in an appropriate setting. Namely, when the
measurement process is described by a multidi-
mensional projection operator, frequent measure-
ments restrict the evolution within each subspace
specified by the projection operator and a super-
selection rule dynamically arises [20]. Therefore, if
one can design the measurement process so that
different superselection sectors (defined by the
given measurements) are coupled by the interaction
between a target system and the environment, the

system-environment interaction can be suppressed
by frequent measurements. We refer to such a de-
coherence control as a quantum Zeno control. Since,
in the case of the quantum Zeno experiment by
Itano and others [17, 18], the measurement process
was realized as a dynamical process, namely the
optical pulse irradiation, it is interesting to compare
the two procedures (the quantum Zeno control and
the quantum dynamical decoupling) for a model of
trapped ion. This is one of the objectives of this
article.

This article is organized as follows. In section 2,
the quantum dynamic decoupling and the quantum
Zeno control are briefly reviewed. In section 3, we
introduce a model of the trapped ion, which takes
into account the unitary Rabi oscillation and ther-
mal decoherence. The dynamical decoupling and
Zeno controls of this model are discussed, respec-
tively, in sections 4 and 5. After a discussion of the
cases of infinitely fast controls, the effects of the
finiteness of the control period are investigated. It is
shown that both controls may accelerate decoher-
ence if they are not sufficiently fast. This implies the
necessity of a careful design of the control and a
careful study of the timescales involved. The last
section is devoted to conclusions.

2. Quantum Dynamical Decoupling
and Quantum Zeno Control

2.1. SYSTEM

The total system consists of a target system and
a reservoir and its Hilbert space �tot is the tensor
product of the system Hilbert space, �S, and the
reservoir Hilbert space, �B: �tot � �S R �B. The
total Hamiltonian Htot is the sum of the system part
HS R 1B, the reservoir part 1S R HB and their inter-
action HSB, which is responsible for decoherence:

Htot � HS � 1B � 1S � HB � HSB�t� (1)

Operators 1S and 1B are the identity operators, re-
spectively, in the Hilbert spaces �S and �B, and the
operators HS and HB act, respectively, on �S and
�B. Here, in order to discuss controls in an interac-
tion picture, a time-dependent interaction is consid-
ered.

Since, in general, the reservoir state is mixed, it is
convenient to describe the time evolution in terms
of density matrices. In the case of a quantum state
manipulation, the initial state �(0) is set to be a tensor
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product of a system initial state �(0) and a reservoir
(usually equilibrium) state �B: �(0) � �(0) R �B. The
system state �(t) at time t is given by the partial
trace of the state �(t) of the whole system with
respect to the reservoir degrees of freedom: �(t) �
trB�(t). When �(t) is not unitarily equivalent to �(0)
for a given class of initial states, decoherence is said
to appear. The purpose of the control is to suppress
such decoherence. For the decoherence control, it is
sufficient to consider only those initial states that
are relevant to the quantum state manipulation in
question, but not to all states.

2.2. QUANTUM DYNAMICAL DECOUPLING

Here we slightly generalize the arguments of [12]
(see also [14]). This control is carried out via a
time-dependent system Hamiltonian Hc(t):

H�t� � Htot � Hc�t� � 1B, (2)

where Hc(t) is designed so that a time-ordered ex-
ponential Uc(t) � � exp{�i �0

t Hc(s)ds} satisfies

(A) Uc(t) is periodic with period Tc;
Uc(t � Tc) � Uc(t).

(B) �0
Tc dt(Uc

†(t) R 1B)HSB(t � s)(Uc(t) R 1B) � O(Tc
1��),

(0 � � � 1, Tc: small, @s).

Going to the interaction picture where Hc(t) is
unperturbed, the density matrix at time T � NTc

with an initial state �(0) is given by �(T) �
Utot(NTc)�(0)Utot

† (NTc), where

Utot�NTc� � � exp��i �
0

NTc

H̃tot�s�ds�
� �

m�1

N �� exp��i �
�m�1�/Tc

mTc

H̃tot�s�ds�� (3)

and H̃tot(t) � (Uc
†(t) R 1B)Htot(Uc(t) R 1B). A stan-

dard Magnus expansion of the time-ordered expo-
nential [23] leads to

� exp��i �
�m�1�Tc

mTc

H̃tot�s�ds� � e�i	H� m
�0��H� m

�1��· · ·
Tc, (4)

where H� m
(0) � (1/Tc) �(m�1)Tc

mTc H̃tot(s)ds and the rest
terms H� m

( j) are of the order of Tc
j ( j � 1, 2, . . .).

By assumption (B), one has H� m
(0) � H� (0) � O(Tc

�),
where

H� �0� � H� S � 1B � 1S � HB, (5)

H� S � (1/Tc) �0
Tc dtUc

†(t)HSUc(t), and they are inde-
pendent of Tc because Uc(t) is Tc-periodic. There-
fore, in the limit Tc 3 0, while keeping T � NTc

constant, one obtains

Utot�T� � �1 � iH� �0�
T
N � O� 1

N1��	�N

O¡
N3 �

e�iH� ST � e�iHBT. (6)

In short, as a result of the infinitely fast control, the
system–reservoir coupling is eliminated and, thus,
decoherence is suppressed. Note that if one designs
Hc so that

Uc�t� 
 gj

� j � 1
M Tc � t �

j
M Tc ; j � 1, · · · , M	 , (7)

where {gj} is a set of unitary operators acting on �S,
H� S becomes

H� S �
1
M �

j�1

M

gj
†HSgj. (8)

The relation between the dynamical decoupling
with the prescription (7) and a symmetry group
was discussed in [13].

2.3. QUANTUM ZENO CONTROL

Now we turn to the Zeno control by adapting the
argument of [20]. This control is performed by fre-
quent measurements of the system. The most gen-
eral measurement is described by a projection op-
erator acting on the density matrix:

� 3 P̂� 
 �
n

�Pn � 1B���Pn � 1B�. (9)

where {Pn} is a set of orthogonal Hermitian projec-
tion operators acting on �S. In the following, we
restrict ourselves to the case where the measuring
apparatus does not “select” different outcomes
(nonselective measurement) [21] and the projection
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operators are complete; ¥n Pn � 1S. As in the dy-
namical decoupling, the measurement is designed
so that

�C� P̂HSB�t� � �
n

�Pn � 1B�HSB�t��Pn � 1B� � 0.

The Zeno control consists in performing re-
peated nonselective measurements at times t � nTc

(n � 0, 1, 2, . . .). Between successive measurements,
the system evolves via Htot. In terms of the Liouville
operator �tot defined by �tot� � [Htot, �] � Htot� �
�Htot, the density matrix �(NTc) after N � 1 mea-
surements with an initial state �(0) is given by

��NTc� � �
m�1

N

�P̂�e�i ��m�1�Tc

mTc �tot�t�dtP̂
��0�. (10)

Assumption (C) yields

P̂ �
�m�1�Tc

mTc

�tot�t�dtP̂� � P̂ �
�m�1�Tc

mTc

	P̂Htot�t�, �
dt

� TcP̂	H� �S � 1B � 1S � HB, �
 
 Tc��
�0��,

and, thus, in the limit Tc3 0 while keeping T � NTc

constant, we get

��NTc� � P̂ �
m�1

N ��1 � iP̂ �
�m�1�Tc

mTc

�tot�t�P̂dt����0�

� P̂��1 � i�� �0�
T
N��N

��0� 3 P̂e�i�� �0�T��0�

� P̂�e�iH� �
ST

� e�iHBT��0�e�iH� �
ST � eiHBT�, (11)

where the controlled system Hamiltonian H� �S is
given by

H� �S 
 �
n

PnHSPn. (12)

Hence, as a result of infinitely frequent measure-
ments, the system–reservoir coupling is eliminated
and, thus, decoherence is suppressed. Note the sim-
ilarity between the controlled system Hamiltonians
for a particular dynamical decoupling (8) and for
the Zeno control (12). This is not a mere coinci-
dence. Indeed, one can show that, by enlarging the

Hilbert space so that the original measurement pro-
cess is expressed by a dynamical process in the
larger space, the two controls are equivalent. This
will be discussed in detail elsewhere. However,
throughout this article, dynamical decoupling re-
fers to a situation in which the evolution is coherent
(unitary) and the Zeno control to a situation in
which the evolution involves incoherent processes
such as measurements.

3. Two-Level System With Thermal
Decoherence

3.1. MODEL

We consider the model of a trapped Be ion used
in [4] (see also [17]). Here we assume that the ion is
at rest and consider only the dynamics of the hy-
perfine states. The main mechanism of decoherence
can then be attributed to the emission and absorp-
tion of thermal photons associated with transitions
to nearby excited states. For the sake of simplicity,
one of the hyperfine states is assumed to couple
electromagnetically with a nearby excited state (Fig.
1), the polarization of the photon is neglected and
only the rotating terms (i.e., the slowly varying
terms in the interaction picture) are taken into ac-
count (rotating wave approximation) for the driven
parts.

Let �1�, �2�, and �3� be the lower hyperfine, upper
hyperfine, and excited states, respectively, and ak

the annihilation operator of a photon with
wavevector k and energy 	k � c�k� (c: speed of
light). Then, the Hamiltonian is given by

Htot�t� � HS�t� � 1B � 1S � HB � 
HSB (13)

HS�t� � 	2�2��2� � 	3�3��3�

� 
2��ei	 �2 t�1��2� � �h.c.�
, (14)

FIGURE 1. Schematic diagram of the system. �1�, �2�,
and �3� are the lower hyperfine, upper hyperfine, and
excited states, respectively.
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HB � � d3k	kak
†ak (15)

HSB � � d3kVk��1��3� � �3��1�� � �ak
† � ak�. (16)

The bare energies 	2 and 	3 of states �2� and �3� are
measured from that of the lower hyperfine state �1�
(	1 � 0). The third term of (14) represents the rf
control of the Rabi oscillation and the amplitude

2� corresponds to the Rabi frequency. Because of
the Lamb shift, the energy difference between the
two hyperfine states 	�2 is different from 	2 and the
frequency of the irradiated field should be so tuned
that it resonates with 	�2. The function Vk is as-
sumed to behave like

Vk � 
 v0
2c3

8�2	k
e��	k/ 2	c�, (17)

with a cutoff frequency 	c and a dimensionless
strength v0. The dimensionless coupling constant 

measures the relative order of magnitude of each
term and is of order ��e/	3, where �e is the inverse
lifetime of the excited state. For the system in [4],
typical order of magnitudes of the frequencies are
�e/	3 � 10�8 and (Rabi frequency)/	3 � 10�10,
which imply that 
 � 10�4 and the Rabi frequency
are of order 
2. It is also reported that the decoher-
ence time is longer than the Rabi period by two
orders of magnitude [4].

It is convenient to move to a rotating frame with
the aid of the unitary operator

UR�t� � exp�i�
2
�1��1� � 	2�2��2� � 	3�3��3��t


� exp�i	�3t � d3kak
†ak�

where 
2
 � 	2 � 	�2 and 	�3 � 	3 � 
2
. Then the
transformed Hamiltonian Htot

R is

Htot
R 
 i

�UR�t�
�t UR

† �t� � UR�t�Htot�t�UR
† �t�

� 
2HS
R � 1B � 1S � HB

R � 
HSB
R �t�, (18)

HS
R � �
�1��1� � ���1��2� � �h.c.�
, (19)

HB
R � � d3k�	k � 	�3�ak

†ak, (20)

HSB
R �t� �� d3kVk�1��3� � �ak

† � e�2i	�3tak� � �h.c.�. (21)

This is our starting point.

3.2. DECOHERENCE

We consider the time evolution starting from an
initial state given by the tensor product of a system
initial state and the reservoir equilibrium state with
inverse temperature �:

i
���t�

�t � ��B � 
�SB�t� � 
2�S
��t� (22)

��0� � ��0� � �B (23)

�B �
1
Z exp���HB� (24)

where Z is the normalization constant and the op-
erators �B, �SB, and �S are defined by

�B� 
 	1S � HB
R, �


�SB�t�� 
 	HSB
R �t�, �
 �S� 
 	HS

R � 1B, �
 (25)

Since the time scale of the quantum state manipu-
lation is of the same order of magnitude as the Rabi
period (�
�2) and is very long compared with
1/	3(�
0), the process is well described by the van
Hove limit approximation [24, 25]. The starting
point is the decomposition of the Liouville equation
(22), with the aid of a projection operator

�� 
 �trB�� � �B (26)

where trB stands for the partial trace over the res-
ervoir degrees of freedom and �B is the equilibrium
reservoir state (24). Then, in the limit 
 3 0, while
keeping � � 
2t constant, the reduced density ma-
trix � � trB� is found to satisfy [24–26]

��

��
� �i�� (27)

where we have used ��B� � 0 and
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�i�� � �i	HS
R, �


� �
0

��

dt lim

30

trB��SB� �


2	e�i�Bt�SB

� � �


2 � t	ei�Bt���� � �B�
� �i	
��3��3� � �	�1��2� � �h.c.�
, �
 � �e�1��3���3��1�

� �d�3��1���1��3� � ��d

2 �1��1� �
�e

2 �3��3�, �� (28)

with { , } the anti-commutator. In the above, the
limit 
 3 0 should be understood to drop terms
that oscillate with frequencies �
�2 (cf. [25]). The
parameter 
 is chosen as


 � p.v. �
��

��

d	
�d�	�

	 � 	�3
(29)

and 
�, �d, and �e are given by


� � �p.v. �
��

��

d	
�e�	�

	 � 	�3
(30)

�d � 2��d�	�3�, �e � 2��e�	�3� (31)

where

�d�	� � �e�	�e��	 � � d3k
Vk

2
�	k � 	�

e�	k � 1

�
v0

2

2�

	e��	�/	c

e�	 � 1 (32)

are the thermal spectral density functions (form
factors). The symbol p.v. in front of the integrals
indicates Cauchy’s principal value.

In terms of the matrix elements �ij � �i���j�, one
has �21 � �� 12 and

��11

��
� �i���21 � �12
 � �d�11 � �e�33 (33)

��12

��
� �i���22 � �11
 �

�d

2 �12 (34)

��22

��
� i���21 � �12
 (35)

��33

��
� �d�11 � �e�33. (36)

The purity of the target states is measured by
� � �11

2 � �22
2 � 2��12�2, as � � 1 for pure superpo-

sitions of �1� and �2�, and � � 1 for states involving
the irrelevant state �3� or mixed states. Figure 2
shows the evolution of the quantity �(t) starting
from �(0) � �1��1� for � � 100�d, �e � 1000�d. As
time goes on, the purity � of the target states is lost,
or decoherence takes place. One clearly sees that the
decoherence time scales as 1/�d.

4. Control of Thermal Decoherence
Via Dynamical Decoupling

We consider a dynamical decoupling control of
the thermal decoherence discussed in the previous
section. Since decoherence arises from the transi-
tion between the states �1� and �3� associated with
absorption and emission of photons, it is expected
to be suppressed if �3� does not contribute to the
�1�–�2� dynamics. So we consider a control via the
Rabi oscillation between the state �3� and a higher
excited state �4� (cf. Fig. 3), which is described by

Hc�t� � �ei�	4���t�3��4� � �h.c.�, (37)

where 	4 is the energy of the state �4�, and � and �
are real parameters. Since there exists one more
state, a term 	4�4��4� R 1B should be added to the

FIGURE 2. Time evolution of the purity � of the target
states. The time unit on the horizontal axis is the deco-
herence time �d

� 1.
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Hamiltonian HS. As a result, the following Liouvil-
lian should be added

���S � �c�t�
� 
 	�	4�4��4� � Hc�t�� � 1B, �
,

(38)

and the evolution equation reads

��

�t � ��B � ��S � �c�t� � 
�SB�t� � 
2�S
��t�.

(39)

4.1. IDEAL DYNAMIC DECOUPLING

The evolution operator Uc(t) generated by the
control Hamiltonian Hc(t) is given by

Uc�t� � � exp��i �
0

t

dt�Hc�t���
� e�i�	4����4��4�texp	�i���	4 � ���4��4�

� �	�3��4� � �h.c.�

t
. (40)

When restricting to a subspace spanned by �3�
and �4�, the second factor is a sum of two oscillating
projection operators with frequencies

	̃� �
1
2 ��	4 � � � 
�	4 � ��2 � 4�2� (41)

and the first factor is a sum of a time-independent
and an oscillating projection operators, the fre-
quency of the latter being 	4 � �. Thus, Uc(t) is a
sum of four oscillating terms with frequencies �	̃�,
�	̃� and is Tc-periodic provided both 	̃�Tc and
	̃�Tc are integer multiples of 2�.

Under this prescription, [Uc
†(t) R 1B]HSB[Uc(t) R 1B]

is a sum of terms proportional to e�i	̃�t, e�i	̃�t,

e�2i	�3te�i	̃�t, e�2i	�3te�i	̃�t, and its average vanishes in the
Tc 3 0 limit:

lim
Tc30

1
Tc
�

0

Tc

dt�Uc
†�t� � 1B�HSB�Uc�t� � 1B� � 0. (42)

Therefore, the general argument of section 2
shows that the coupling between the system and
the reservoir is suppressed in the limit Tc 3 0 (i.e.,
	̃� 3 �) while keeping T � NTc constant. More-
over, the system obeys the Hamiltonian

H� s �
1
Tc
�

0

Tc

dtUc
†�t��	4�4��4� � 
2HS

R
Uc�t�

� 	4 �
s��

	̃s
2

���3� � 	̃s�4�)���3� � 	̃s�4��
��2 � 	̃s

2�2 � 
2HS
R.

(43)

Therefore, the target system spanned by �1� and �2�
is free from decoherence and performs ideal Rabi
oscillations.

It is interesting to see the relation between the
dynamical decoupling and a dynamical quantum
Zeno effect due to a “continuous” measurement
[20]. For the particular choice (37), it is possible to
eliminate the explicit time dependence of the con-
trol Hamiltonian Hc, by going to another rotating
frame with the aid of the unitary operator

UR
b �t� � exp�i�	4 � ���4��4�t
 � 1B. (44)

Then, the transformed density matrix �� � UR
b (t)�UR

b†(t)
obeys

���

�t � ��B � ���S � ��c � 
�SB � 
2�S
�� , (45)

where the transformed control Liouvillian is

����S � ��c��

� 	����4��4� � �	�3��4� � �h.c.�

 � 1B, �
. (46)

In this picture, state �4� of energy �� is coupled
by a constant coupling � to state �3�. The short-
period limit Tc 3 0 corresponds to the strong cou-
pling limit �, � 3 �, because 	̃�Tc must be integer
multiples of 2�. But this is just the case of a dynamical
quantum Zeno effect due to a continuous measure-

FIGURE 3. Schematic representation of the system
under the quantum dynamical decoupling control.
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ment [20], where Hmeas � ���4��4� � �{�3��4� � (h.c.)}
plays the role of a measurement Hamiltonian. One
can show that, in the limit of strong coupling, a
dynamical superselection rule arises, the Hilbert
space is split into Zeno subspaces, and the system
Hamiltonian is given again by (12), where the pro-
jections Pns, defining the Zeno subspaces, are the
eigenprojections of Hmeas [20]. This is a conse-
quence of an interesting relation between strong-
coupling regime and adiabatic evolution [22].

The eigenprojections of Hmeas are given by
P� � ������, where

��� �
��3� � 	��4�


�2 � 	�
2 , (47)

with eigenvalues

	� �
1
2 ��� � 
�2 � 4�2�. (48)

Therefore, from (12) one gets

H� s � �
s��

Ps����4��4� � 
2HS
R�Ps

� �� �
s��

	s
2
���3� � 	s�4�)���3� � 	s�4��

��2 � 	s
2�2 � 
2HS

R,

(49)

which is nothing but the Hamiltonian (43) under
the transformation (44). We see that, in this partic-
ular case, dynamical decoupling is completely
equivalent to the dynamical Zeno effect.

4.2. NONIDEAL DYNAMIC DECOUPLING

Here we consider the case of nonvanishing Tc

and solve the evolution equation (39). As pointed
out in [11, 14], the ideal dynamical decoupling is
achieved when the control frequency 2�/Tc is
higher than the threshold frequency 	c in the sys-
tem–reservoir interaction HSB and, thus, we con-
sider the case where 2�/Tc � O(
0). Then, the slow
process which is relevant to the quantum state ma-
nipulation is well described by the van Hove limit
approximation [24–26].

We consider the evolution in the rotated frame
(45). Note that because the transformation UR

b in
(44) does not affect the evolution of the states

�j� ( j � 1, 2) and the field variable, one has
�i�trB��j� � �i�trB�� �j� (i, j � 1, 2). By the standard
procedure of the van Hove limit approximation
[24, 25], in the limit 
 3 0, while keeping � � 
2t
constant, one obtains

��

��
� �i�B�, (50)

where �(�) � trB�� and

�i�B� � �i��
s��


s�s��s� � �	�1��2� � �h.c.�
, ��
� �

s��

��e
s�1��s���s��1� � �d

s �s��1���1��s��

� ��d
B

2 �1��1� � �
s��

�e
s

2 �s��s�, ��. (51)

The states ��� are the normalized linear combi-
nations of the states �3� and �4� given by (47) and the
decay rates �e

s and �d
s (s � �) and �d

B are given by

�d
B � �d

� � �d
�,

�d/e
� � 2�

�	��
	� � 	�

�d/e�	�3 � 	��, (52)

where 	� are the frequencies (48) and �d/e(	) are
the thermal form factors (32), extended to the whole
real axis due to the counterrotating terms. (Inciden-
tally, note the exchange symmetry �e(	) � �d(�	)
of the extended form factors.)

The prefactors in the second equation in (52) are
nothing but the squares of the matrix elements be-
tween the undressed state �3� and the dressed states
��� (47):

�	��
	� � 	�

� ��3����2. (53)

The explicit expressions of the Lamb shifts 
s

(s � �) of the excited states are omitted since the
relevant sector of the evolution equation does not
depend on them. Note that the parameter 
 is cho-
sen so that the operator �B does not contain a
commutator with �1��1�.

In terms of the matrix elements �ij � �i���j�, one
has
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��11

��
� �i���21 � �12
 � �d

B�11 � �
s��

�e
s�ss (54)

��12

��
� �i���22 � �11
 �

�d
B

2 �12 (55)

��22

��
� i���21 � �12
 (56)

��ss

��
� �d

s�11 � �e
s�ss � �s � � �. (57)

The evolution of the purity � � �11
2 � �22

2 � 2��12�2

of the target states is shown in Figure 4 for different
values of control parameters, where the parameters
in the control Hamiltonian are set to � � 24�/5
(which gives 	� � �/5 and 	� � �5�), the fre-
quency cutoff to 	c � 10	�3, and the other param-
eters are chosen, so that one has � � 100�d and
�e � 1000�d for the uncontrolled case. As in the
previous section, the initial state is �(0) � �1��1�.
Figure 4 shows that the dynamical decoupling con-
trol may accelerate decoherence if the parameters
are not appropriately tuned.

Figure 5 shows the control frequency depen-
dence of the decoherence rate �d

B. As can be seen in
Figure 4, decoherence is first enhanced, for small
values of �	�� � 5�, and then suppressed for much
larger values of �	��. Since the decoherence rate �d

�

due to ��� is a monotonically decreasing function of
�	��, this can be understood as follows: In the ro-
tating frame where the �3� � �4� oscillation is elim-

inated, when � � 0, state �3� is separated from the
decay product state �1� by an energy 	�3. When � is
turned on, state �3� splits into two dressed states
���, which are separated from �1� by the energies
	�3 � 	� � 	�3 � �	��/25 and 	�3 � �	��, respectively.
The latter state is closer to state �1� than in the
uncontrolled case and leads to a shorter decoher-
ence time provided 	�3 � �	�� � 0. This is the
deterioration observed in Figure 4, case (b). In con-
trast, if �	�� exceeds a threshold energy 	th � 	�3, the
energy of state ��� becomes lower than that of state
�1�. In such a case, the counterrotating term (which
are now “rotating”) does contribute to the decoher-
ence rate. Note that now, being 	�3 � �	�� � 0, �e

� is
smaller than �d

�, as it should. Even after �	�� has
exceeded the threshold, 	th, �d

� still increases with
�	��, as the state �1� is now unstable. Finally, when
energies of the two dressed states are sufficiently
far apart from that of level �1�, the decay rates (and
therefore decoherence) are suppressed because of
the high-energy cutoff of the form factor (17). Such
values of �	�� � 80	�3 are considerably higher than
the threshold 	th � 	�3 (Fig. 5) and involve ex-
tremely short timescales [28].

FIGURE 5. Decoherence rate �d
B vs control frequency

�	��/	�3.

FIGURE 6. Schematic representation of the system
under the quantum Zeno control.

FIGURE 4. Evolution of the purity � of the system
state. The time unit in the horizontal axis is the deco-
herence time �d

� 1 for the uncontrolled case. (a) Control
frequency �	�� � 150 � 	�3; (b) control frequency �	��
� 0.5 � 	�3. For comparison, the behavior of � without
control is also displayed (broken curve).
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5. Quantum Zeno Control of Thermal
Decoherence

For the same reason as in the dynamical decou-
pling, we disturb the evolution of �3� by repeated
measurements (Fig. 6). The nonselective measure-
ment of �3� causes the following change of the den-
sity matrix:

� 3 P̂� 
 �3��3 � �1 � �3���1 � �3� (58)

where �3 is a projection operator acting on the
whole Hilbert space �3 � �3��3� R 1B and 1 � 1S R 1B.
Then, the density matrix under the Zeno control is
given by

��NTc� � �
m�1

N

�P̂�e�i ��m�1�Tc

mTc �tot�t�dtP̂
��0�, (59)

where Tc stands for the time interval between suc-
cessive measurements.

5.1. IDEAL ZENO CONTROL

First, we consider the case where Tc 3 0, while
keeping T � NTc constant. Then, because P̂HSB �
�3HSB�3 � (1 � �3)HSB(1 � �3) � 0, and as dis-
cussed in section 2, the state at time T is given by

��T� � P̂�e�iH��ST � e�iHBT��0�eiH��ST � eiHBT�, (60)

where the controlled system Hamiltonian H� �S is
given by

H� �S � 
2�P3HS
RP3 � �1S � P3�HS

R�1S � P3�


� 
2��
�1��1� � 	��1��2� � �h.c.�

, (61)

with P3 � �3��3�. Hence, as a result of infinitely
frequent measurements of state �3�, the system–
reservoir coupling is eliminated and, thus, decoher-
ence is suppressed.

5.2. NONIDEAL ZENO CONTROL

As in the dynamical decoupling, we consider the
case in which Tc � 1/	�3 � 
0, so that the time
evolution is well described by the van Hove limit
where 
 3 0, while keeping � � 
2NTc and Tc

constant. In this case, we are looking at the subtle
effects on the decay rate that arise from the pres-
ence of a short-time quadratic (Zeno) region. There-
fore, it is important to note that the standard
method [24, 25] is not applicable to the present
situation, and the limit is evaluated as follows:

1. Second-order perturbation, up to 
2, and
P̂HSB � 0 lead to

P̂�e�i �mTc

�m�1�Tc �tot�t�dtP̂ � P̂e�i�BTc�1 � i
2�STc � 
2

��
mTc

�m�1�Tc

dt�
mTc

t

dsei�Bt�SB�t�e�i�B�t�s��SB�s�e�i�BsP̂�
(62)

2. In terms of the operator �m, defined as a
solution of the operator equation

P̂ �
mTc

�m�1�Tc

dt �
mTc

t

dsei�Bt�SB�t�

� e�i�B�t�s��SB�s�e�i�BsP̂

� P̂ �
mTc

�m�1�Tc

dtei�Bt�me�i�Bt, (63)

one has

P̂�e�i �mTc

�m�1�Tc �tot�t�dtP̂

� P̂�e�i �mTc

�m�1�Tc 	�B�
2�S�i
2��t�
dt � O�
3�, (64)

where
��t� � �m for mTc � t � �m � 1�Tc.

3. With the aid of (64) and p̂� � P3�P3 � (1S �
P3)�(1S � P3), the final reduced state �(�) is
given by

���� �

lim

30

��
2NTc:finite

trB��
m�1

N

	P̂�e�i ��m�1�Tc

mTc �tot�t�dtP̂
��0� � �B�
� p̂ lim


30
��
2NTc:finite

trB�*�NTc�. (65)

where

�*�NTc� � P̂�e�i �0
NTc ��B�
2�S�i
2��t��dt��0� � �B.

4. As �*(t) is a solution of
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��*�t�
�t � �i	�B � 
2�S � i
2��t�
�*�t�,

�*�0� � ��0� � �B, (66)

the standard van Hove limit arguments [24,
25] show that �(�) � p̂�*(�) and �* satisfies

��*���

��
� �i trB���S � i���*��� � �B


�*�0� � ��0�, (67)

where the time dependence of � is lost as a
result of the partial trace.

As in the previous sections, the parameter 
 is
chosen so that the �1��1�-term does not appear in the
evolution operator of �*. In terms of the matrix
elements �*ij � �i��*�j�, (67) reads

��*11

��
� �i���*21 � �*12
 � �d

Z�*11 � �e
Z�*33 (68)

��*12

��
� �i���*22 � �*11
 �

�d
Z

2 �*12 (69)

��*22

��
� i���*21 � �*12
 (70)

��*33

��
� �d

Z�*11 � �e
Z�*33 (71)

where the decoherence rate �d
Z and the inverse life-

time �e
Z of �3� are given by

�d
Z � Tc �

��

�

d	�d�	�sinc2�	 � 	�3
2 Tc	 (72)

�e
Z � Tc �

��

�

d	�e�	�sinc2�	 � 	�3
2 Tc	, (73)

where �d/e(	) are again the (extended) thermal
form factors (32) and sinc(x) � (sin x)/x. The decay
rate �d

Z in (72) should be compared with �d
B in (52).

They express the (inverse) quantum Zeno effect,
given by pulsed or continuous measurement, re-
spectively [19].

Because the projection operator p̂ does not affect
the �1� � �2� sector, one has �*ij(�) � �i��(�)�j� for a
class of initial states where only the matrix elements
�i��(0)�j� (i, j � 1, 2) are nonvanishing. Hence,
� � �*11

2 � �*22
2 � 2��*12�2 measures the purity of the

target states. Its evolution is shown in Figure 7 for
different values of 2�/Tc, where 	c � 10	�3 and the
other parameters are chosen so that one has
� � 100�d and �e � 1000�d for the uncontrolled
case. As in the previous sections, the initial state is
�(0) � �1��1�. Figure 7 shows that the Zeno control
may accelerate decoherence if the parameters are
not appropriately chosen. This can be seen more
clearly in the control-frequency dependence of the
decoherence rate �d

Z, which is shown in Figure 8.
When the control frequency 2�/Tc belongs to a
certain range, decoherence is enhanced.

The enhancement of decoherence is qualitatively
similar to the case of dynamical decoupling. How-
ever, the high-frequency behavior of the decoher-

FIGURE 7. Evolution of the purity � of the target
states. The time unit on the horizontal axis is the deco-
herence time �d

� 1 for the uncontrolled case. (a) Control
frequency 2�/Tc � 5 � 106 � 	�3; (b) control fre-
quency 2�/Tc � 0.5 � 	�3. For comparison, the be-
havior of � without control is also displayed by a bro-
ken curve.

FIGURE 8. Decoherence rate �d
Z vs control frequency

2�/(Tc	�3).
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ence rate and its peak values are quite different. The
high-frequency decoherence rates �d

B and �d
Z, re-

spectively, for the dynamical decoupling and Zeno
control, are approximated by

�d
B �

	��e	c

	�3�	� � 	��

�	��
	c

e���	��/	c�

�d
Z �

�e

� 2�

	�3Tc
	 �	c

	�3
	 2

. (74)

Therefore, �d
B decays exponentially for large �	��

because of the exponential cutoff of the form factor
and may take a maximum of order 	��e	c/{e(	� �
	�)	�3} � 140. In contrast, �d

Z decays polynomially
for large 2�/Tc and �d

Z could be much larger than �d
B

because �e	c
2/	�3

2 � 105 is very large.

6. Conclusions

We have studied the dynamical decoupling and
Zeno controls for a model of trapped ions, where
decoherence appears in the dynamics of the hyper-
fine states due to emission and absorption of ther-
mal photons associated with the transition between
the lower hyperfine and an excited state. By very
rapidly driving or very frequently measuring the
excited state, decoherence is shown to be sup-
pressed. However, if the frequency of the controls is
not high enough, the controls may accelerate the
decoherence process and may deteriorate the per-
formance of the quantum state manipulation.

The acceleration of decoherence is analogous to
the inverse Zeno effect, namely the acceleration of
the decay of an unstable state due to frequent mea-
surements [27]. In the original discussion of the
Zeno effect [16–19], very frequently repeated mea-
surements of an unstable state is shown to slow
down its decay. But, if the duration between two
successive measurements is not short enough, the
frequent measurements may accelerate the decay.
This is the inverse Zeno effect. Obviously, this sit-
uation precisely corresponds to the increase of de-
coherence observed in this article. Moreover, since
a very intense field is used for the dynamical de-
coupling control, the decrease of the decoherence
time is also a consequence of the decrease of the
lifetime of the unstable states due to the intense
field [28].

There is room for improvement and further anal-
ysis: a number of neglected effects can be consid-
ered, such as the role of counterrotating terms and
Fano states, the influence of the other atomic states,
the primary importance of the relevant timescales
and so on. These aspects will be discussed else-
where.
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